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L9 – Stochastic Local Search
Many parts of the material is based on slides provided with the book 

'Stochastic Local Search: Foundations and Applications' 
by Holger H. Hoos and Thomas Stützle (Morgan Kaufmann, 2004) –

see http://www.sls-book.net for further information.



• A New Search Paradigm

• SLS Definitions

Outline

• SLS Definitions

• Basic Hill Climbing (example on M/G-NR-TSP)

• Various SLS Ideas (all on TSP)

• Small Experiments throughout the Lecture



Recall: Lecture 1

• COP = Combinatorial Optimization Problem

Back to NP-hard COP

• COP = Combinatorial Optimization Problem

• Many of them are NP-hard

• Still remember the 3C2 reality?

• This time, we will also sacrifice optimality

– But unlike Approximation Algorithms,
this time we will NOT have

Fast

Optimal

Universal

this time we will NOT have
any guarantee of the solution quality…

– Theoretical Computer Scientists won’t like this…



Solving NP-hard Combinatorial Optimization Problems 
(COPs) through Complete Search that sacrifices 
speed is usually by iteratively (or recursively) generate 

Search Paradigm

speed is usually by iteratively (or recursively) generate 
and evaluate (all) candidate solutions

– e.g. Try all (N-1)! possible TSP tours one by one, evaluate 
them, and report the best (minimal one)

– Note: Evaluating one candidate solution (e.g. compute the 
cost of a given TSP tour) is typically computationally much cost of a given TSP tour) is typically computationally much 
cheaper than finding one (out of possibly many) optimal 
solutions (e.g. find the optimal TSP tour)



What you already know: Systematic Search:

– Traverse search space for given problem instance
in a systematic manner

A New Search Paradigm

in a systematic manner

– Complete: Guaranteed to eventually find (optimal) 
solution, or to determine that no solution exists

A New Paradigm: Local Search:

– Start at a (random) position in search space

– Iteratively move from a position to its neighbouring 
position, usually (but not always) perturbative (next slide)

– Typically incomplete: Not guaranteed to find (optimal) 
solutions, cannot determine insolubility with certainty…



• Perturbative Search

– search space = complete candidate solutions

A New Search Paradigm, Continued

– search step = modification of one/more sol. components

– e.g. swap two edges (2-exchange) in a TSP tour

• Constructive Search (aka construction heuristics)

– search space = partial candidate solutions

– search step = extension with one/more sol. components – search step = extension with one/more sol. components 

– e.g. from one vertex, go to nearest neighbor vertex,
the Greedy Nearest Neighbor heuristic



• Completeness: Advantage of systematic search,
but not always relevant, e.g., when existence of 
solutions is guaranteed by construction or in real-time 

Systematic versus Local Search

solutions is guaranteed by construction or in real-time 
situations (e.g. TSP when input is a complete graph).

• Any-time property: Positive correlation between 
run-time and solution quality or probability;
typically more readily achieved by Local Search.

• Complementarity: Local and Systematic Search can • Complementarity: Local and Systematic Search can 
be fruitfully combined, e.g., by using Local Search for 
finding solutions whose optimality is proven using 
Systematic Search.



• Systematic search is often better suited when ...

– proofs of insolubility or optimality are required;

When to use?

– time constraints are not critical;

• Local search is often better suited when ... 

– reasonably good solutions are required within a short time;

– parallel processing is used;



• Many prominent local search algorithms use 
randomised (stochastic) choices in generating and 
modifying candidate solutions.

The term Stochastic in SLS

modifying candidate solutions.

• These Stochastic Local Search (SLS) algorithms are 
one of the most successful and widely used 
approaches for solving hard combinatorial problems.

• Some well-known SLS methods and algorithms:

– Evolutionary (Genetic) Algorithms

– Simulated Annealing

– Tabu Search (Steven’s old favourite due to his PhD)



• S = solution, C = current search position

SLS — global versus local view

Improving local move(s)

Non-improving local move(s)

Plateau 
move(s)



For a given problem instance  of a COP:

– search space S()

⊆

Definitions (1/6)

• e.g., for TSP: set of all possible TSP tours

– solution set S'() ⊆ S()

• e.g., for TSP: TSP tours of minimum length

– neighbourhood relation N() ⊆ S()×S()

• e.g., for TSP: 2-exchange neighbourhood

– set of memory states M()

⊆

– set of memory states M()
• May be not used in some memoryless SLS algorithms

• e.g., tabu list in Tabu Search algorithm (next lecture)



Continued:

– (init)ialization function: ∅ → D(S()×M())

Definitions (2/6)

∅
• Specifies probability distribution over initial search positions

and memory states

– step function: S()×M() → D(S()×M())
• Maps each search position and memory state onto probability 

distribution over subsequent, neighbouring search positions and 
memory states

– termination function: S()×M() → D({T, F})
• Determines the termination probability for each search position

and memory state



Generic SLS Algorithm



Continued:

– neighborhood (set) of candidate solution s:
N(s) := {s' ∈ S | N(s, s')}

Definitions (3/6)

N(s) := {s' ∈ S | N(s, s')}

– neighborhood graph of problem instance :
GN() := (S(), N())
• We will discuss more of “Fitness Landscape” in next two lectures

– k-exchange neighbourhood: candidate solutions s and
s' are called neighbours iff s differs from s' in at most ks' are called neighbours iff s differs from s' in at most k
solution components 
• 2-exchange neighbourhood for TSP

(solution components = edges in given graph)



Search steps in the 2-exchange neighbourhood for the TSP



Continued:

– search step (or move): Pair of search positions s, s' for 
which s' can be reached from s in one step, i.e., N(s, s')

Definitions (4/6)

which s' can be reached from s in one step, i.e., N(s, s')
and step(s, m)(s', m') > 0 for some memory states
m, m' ∈ M.

– search trajectory: Finite sequence of search positions 
(s0, s1, ..., sk) such that (si−1, si) is a search step for any
i ∈ {1, …, k}.i ∈ {1, …, k}.

• We will see more about animation of search trajectory that I did 
during my PhD days in the next two lectures

– search strategy: Specified by init and step function;
to some extent independent of problem instance and
other components of SLS algorithm.



Continued:

– Evaluation function g() : S() → R that maps candidate 
solutions of a given problem instance  onto real numbers, 

Definitions (5/6)

solutions of a given problem instance  onto real numbers, 
such that global optima correspond to solutions of ;
• used for ranking or assessing neighbors of current search position to 

provide guidance to search process.

– Evaluation versus objective functions:
• Evaluation function: Part of SLS algorithm.

• Objective function: Integral part of optimization problem.



Also known as Iterative Improvement/Descent

– search space S: set of all possible TSP tours

Hill-Climbing for (M/G-NR-)TSP

– solution set S': set of TSP tours of minimum length

– neighbourhood relation N: 2-exchange neighbourhood

– set of memory states M: {0}, not used

– init: classic greedy nearest neighbour heuristic

– step: uniform random choice from improving neighbors, 
∈

– step: uniform random choice from improving neighbors, 
i.e., step(s)(s') := 1/#I(s) if s' ∈ I(s), and 0 otherwise, 
where I(s) := {s' ∈ S | N(s, s') and g(s') < g(s)}

– terminates when no improving neighbor available



• https://open.kattis.com/problems/tsp

– Set by A/P Per Austrin (ICPC WF judge)
• Teaches similar module in KTH, Sweden :O

Intermezzo: Experiments (1/2)

• Teaches similar module in KTH, Sweden :O

• Take 1: Fixed tour {0, 1, …, N-1} for 50 cases

– https://open.kattis.com/submissions/1191228 (+Steven’s credentials)
• Score: 1.21/50

• Take 2: Greedy Nearest Neighbor for all 50 cases

– https://open.kattis.com/submissions/1191233 (+Steven’s credentials)
• Score: 2.96/50

• Take 3: Hill Climbing 2-exchange (2-Opt) local search for all 50

– https://open.kattis.com/submissions/1191237 (+Steven’s credentials)
• Score: 17.9/50

• I think this already larger than if using the 2-approximation or the complex 1.5-
approximation/Christofides’s algorithm for Metric TSP



Incremental updates (aka delta evaluations)

– Key idea: Calculate effects of differences between the 
current search position s and its neighbours s' on 

SLS Ideas: Delta Evaluations (1/2)

current search position s and its neighbours s' on 
evaluation function value.

– Evaluation function values often consist of independent 
contributions of solution components; hence, g(s) can be 
efficiently calculated from g(s') by differences between s
and s' in terms of solution components.and s' in terms of solution components.
• That is, we do not re-compute everything from scratch

– Typically crucial for the efficient implementation of various 
SLS algorithms.



Example: Incremental updates for TSP

– solution components = edges of a given graph G

SLS Ideas: Delta Evaluations (2/2)

– standard 2-exchange neighbourhood, i.e., neighbouring 
round trips p and p' differ only in two edges

– w(p') = w(p)
− 2 edges in p but not in p
+ 2 edges in p' but not in p

– This can be done in Constant time (i.e. 4 arithmetic – This can be done in Constant time (i.e. 4 arithmetic 
operations), compared to Linear time (i.e. n arithmetic 
operations for graph with n vertices) for computing w(p')
from scratch.



Continued:

– Local minimum: Search position without improving 
neighbours w.r.t. given evaluation function g and 

∈

Definitions (6/6)

neighbours w.r.t. given evaluation function g and 
neighbourhood N, i.e., position s ∈ S such that
g(s) ≤ g(s') for all s' ∈ N(s).

– Strict local minimum: Search position s ∈ S such that 
g(s) < g(s') for all s' ∈ N(s).

– Local maximum and strict local maximum

∈
∈

– Local maximum and strict local maximum
are defined analogously

– Local minimum/maximum is also called as
local optima

– What we want: Global optima



Main Problem of simple Hill-Climbing:

– (Quick) stagnation in local optima of evaluation function g.

SLS Ideas: Escaping Local Optima

So, some simple mechanisms to improve it:

– Restart: Re-initialize search whenever a local optima is encountered.

• Often rather ineffective due to cost of initialization.

– Non-improving steps: In local optima, allow selection of candidate 
solutions with equal or worse evaluation function value, e.g., using 
minimally worsening steps.minimally worsening steps.

• Can lead to long walks in plateaus,
i.e., regions of search positions with identical evaluation function.

– Neither of these mechanisms is guaranteed to always escape 
effectively from local optima. 



Diversification vs Intensification 

– Goal-directed and randomized components of SLS strategy 
need to be balanced carefully.

SLS Ideas: Search Strategy

need to be balanced carefully.

– Intensification: Aims to greedily increase solution quality 
or probability, e.g., by exploiting the evaluation function.

– Diversification: Aims to prevent search stagnation by 
preventing search from getting trapped in confined regions. 

– Examples:– Examples:
• Iterative Improvement (II): intensification strategy.

• Uninformed Random Walk (URW): diversification strategy.

– Balanced combination of intensification and diversification 
mechanisms forms the basis for advanced SLS methods. 



Note:

– Local minima depend on g and neighborhood relation N.

Note about Local Optima

– Larger neighborhoods N(s) induce:
• Neighborhood graphs with smaller diameter,

• Fewer local minima.

– Ideal case is the exact neighborhood, i.e., neighborhood 
relation for which any local optimum is also guaranteed to 
be a global optimum.be a global optimum.
• Typically, exact neighborhoods are too large to be searched 

effectively (exponential in size of problem instance).



We face a trade-off situation here:

– Using larger neighborhoods can improve performance of 
Hill-Climbing (and other SLS methods).

SLS Ideas: Neighborhood Size

Hill-Climbing (and other SLS methods).
• Example: 2-exchange neighborhood to 3-exchange neighborhood :O

– But the time required for determining improving search 
steps increases (sometimes significantly) with 
neighborhood size.

– So we have to decide if the effectiveness of larger – So we have to decide if the effectiveness of larger 
neighborhoods worth the additional time complexity of 
search steps.



Neighborhood Pruning:

– Idea: Reduce size of neighborhoods by excluding neighbors 
that are likely/guaranteed not to yield improvements in g.

SLS Ideas: Neighborhood Pruning

that are likely/guaranteed not to yield improvements in g.

– Note: Crucial for large neighborhoods, but can be also very 
useful for small neighborhoods.

– Example: Candidate lists for the TSP
• Problem intuition: High-quality solutions likely include short edges.

• Candidate list of vertex v: list of v's nearest neighbours (limited • Candidate list of vertex v: list of v's nearest neighbours (limited 
number), sorted according to increasing edge weights.

• Search steps (e.g., 2-exchange moves) always involve edges to 
elements of candidate lists.

• Significant impact on performance of SLS algorithms for the TSP.



How to choose improving neighbor in each step?

– Best Improvement (a.k.a. gradient descent, greedy Hill-
Climbing): Choose maximally improving neighbor, i.e., 

∈

SLS Ideas: Pivoting Rules

Climbing): Choose maximally improving neighbor, i.e., 
randomly select from I*(s) := {s' ∈ N(s) | g(s') = g*}, 
where g* := min{g(s') | s' ∈ N(s)}.

• Notice that this requires evaluation of all neighbors in each step.

– Alternative: First Improvement: Evaluate neighbors in 
fixed order, choose the first improving step encountered.fixed order, choose the first improving step encountered.
• Note: Can be much faster than Best Improvement,

• Overall quality may be weaker overall (but can also be better due to 
faster evaluation time per iteration on fixed time limit),

• Order of evaluation can have significant impact on performance. 



Recall: Local minima are relative to neighborhood.

– Key idea: To escape from local minima of a given 
neighborhood relation, we can switch to a different 

SLS Ideas: Variable Neighborhood

neighborhood relation, we can switch to a different 
neighborhood relation.

– Use k neighborhood relations N1, N2, …, Nk, (typically) 
ordered according to increasing neighborhood size.

– Always use smallest neighborhood that facilitates
improving steps.improving steps.

– Upon termination, candidate solution is locally optimal 
w.r.t. all neighborhoods 



• (Very) hard to analyze

• Usually O(#iterations*polynomial_cost_per_iteration)

SLS Time Complexity

– But if we use techniques like variable neighborhood,
the cost per iteration can be different :S…

• Others just set execution time limit and just run the 
SLS until the execution time limit has elapsed

– Like in our experiment so far…– Like in our experiment so far…



• Take 4: Just Random Restart on Random Tour

– https://open.kattis.com/submissions/1191254 (+Steven’s credentials)
• Score: 19.3/50 (just increase a bit from take 3 that did pure hill climbing :O)

Some More Experiments (2/2)

• Score: 19.3/50 (just increase a bit from take 3 that did pure hill climbing :O)

• Take 5: (Unoptimized version of) My PhD thesis code

– Not shown , this is my current best score (I haven’t optimize further)
• Score: 37.9/50, 12.1 more to full marks, i.e. 0.24 point more per test case…

• You will continue these experiments as part of your CS4234 
mini project (there are some other tasks :O)

– Do NOT submit someone else code (there are at least 2 other person 
who uploaded their Kattis “tsp” code in GitHub :S:S:S)

– What is more important is your experiment process and your report

– This will be in group setting (details in mini project file)



• Introducing a new search paradigm:
Stochastic Local Search (SLS)

Summary

Stochastic Local Search (SLS)

• SLS Definitions

• Hill-Climbing SLS on an example NP-hard COP: 
The M/G-NR-TSP

• Various SLS Ideas

– No proof, all “heuristics” :O…

• (Most) ideas are experimented directly on a 
certain M/G-NR-TSP problem


