CS4234: Optimisation Algorithms
 MSC, Steiner-Tree, M(W)FES, 2-CNF-SAT, PS2

V1.7: A/Prof Steven Halim

MODAL ANSWER IS FOR OUR CLASS USAGE ONLY; NOT TO BE DISTRIBUTED IN PUBLIC

Discussion Points

Q1: We discussed Integer Linear Programming (ILP) in Lecture 02. Now express the proven NP-hard optimization problem: Min-Set-Cover problem that we discussed in Lecture 03a as an ILP!

Q2: Now express what we know as a P problem: Min-Spanning-Tree problem as an ILP! Will you solve MST problem that way instead of using what you already know from earlier modules?

Q3: In Lecture03b, we discussed the Euclidean-Steiner-Tree problem. Now let's spend some time discussing (and maybe proving) some of these properties that were only discussed briefly in Lecture 03b. The TA will draw a few (e.g., $n=7$) 'random' points on Euclidean plane (the whiteboard) and we will try to apply these known properties to help us derive an optimal (or at least (visually) good enough) Euclidean Steiner Tree:

- Each Steiner point in an optimal solution has degree 3.
- The three lines entering a Steiner point form 120 degree angles, in an optimal solution.
- An optimal solution has at most $n-2$ Steiner points.

Q4: Prof Halim needs to continually increase the number of (NP-)hard problems that has been exposed to CS4234 students so far (to have a more interesting Midterm Test and Final Assessment). So let's study this yet other problem Min-Weight-Feedback-Edge-Set (MWFES) and Min-Feedback-Edge-Set (MFES) for the unweighted version.

You are given a directed weighted graph $G=(V, E)$ with (positive) weights $w: E \rightarrow \mathbb{R}$ and $|E| \geq 1$. Your goal is to delete the some edges to produce an acyclic graph with the maximum remaining edge weights. That is:

Find a minimum weight set of edges F such that $G=(V, E \backslash F)$ is acyclic.
Part 0. Draw an (small) example graph and explain this problem to your tutorial group.
Part 1. If G is an undirected weighted graph, give an efficient algorithm to solve this problem optimally.
Part 2. In the case of directed graphs, the MFES (or MWFES) problem is NP-hard (for now, just assume that it is really NP-hard and later in (the optional) Part 4, we will show you the details). Now, consider the following (heuristic) algorithm: Given a directed graph $G=(V, E)$ and weights 1 (or w) for MFES (or MWFES) version, respectively:

1. Let the vertices be $V=v_{1}, v_{2}, \ldots, v_{n}$.
2. Build graph $G_{f}=\left(V, E_{f}\right)$ containing only forward edges. That is, $E_{f}=\left(v_{i}, v_{j}\right)$ where $i<j$.
3. Build graph $G_{b}=\left(V, E_{b}\right)$ containing only backward edges. That is, $E_{b}=\left(v_{j}, v_{i}\right)$ where $i<j$.
4. Return the graph G_{f} or G_{b} containing more edges (or higher total weighted edges for the weighted MWFES version) as the acyclic graph (and the other non-selected edges as the removed edges F).

Show that:

- Both G_{f} and G_{b} are valid solutions to the MFES/MWFES problem.
- Show that the algorithm is not a good approximation algorithm for MFES/MWFES.

Part 3. Now consider the complementary (the dual) problem:
Find a maximum weight subgraph $G^{\prime} \subset G$ that is acyclic.
Notice that weight here refers to the sum of the edge weights. Now show that the (heuristic) algorithm above is actually a 2 -approximation algorithm.

Part 4 (optional to save time, just read the modal answer). Assume G is a directed graph. Show that now it is NP-hard to solve by reduction from the VERTEX-COVER problem. That is, given an instance of Vertex-Cover problem, show how to reduce it into an instance of Feedback-Edge-Set problem.

Q5: The 3-CNF-SAT problem is one of the classic baseline problem to show the NP-hardness of a few other classic problems, e.g. $3-\mathrm{CNF}-\mathrm{SAT} \leq_{p}$ Clique \leq_{p} Vertex-Cover (we briefly shown Clique \leq_{p} Vertex-Cover in Lecture01). One of the PS2 'new' question (it appeared in 2021) involves a special case 2-CNF-SAT of this 3-CNF-SAT.

2-CNF-SAT problem is defined as follows: Given a conjunction of disjunctions ("and of ors") where each disjunction ("the or operation") has three (2) arguments that may be variables or the negation of variables, find a truth $(\mathrm{T} / \mathrm{F})$ assignment to these variables that makes the formula true. For example, $\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right)$ is satisfiable.

Part 1. Find a truth assignment to x_{1}, x_{2} and x_{3} so that the given ϕ is satisfiable.

Part 2. Which problem in PS2 is actually 2-CNF-SAT problem?

Part 3. What is the high-level idea to solve this special case of an NP-complete decision problem?

