
Visualization for Analyzing Trajectory-Based
Metaheuristic Search Algorithms

Steven HALIM and Roland H.C. YAP1 and Hoong Chuin LAU2

1 INTRODUCTION
Most combinatorial (optimization) problems are computationally in-
tractable. We often have to be satisfied with good solutions and typi-
cally metaheuristic algorithms (such as various forms of local search,
tabu search, etc) are used. Given the heuristic nature of such search
algorithms, there are two important considerations in designing a
metaheuristic algorithm:

• Choice of metaheuristics to employ, which may include problem
specific tweaks;

• Selecting the appropriate parameters to drive the heuristics.

We call this problem of designing the appropriate metaheuristic
problem for a combinatorial (optimization) problem, the metaheuris-
tic tuning problem [1, 3, 7]. Anecdotal evidence suggests that tuning
takes a major effort, i.e. [1] states that 90% of the design and testing
time can be spent fine-tuning the algorithm.

Although it can be easy to come up with a variety of metaheuris-
tics, tuning the metaheuristic implementation is not straightforward.
Firstly, the metaheuristics may not be well understood. It might also
be applied to problems which may not have been studied. Thus, it
may not be clear how to perform tuning. Secondly, the space in which
the tuning can operate on is very rich — there are many ways of com-
bining different kinds of metaheuristics each with their own choice
of strategies and variations. Furthermore, they each have their own
parameters. In this paper, we take a broad view of the metaheuristic
tuning problem and understand it to also encompass algorithm design
and debugging.

Traditionally, the approach for to the tuning problem is either man-
ual experimentation or more automated approaches such as finding
the best parameter values [1], best configuration [3], or self-tuning al-
gorithms [2]. In this paper, we take a different approach which takes
a human/programmer perspective — how to aid human in solving
the tuning problem. Like human-guided search [6], we believe that a
cooperative paradigm with the human in the loop can be productive.
The difference with human-guided search is that it is concerned with
using the human to produce better solutions, while we want to use
the human to produce better metaheuristic algorithms.

Ultimately, we would like a man-machine cooperation which can
help the human to debug, analyze and improve a metaheuristic algo-
rithm for particular problems. Some of the questions which we would
like to help answer are:

1. Does the actual search behavior match how we think the algorithm
should behave?

1 National University of Singapore, {stevenha,ryap}@comp.nus.edu.sg
2 Singapore Management University, hclau@smu.edu.sg

2. Are there signs of cycling behavior?
3. How does the metaheuristic algorithm make progress?
4. How effective the metaheuristic in conducting intensification

and/or diversification?
5. How wide is the search coverage?
6. How far is the (greedy) initial solution to the best found solution?
7. Does the search quickly identify the region where the best solu-

tions found reside or does it wander elsewhere?
8. How do the trajectories of two different metaheuristics compare?
9. What is the effect of modifying certain parameters, components

or strategies with respect to the search behavior?

In this paper, we focus on the tuning problem for metaheuristic
algorithms which are search trajectory based, such as iterated local
search, simulated annealing, tabu search, etc. We believe that a good
approach to get man-machine cooperation is with an interactive vi-
sualisation of the search trajectory. One way of understanding how
a program works is with a debugger. We have built the analog of a
debugger, the visualizer VIZ, for understanding search trajectories of
metaheuristic algorithms. VIZ provides visualization and animation
(forwards and backwards) in time. It has multiple visualizations: (i)
problem independent visualization which allows it to be used on a
broad range of metaheuristic algorithms in a generic way; and (ii) it
can also make use of problem specific visualizations. Although VIZ

is still in prototype stage, we believe that it is the first serious attempt
at an interactive tool with emphasis on the human computer inter-
action aspects to help humans understand the dynamic behavior of
metaheuristic algorithms and guide the tuning process.

2 SEARCH TRAJECTORY VISUALIZATION
Visualizing the search trajectory, i.e. local movement of the current
solution along the search space is difficult because the problem is
usually in very high dimensions and the search space is also ex-
tremely large. We are only aware of (very) few proposals for search
trajectory visualization.

N-to-2 space mapping [4] gives a mapping from a higher dimen-
sional problem space to 2-D for visualizing, e.g. coverage of search
space. However, the proposed visualization is crowded and static.

In our earlier work, V-MDF [7], we proposed a visualization called
the distance radar. A current set of elite solutions is chosen, called
anchor points. The distance radar displays two graphs: the distance
between the current solution in the search trajectory w.r.t the set of
anchor points (one sorted by fitness and the other by recency). While
V-MDF can help answering some of the questions about how the
search trajectory is behaving, e.g. questions 1/2/4/7, the visualiza-
tion is not very intuitive for answering questions 3/5/6/8/9. Another
drawback is that the graphs can change simply because the elite set



Figure 1. Screen shot of VIZ with multiple visualizations

changes with time. The visualization is less effective because the vi-
sualization is essentially one dimensional, graphs which show dis-
tance information.

With VIZ, we want to ensure that the visualization can be intu-
itive and exploit the fact that humans are good at recognizing visual
patterns, in particular, not just in a static image but also how things
change which exploits movement and temporal features. We make
use of an abstract 2-D visualization where instead of trying to map
the anchor points and points along the search trajectory from a high
dimension to 2-D, we consider abstract points which are differen-
tiated from each other using a distance metric. We do not have the
space to discuss the visualization in detail — an example of a possi-
ble metric is the Hamming distance. These points can then be laid out
in 2-D to approximate a visualization of the abstract points, we have
used a spring model for the layout [5]. The search trajectory is then
drawn interactively as a trail as shown in Fig. 1 and 2. The strength of
this approach is that we now have a problem independent visualiza-
tion which can be used with a suitably defined metric to demonstrate
search trajectories.

3 THE VISUALIZER: VIZ
Fig. 1 shows VIZ’s GUI. VIZ functions in interactive fashion as a
kind of video player to play back an animation of the search trajec-
tory drawn as a trail. The trail fades with time so that the animation
does not clutter up the screen. Colors are used to compare two meta-
heuristic algorithms. Anchor points3 are landmarks to indicate the
progress of the search trajectory in the abstract search space. Aux-
iliary visualizations are used to complement search trajectory visu-
alization, e.g. time series of objective values, problem specific, etc.
The animation of the geometric pattern of the trail, its relation to the
anchor points, and auxiliary visualizations can be used to answer all
the questions posed in Sec. 1.

Space doesn’t permit more details, rather we use the following
example which demonstrates how one can visualize the differences
between two variants of Iterated Local Search (ILS) on TSP [9]. In
TSP, it is conjectured that a heuristic algorithm should exploit the
“Big Valley” property, a region in the TSP search space where most
local optima (including the global optima) lie [8].

In this example, we want to know whether our algorithms make
use of this property. We created two variants of the ILS algorithm
which are run on the same TSP instance: ILSA and ILSB . The vi-
sualization of the search trajectories from ILSA and ILSB is shown
in Fig. 1 (as a trail) and Fig. 2 (as region coverage). At a glance,

3 These are slightly different from V-MDF, as anchor points in VIZ are now
static: carefully chosen from the log files to achieve diversity and quality.
The fitness of the anchor points is indicated via the contour map.

Figure 2. Search trajectory of ILSA vs ILSB on the same TSP instance

one can check the existence of the search intensification indicative of
searching in a “Big Valley” by checking whether the search trajec-
tory covers region with a cluster of many good anchor points (TSP
local optima). Fig. 2 shows that the search trajectory for ILSA is
concentrated in the middle of the screen (indicative of a “Big Valley”
region). On the other hand, after similar number of iterations, the
coverage of ILSB seems to be more diverse. ILSB seems to spend
most of it’s time exploring areas far from the cluster of good anchor
points.

This gives a possible explanation of the algorithm behavior and
suggests directions for tuning our algorithms. If our solution behaves
like ILSA, we know that we are on the right track, perhaps only few
minor adjustments are needed. On the other hand, if it behaves like
ILSB , we may want to modify our ILS algorithm such that it is more
focused.

4 CONCLUSION
We have presented a new approach for visualizing search trajec-
tory and introduced the visualizer tool VIZ. This is not intended
to replace the existing analysis tools, but rather it is meant to
augment the existing tools to help the algorithm designer bet-
ter understand the behavior of a trajectory based metaheuris-
tic search algorithm and to debug and to tune the algorithm. A
prototype of VIZ which is under continuous development is at:
http://www.comp.nus.edu.sg/˜stevenha/viz

ACKNOWLEDGEMENTS
This paper was written while Roland Yap was visiting the Swedish
Institute of Computer Science and their support and hospitality are
gratefully acknowledged.

REFERENCES
[1] B. Adenso-Diaz and M. Laguna, ‘Fine-tuning of Algorithms Using Frac-

tional Experimental Designs and Local Search’, Operations Research,
(2005).

[2] R. Battiti and G. Tecchiolli, ‘The Reactive Tabu Search’, ORSA Journal
of Computing, 6(2), 126–140, (1994).

[3] M. Birattari, The Problem of Tuning Metaheuristics as seen from a ma-
chine learning perspective, Ph.D., U. Libre de Bruxelles, 2004.

[4] M. Kadluczka, P.C. Nelson, and T.M. Tirpak, ‘N-to-2 Space Mapping
for Visualization of Search Algorithm Performance’, in ICTAI, 508–513,
2004.

[5] T. Kamada and S. Kawai, ‘An algorithm for drawing general undirected
graphs’, Information Processing Letters, 31(1), 7–15, (1989).

[6] G.W. Klau, N. Lesh, J. Marks, and M. Mitzenmacher, ‘Human-Guided
Tabu Search’, in AAAI, 41–47, 2002.

[7] H.C. Lau, W.C. Wan, and S. Halim, ‘Tuning Tabu Search Strategies via
Visual Diagnosis’, in MIC, 2005.

[8] P. Merz, Memetic Algorithms for Combinatorial Optimization Problems:
Fitness Landscapes and Effective Search Strategies, Ph.D., U. of Siegen,
2000.

[9] T. Stuetzle and H. Hoos, ‘Analyzing the Run-Time Behavior of Iterated
Local Search for the TSP’, in MIC, 1999.


