This course material is now made available for public usage.
Special acknowledgement to School of Computing, National University of Singapore
for allowing Steven to prepare and distribute these teaching materials.

=

QGDD

International Collegiate
cm Programming Contest

CS3233 EE o
Competitive Programming

Dr. Steven Halim

Week 02 — Data Structures & Libraries
Focus on Bit Manipulation & Binary Indexed Tree

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Outline

e Mini Contest #1 + Break + Discussion + Admins

e Data Structures With Built-in Libraries
— Just a very quick walkthrough

* The pace of this lecture may be frightening for some students...
— Additional help session on Saturday, 26 Jan 2013, 10am-12pm @ PL6

e Read the book (Chapter 2) + experiment with the details on your own
— Linear Data Structures (CS1010/1%t half of C52020)

— Non Linear Data Structures (CS2010/2"¢ half of C52020)
e Data Structures With Our-Own Libraries

— Focus on Binary Indexed (Fenwick) Tree

LINEAR DATA STRUCTURES
WITH BUILT-IN LIBRARIES

| am...

1. A pure C coder

2. A pure C++ coder

3. A mix between

C/C++ coder

4. A pure Java coder

. A multilingual
coder: C/C++/Java

0 0 0 0 0

C53233 JCompetitive Programming, 2 3 4 5
0 of 120 Stpven Halim, SoC, NUS

Linear DS + Built-In Libraries (1)

1. Static Array, built-in support in C/C++/Java

2. Resize-able: C++ STL vector, Java Vector
— Both are very useful in ICPCs/IOls
— PS: Java Arraylist may be slightly faster

 There are 2 very common operations on Array:
— Sorting
— Searching
— Let’s take a look at efficient ways to do them

SORTING + SEARCHING
INVOLVING ARRAY

Sorting (1)

e Definition:
— Given unsorted stuffs, sort them... *

 Popular Sorting Algorithms
— O(n?) algorithms: Bubble/Selection/Insertion Sort
— O(n log n) algorithms: Merge/Quick”/Heap Sort
— Special purpose: Counting/Radix/Bucket Sort

* Reference:
— http://en.wikipedia.org/wiki/Sorting algorithm

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Sorting (2)

In ICPC, you can “forget” all these...

— In general, if you need to sort something...,
just use the O(n log n) sorting library:

e C++ STL algorithm:: sort

e Java Collections.sort

nr¥ingo ic +hor iicod ac nroli
Ortirig 15 LIICT UuSEU as |

In lCPC
i il

for more complex algorithm or to beautify output

— Familiarity with sorting libraries is a must!

Sorting (3)

e Sorting routines in C++ STL algorithm

— sort — a bug-free implementation of introsort*
e Fast, it runs in O(n log n)

e Can sort basic data types (ints, doubles, chars), Abstract
Data Types (C++ class), multi-field sorting (= 2 criteria)

— partial_sort — implementation of heapsort
e Can do O(k log n) sorting, if we just need top-k sorted!

— stable sort

 |f you need to have the sorting ‘stable’, keys with same
values appear in the same order as in input

Searching in Array

Two variants:

— When the array is sorted versus not sorted
Must do O(n) linear scan if not sorted - trivial
Can use O(log n) binary search when sorted

— PS: must run an O(n log n) sorting algorithm once

Binary search is ‘tricky’ to code!

— Instead, use C++ STL algorithm::lower_bound
or Java Collections.binarySearch

Linear DS + Built-In Libraries (2)

3. Array of Boolean: C++ STL bitset

— Should be faster than array of Booleans or vector<bool>!
— No specific APl in Java that is similar to this

4. Bitmask (One important point of this lecture)
— a.k.a. lightweight set of Boolean or bit string

— Explanation via:
http://www.comp.nus.edu.sg/~stevenha/visualization/bitmask.html

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

5.

6.

/.

8.

Linear DS + Built-In Libraries (3)

Linked List, C++ STL list, Java LinkedList

— Usually not used... just use vector!
Stack, C++ STL stack, Java Stack

— Used by default in Recursion, Postfix
Conversion/Calculation, Bracket Matching, etc

Queue, C++ STL queue, Java Queue
— Used in Breadth First Search, Topological Sort, etc

Deque, C++ STL deque, Java Deque
— Used in algorithms for ‘Sliding Window’ problem, etc

NON-LINEAR DATA STRUCTURES
WITH BUILT-IN LIBRARIES

& hinary searchtree of size 9and &

o ADT Table (key % data) :ist:l:.Withrcll:-tﬂandleaves1,4,?

e Binary Search Tree (BST)

— Advertised O(log n) for insert, search, and delete

— Requirement: the BST must be balanced!
e AVL tree, Red-Black Tree, etc... *argh*

e Fret not, just use: C++ STL map (Java TreeMap)
— UVa 10226 (Hardwood Species)*

& hinary searchtree of size 9and &

® ADT Table (key eXIStS or nOt) :ist:l:.Withrcll:-tﬂandleaves1,4,?

e Set (Single Set)
— C++ STL set, similar to C++ STL map

 map stores a (key, data) pair
e set stores just the key

— In Java: TreeSet
 Example:
— UVa 11849 - CD

Heap [OROJORO.

Example of & full hinary max heap

* Heap
— C++ STL algorithm has some heap algorithms
e partial _sort uses heapsort
— C++ STL priority_queue (Java PriorityQueue) is heap

* Prim’s and Dijkstra’s algorithms use priority queue

 But, we rarely see pure heap problems in ICPC

Keys Indexes Key-value pairs

(records)
0
John Smith T — Lisa Smith |+ 1-555-8976
Hash Table ARepa
Lisa Smith >< == Jahn Smith |+ 1-555-1234
pu—— - I e | +1-555-5030

.................................. 999

® H a S h Ta b | e A =mall phone book &z & hash takle.

— Advertised O(1) for insert, search, and delete, but:

 The hash function must be good!
e There is no Hash Table in C++ STL (d in Java API)

— Nevertheless, O(log n) using map is usually ok

e Direct Addressing Table (DAT)
— Rather than hashing, we more frequently use DAT
— UVa 11340 (Newspaper)

Quick Check

1. | can cope with this
pace...

2. | am lost with so
many new
information in the
past few slides

= =

C53233 J Competitive Programmingl 2
0 of 120 Stpven Halim, SoC, NUS

5 Minutes Break

One data structures without built-in libraries

will be discussed in the last part...
— Binary Indexed (Fenwick) Tree
— Graph, Union-Find Disjoint Sets, and Segment Tree
are not discussed in this year’s CS3233 Week02
e Graph DS is covered in details in CS2010/CS2020

e UFDS is covered briefly in C52010/CS2020
e Please study Segment Tree on your own

— We try not to set any contest problem involving Segment Tree

Time Check:
8.30pm

Graph (not discussed today, revisited in Week06/07/08)
Union-Find Disjoint Sets (not discussed today, read Ch2 on your own)

Segment Tree (not discussed today, read Ch2 on your own)

Fenwick Tree (discussed today)

DATA STRUCTURES
WITHOUT BUILT-IN LIBRARIES

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Fenwick Tree — Basics (1)

e Cumulative Frequency Table
— Example, s ={2,4,5,5,6,6,6,7,7,8,9} (already sorted)

Index/Score/Symbol Cumulative Frequency

0 - - (index O is ignored)
0

1
1
2

O 00 N o U B W N -
S r P N W N 2 O =, O

[N
o

Fenwick Tree — Basics (2)

 Fenwick Tree (inventor = Peter M. Fenwick)
— Also known as “Binary Indexed Tree”, very aptly named
— Implemented as an array, let call the array name as ft

— We will frequently use this bit manipulation, remember!
e LSOne(i) = Least Significant One of i computed via i & (-i)

BRSQ(1l, &) = 7 @

g

Index/Fey U 1 2 3 - 5 © 7 8 9 10
In Binary OJC000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010
Frg (Cum) 0O (OU) 0 (0) 1 (1) 0 (1) 1 (Z2) 2 (4) 3 (7)) 2 (9) 1 (10) 1 (11) 0O (11)

Fenwick Tree — Basics (3)

 Each indexi of ftis responsible for certain range: [i-LSOne(i)+1 .. i]

o ft[i] stores the cumulative frequency of elements:
{i-LSOne(i)+1, i-LSOne(i)+2, i-LSOne(i)+3, ..., i}

I ey N

0000 N/A° N/A N/A N/A

1 0001 [1.1] O O o T @

2 o010 [1L2] 1 1 1 e)

3 0011 [3.3] 0 1 0 —15)

4 0100 [1.4] 1 2 2 @ @ @ @ @

5 0101 [5.5] 2 4 2 e | S S R A
6 0110 [5..6] 3 7 5 Eiqﬁiil‘;f 20?3; ioﬁy 201&) T2 2m 3 2, 1o 1 b o an
7 0111 [7.7] 2 9 2

8 1000 [1.8] 1 10 10

9 1001 [9.9] 1 11 1

10 1010 [9.10] O 11 1

Fenwick Tree — RSQ (1)

* To get the cumulative frequency from index 1 to b,

use rsq(b)
— The answer is the sum of sub-frequencies stored in array Tt with
indices related to b via this formulab®™ = b - LSOne(b)

— Apply this formula iteratively until b is O

— Example: rsq(6)
e b=6=0110, b’ =b -LSOne(b) =0110-0010, b'=4=0100
e b'=4=0100,b” =b’ - LSOne(b’) =0100 - 0100, b" =0 = stop
e Sum ft[6]+ft[4] = 5+2 = 7 (the pink area covers range [1..4]+[5..6] = [1..6])

RSQ(1l, 6) = 7 | [@
e
: S (2)

Analysis: -

This is \

O(log n) @ @ @ @

Index/Rey U 1 2 3 i 7 8 S 10
Why') In Binary 0000 o001 0010 0011 0111 1000 1001 1010

Frg (Cum) 0 (0) o0 (0) 1 (1) o (1) 1 (2) (7) 2 (3) 1 (10) 1 (11) 0O (11)

Fenwick Tree — RSQ (2)

* To get the cumulative frequency from index ato b,
use rsq(a, b)
— If ais greater than one, we use: rsq(b) — rsq(a-1)
— Example: rsq(4, 6)

e rsq(4, 6) = rsq(6) — rsq(4-1) = rsq(6) — rsq(3) =
G+2) - (0+1) =7 -1 =6

RSQ(1l, 6) = 7 [@

_ ‘ _ _ _ I/.
Index/Fey 0 1 2 3 4 5 G 7 8 9 10
inary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010
Frg (Cum) O (0) o0 (0) 1 (1) o (1) 1 (2) 2 (1» 3 (7) 2 (8} 1 (10) (11) (11)

Analysis:
This is R (10)

O(2 log n) = l T
o 0’0 of

O(log n)
1000 1001 1010
S 1 (10) 1 (11) ©O (11)

W h ’? Index/Key [1
. In Binary 0000 vuol
Frq 0 (U 0 (0

Fenwick Tree — Update

* To update the frequency of an key/index K by v
(V is either positive or negative), use adjust(k, Vv)

— Indices that are related to K via k"

— Example: adjust(5, 1)
k + LSOne(k) =
k' + LSOne(k)=0110 + 0010, k' =8 =1000

= k + LSOne(k)

will be updated by v when k < ft.si1ze()

e k=5=0101,k'=
e k'=6=0110, k" =

1
1UUV, R

nnn k' = L' o
[AN Bl

0101 + 0001, k'=6 =0110

f\f\ 10NN L' =16 = 100NN -e>
UuUuU T 1uuy, K 10 = 1uUuuu

all") =
I~

n
VIICT\ N

— Observe that the pink line in the flgure below stabs through the
ranges that are under the responsibility of indices 5, 6, and 8

Analysis:
This is also
O(log n)

Why?

e ft[5], 2 updated to 3
e ft[6], 5 updated to 6
e ft[8], 10 updated to 11

*

010 0011 aloo
1 (1y o (1) 1 (2) 3 (5) 4 (8)

Index/Eey
In Binary CJC)OO OCJl
Frg (Cum) 0O 0

Fenwick Tree — Library

class FenwickTree {

private: vi Tt; // recall that vi i1s: typedef vector<int> vi;

public: FenwickTree(int n) { ft.assign(n + 1, 0); } // init n + 1 zeroes

int rsq(int b) { // returns RSQ(1, b)
int sum = 0; for (; b; b -= LSOne(b)) sum += ft[b];

return sum; } // note: LSOne(S) (S & (-9))

int rsq(int a, int b) { // returns RSQ(a, b)

return rsq(b) - (a==1 7?0 : rsgq(a - 1)); }
// adjusts value of the k-th element by v (v can be +ve/inc or -ve/dec)
void adjust(int k, 1nt v) { // note: n = ft.size() -1
for (G k < (int)ft.size(); k += LSOne(k)) ft[k] += v; }

}:

CS3233 - Competitive Programming, ..
Steven Halim, SoC, NUS FT/BIT is in 101 syllabus!

Fenwick Tree — Sample Application

Fenwick Tree is very suitable for dynamic RSQs (cumulative
frequency table) where update occurs on a certain index only
Now, think of potential real-life applications!

— http://uhunt.felix-halim.net/id/32900
— Consider code runtime of [0.000 - 9.999]s for a particular UVa problem

e There are up to 10+ million submissions/codes
— About thousands submissions per problem

e |f your code runsin 0.342 secs, what is your rank?

How to use Fenwick Tree to deal with this problem? *

Quick Check

| am lost with Fenwick Tree

| understand the basics of
Fenwick Tree, but since this
is new for me, | may/may
not be able to recognize
problems solvable with FT

| have solved several FT-
related problems before

0

C53233 J Competitive Prograniming, 2 3
0 of 120 Stkven Halim, SoC, NUS

Summary

 There are a lot of great Data Structures out there

— We need the most efficient one for our problem
o Different DS suits different problem!

 Many of them have built-in libraries

— For some others, we have to build our own (focus on FT)

e Study these libraries! Do not rebuild them during contests!

e From Week03 onwards and future ICPCs/IOls,
use C++ STL and/or Java APl and our built-in libraries!

— Now, your team should be in rank 30-45 (from 60)
(still solving ~1-2 problems out of 10, but faster)

References

 Competitive Programming 2.9, Chapter 2

— Steven, Felix ©

* A new data structure for cumulative frequency table

— Peter M Fenwick
— http://www.uop.edu.jo/download/pdfcourses/ds/19492.pdf

* Fenwick Tree @ TopCoder
— By boba5551

— http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=binarylndexedTrees

Study These Visualizations

http://www.comp.nus.edu.sg/~stevenha/visualization/bitmask.html

http://www.comp.nus.edu.sg/~stevenha/visualization/bit.html

You can use your smart phones/tablet PCs to access them ©

Google searches (as of last year), there is no other
visualizations on bitmask/BIT like these

PS: Report bugs to Steven, if any

