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Outline

Mini Contest #3 + Break + Discussion + Admins

Dynamic Programming — Introduction

— Treat this as revision for ex C52010/CS2020 students
— Listen carefully for the other group of students!

— | open consultation slots (Mon/Fri) for NUS students
who need help with this topic, especially those
who did not go through CS2010/CS2020 before

Dynamic Programming

— Some Classical Examples

PS: | will use the term DP in this lecture
— OOT: DP is NOT Down Payment!




Wedding Shopping
EXAMPLE 1
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Motivation

* How to solve UVa 11450 (Wedding Shopping)?

— Given 1 £ C <20 classes of garments
e e.g.shirt, belt, shoe

— Given 1 £ K < 20 different models for each class of garment
e e.g. three shirts, two belts, four shoes, ..., each with its own price

— Task: Buy just one model of each class of garment
— Our budget 1 £ M <200 is limited

 We cannot spend more money than it
e But we want to spend the maximum possible

— What is our maximum possible spending?

e Output “no solution” if this is impossible



* Budget M = 100 | |20

— Answer: 75 6 4
1 E
50 | 14 23
© Budget =20 II-II-
Garment
— Answer: 19

 Alternative answers 5
are possible

e

— Answer: no solution

10 6
C=2 7 3 1 7
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Greedy Solution?

 What if we buy the most expensive model for each
garment which still fits our budget?

 Counter example: Model
_M=12 Garment

— Greedy will produce:

* no solution

— Wrong answer!

e The correct answer is 12
e (seethe green dotted highlights)

\Y ™~

— Q: Can you spot one more potential optimal solution?
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Divide and Conquer?

e Anyidea?




Complete Search? (1)

 What is the potential state of the problem?
— g (which garment?)
— id (which model?)

— money (money left?)

e Answer:

— (money, g) or (g, money)

 Recurrence (recursive backtracking function):

shop(money, Q)
iIT (money < 0) return -INF
1T (g == C) return M — money
return max(shop(money — price[g][model], g + 1), Vmodel e [1..K]



Complete Search? (2)

e But, how to solve this?

0 Garment

 Time Complexity: 202
e Too many for

3s time limit ® BER : 3 7
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Overlapping Sub Problem Issue

e |nthe simple 20%° Complete Search solution,
we observe many overlapping sub problems!

— Many ways to reach state (money, g), e.g. see below, M = 12

2 3



DP to the Rescue (1)

e DP = Dynamic Programming

 Programming here is not writing computer code,
but a “tabular method”!

— a.k.a. table method

e A programming paradigm that you must know!
— And hopefully, master...



DP to the Rescue (2)

e Use DP when the problem exhibits:

— Optimal sub structure

e Optimal solution to the original problem contains
optimal solution to sub problems
— This is similar as the requirement of Greedy algorithm
— If you can formulate complete search recurrences, you have this

— Overlapping sub problems
* Number of distinct sub problems are actually “small”

e But they are repeatediy computed
— This is different from Divide and Conquer



DP Solution — Implementation (1)

 There are two ways to implement DP:
— Top-Down
— Bottom-Up

e Top-Down (Demo):

— Recursion as per normal + memoization table

* |tis just a simple change from backtracking
(complete search) solution!



Turn Recursion into Memoization
initialize memo table in main function (use ‘memset’)

return_value recursion(params/state) {

if this state is already calculated,
simply return the result from the memo table

calculate the result using recursion(other_params/states)
save the result of this state in the memo table
return the result
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Dynamic Programming (Top-Down)

 For our example:

shop(money, Q)
iIT (money < 0) return -INF
iIT (g == C) return M — money
1T (memo[money][g] !'= -1) return memo[money]ldg]l;
return memo[money][g] = max(shop(money — price[g][model], g + 1),
vmodel e [1..K]

e Assimple as that ©



If Optimal Solution(s) are Needed

* Clever solution for Top-Down DP

— (See solution for Bottom-Up DP in Example 2)

* For our example:

print_shop(money, Q)
iIT (money < 0 |] g == C) return
for each model € [1..K]
1T shop(money — price[g][model], g + 1) == memo[money][g]

print "take model = " + model + " for garment g = " + ¢
print_shop(money — price[g][model], g + 1)
break

e Assimple as that ©



DP Solution — Implementation (2)

 Another way: Bottom-Up:

— Prepare a table that has size equals to the number
of distinct states of the problem

— Start to fill in the table with base case values
— Get the topological order in which the table is filled

 Some topological orders are natural and
can be written with just (nested) loops!

— Different way of thinking compared to Top-Down DP
* Notice that both DP variants use “table”!



Dynamic Programming (Bottom-Up)

 For our example:

— Start with with table can_reach of size 20 (g) * 201 (money)

e The state (money, g) is reversed to (g, money) so that
we can process bottom-up DP loops in row major fashion
 |nitialize all entries to O (false)

e Fill in the first row with money left (column) reachable
after buying models from the first garment (g =0

— Use the information of current row g to update the values
atthenextrowg+1



- LN
) R R - oo O o olo o O
~ oy ~
=== il O O Mo O O
! i !
00 LN (&0 3 I T o R mlo o o o O D
| o= |
[l I T o T Ml O O (e I R T
i v i
v WO el O Wwled O o Wl e O O
o i =l -
(o) i o
Tl =R R - wlcll o O Tl = R = W -
! i !
o = = e o | lo o o | e O
! - !
== = e | (- I =IR =R
<t wn | - =
- e B R | et (- N e O
) A v v v
O N «|lo o o — o | o =)
®) bt i L L
S ¢© -
Q DL olo o o ol lo o olo o
m n | o= |
M Q o|lo o o = (- | S (-
O =
w|lo o o oo | © o w|lo o _—_—
[ I TR o T o [ (- [l (-
wlo o o Wlole O W O e
wn
[
Q wmlo o o wlolo o =
w oo ol I e T T =F | S e O = | & | el i
C . |
O O == R~ IR =N (== ==
~ @
UV —= [Vl B T o R o S e O | O e
o > 0
__ i ._alay $ === =R == ==
M L - m mn olo oo olo o o olo o o
DV o
. W + nru O w0 o =i
e S A a -
g n g l___lV
O <« °
o

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS



Top-Down or Bottom-Up?

* Top-Down e Bottom Up
— Pro: — Pro:

e Natural transformation e Faster if many sub
from normal recursion problems are visited:

° On|y Compute sub no recursive calls!
problems when necessary e Can save memory space*

— Cons: — Cons:

e Slower if there are many  Maybe not intuitive for
sub problems due to those inclined to
recursive call overhead recursions?

e Use exactly O(states) e |f there are X states,
table size (MLE?) bottom up visits/fills the

value of all these X states



Flight Planner

(study this on your own)

EXAMPLE 2

Click me to jump to the next section
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Motivation -*W'“"

How to solve this: 10337 (Flight Planner)?

— Unit: 1 mile altitudeand 2 1 1 1 |9
1 (x100) miles distance 1 i 1 i : 3
e . 1 1 1 1 |6
Given wind speed map 1 1 1 1 |5
— Fuel cost: {climb (+60), i i 1 i : g
hold (+30), sink (+20)}- 1 1 1 1 |2

: - 1 9 9 1 |1
wind speed wspl[alt][dis] 1 o 2 1 Jo

0 1 2 3 4 (x100)

from (0O, 0) to (O, X = 4)!




Complete Search? (1)

* First guess:
— Do complete search/brute force/backtracking

— Find all possible flight paths and
pick the one that yield the minimum fuel cost

N\
K™
[/
,‘sﬂgﬂr :sﬂ‘ﬂlr

rr
LT

[/



Complete Search? (2)

 Recurrence of the Complete Search

— Ffuel(alt, dis) =
min3(60 - wsp[alt][dis] + fuel(alt + 1, dis + 1),
30 - wspf[alt][dis] + fuel(alt , dis + 1),
20 - wspl[alt][dis] + fuel(alt - 1, dis + 1))

— Stop when we reach final state (base case):
e alt=0and dis=X, i.e. fuel(0, X) =0
— Prune infeasible states (also base cases):

e alt<Ooralt>9ordis> Xl i.e. return INF*

— Answer of the problem is fuel(0, 0)



Complete Search Solutions (1)

e Solution 1 e Solution 2
1 1 1 1 | 9 1 1 1 1 | 9
1 1 1 1 | 8 1 1 1 1 | 8
1 1 1 1 | 7 1 1 1 1 | 7
1 1 1 1 | 6 1 1 1 1 | 6
1 1 1 1 | 5 1 1 1 1 | 5
1 1 1 1 | 4 1 1 1 1 | 4
1 1 1 1 | 3 1 1 1 1 | 3
1 1 1 1 | 2 1 1 1 1 | 2
1 9 9 1 | 1 1 9 9/,1\ | 1
1—>-9—->-9—->1—> | O 1—>-9—>-9 1 | O
0 1 2 3 4 (x100) 0 1 2 3 4 (x100)

29+ 39+ 39+ 29=136 29+ 39+ 69+ 19=156
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Complete Search Solutions (2)

e Solution 3 e Solution 4
1 1 1 1 | 9 1 1 1 1 | 9
1 1 1 1 | 8 1 1 1 1 | 8
1 1 1 1 | 7 1 1 1 1 | 7
1 1 1 1 | 6 1 1 1 1 | 6
1 1 1 1 | 5 1 1 1 1 | 5
1 1 1 1 | 4 1 1 1 1 | 4
1 1 1 1 | 3 1 1 1 1 | 3
1 1 1 1 | 2 1 1 1 1 | 2
1 9 59 1 | 1 1 9. 9 1 | 1
>0 9 N1 | O 1”9 Ngs 15 | O
0 1 2 3 4 (x100) 0 1 2 3 4 (x100)

29+ 69+ 11+ 29=138 59+ 11+ 39+ 29=138
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Complete Search Solutions (3)

e Solution 5 e Solution 6
1 1 1 1 | 9 1 1 1 1 | 9
1 1 1 1 | 8 1 1 1 1 | 8
1 1 1 1 | 7 1 1 1 1 | 7
1 1 1 1 | 6 1 1 1 1 | 6
1 1 1 1 | 5 1 1 1 1 | 5
1 1 1 1 | 4 1 1 1 1 | 4
1 1 1 1 | 3 1 1 1 1 | 3
1 1 1 1 | 2 1 1 1 1 | 2
1 9 9»¢\l|1 1 ,9—>9. 1 | 1
1->-97 -9 1 | O 17 -9 -9 Y15 | O
0 1 2 3 4 (x100) 0 1 2 3 4 (x100)

20+ 69+ 21+ 19=138 59+ 21+ 11+ 29=120(0PT)

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS



Complete Search Solutions (4)

e Solution?7 e Solution 8
1 1 1 1 | 9 1 1 1 1 | 9
1 1 1 1 | 8 1 1 1 1 | 8
1 1 1 1 | 7 1 1 1 1 | 7
1 1 1 1 | 6 1 1 1 1 | 6
1 1 1 1 | 5 1 1 1 1 | 5
1 1 1 1 | 4 1 1 1 1 | 4
1 1 1 1 | 3 1 1 1 1 | 3
1 1 1 1 | 2 1 1 71 1 | 2
L7991 | 1 1 9/9\1\ | 1
17 -9 -9 1 | O 17 -9 -9 1 | O
0O 1 2 3 4 (x100) 0 1 2 3 4 (x100)

59+ 21+ 21+ 19=120(0PT) 59+ 51+ 19+ 19=148
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Complete Search? (3)

* How large is the search space?

— Max distance is 100,000 miles
Each distance step is 100 miles
That means we have 1,000 distance columns!

* Note: this is an example of “coordinate compression”
— Branching factor per step is 3... (climb, hold, sink)

— That means complete search can end up
performing 31900 operations...

— Too many for 3s time limit ®



Overlapping Sub Problem Issue

e In simple 31990 Complete Search solution, we
observe many overlapping sub problems!
— Many ways to reach coordinate (alt, dis)

... INF
N
2 B 7 ... INF INF
[/
D\
1 B INF
[/

3 4
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DP Solution

 Recurrence™® of the Complete Search
— fuel(alt, dis) =
min3(60 - wsp[alt][dis] + fuel(alt + 1, dis + 1),
30 - wspf[alt][dis] + fuel(alt , dis + 1),
20 - wspl[alt][dis] + fuel(alt - 1, dis + 1))

e Sub-problem fuel(alt, dis) can be overlapping!

— There are only 10 alt and 1,000 dis = 10,000 states

— A lot of time saved if these are not re-computed!
e Exponential 31°%0 to polynomial 10*1,000!



alt > 2 not shown E'l e
DP Solution (Top Down) . & 5o
0123 |4

e Create a 2-D table of size 10 * (X/100) < Save Space!

— Set “-1” for unexplored sub problems (memset)

— Store the computation value of sub problem
e Simply reuse when INE

it is needed again! <
/
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DP Solution (Bottom Up)

fuel(alt, dis) =
min3(20 - wsp[alt + 1][dis - 1] + fuel(alt + 1, dis - 1),
30 - wsp]alt J[dis - 1] + fuel(alt , dis - 1),
60 - wsp[alt - 1][dis - 1] + fuel(alt - 1, dis - 1))

Tips:
(space-saving
trick)

We can reduce
one storage
dimension by
only keeping 2
recent columns
at atime...

RPRRRPRRPRRRRRPR
CORRPRRRRPRPRPR
CORRRPRRRPRRRR
RPRRRPRRPRRRRPR
OFRPNWMAOUON®O

oo But the time
O 1 2 3 4 (x100) | | complexityis
unchanged:
O(10 * X/ 100)
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If Optimal Solution(s) are Needed

e Although not often, sometimes this is asked!

 As we build the DP table,
record which option is taken in each cell!

— Usually, this information is stored in different table
— Then, do recursive scan(s) to output solution

e Sometimes, there are more than one solutions!

noo 00 110 131 -
N

© 59<-80<101 -

-\ i

o [ o< 68 910
o1 ]2 03 (4
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Shortest Path Problem? (1)

* Hey, | have alternative solution:
— Model the problem as a DAG
— Vertex is each position in the unit map

— Edges connect vertices reachable from vertex
(alt, dis), i.e. (alt+1, dis+1), (alt, dis+1), (alt-1, dis)
 Weighted according to flight action and wind speed!
* Do not connect infeasible vertices

—alt<Ooralt>9ordis>X



Visualization of the DAG

RPRRPRRRPRRRRPR
CORRPRRRRPRPRER
CORRRPRRRPRRRER
RPRRRPRRPRRRRPR
OFRPNWMAOUON®O

Source What is the
shortest path

from source

to destination?
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Shortest Path Problem? (2)

* The problem: find the shortest path from
vertex (0, 0) to vertex (0, X) on this DAG...
e O(V + E) solution exists!
— Vs just 10 * (X / 100)
— E is just 3V
— Thus this solution is as good as the DP solution



Break

e Coming up next, discussion of some Classical DPs:
— Max Sum (1-D for now) = Kadane’s Algorithm
— Longest Increasing Subsequence (LIS) = O(n log k) solution
— 0-1 Knapsack / Subset Sum = Knapsack-style parameter!
— Coin Change (the General Case) =2 skipped, see textbook
— Traveling Salesman Problem (TSP) = bitmask again :0

e | will try to cover as many as possible, but will stop
at 9 pm ©; the details are in Chapter 3 of CP2.9



Let’s discuss several problems that are solvable using DP

First, let’s see some classical ones...

LEARNING VIA EXAMPLES
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Max Sum (1D)

 Find a contiguous sub-array in 1D array A with the max sum

Ali] 1 -12 -6

e The answeris {6, 3, 2} with maxsum6+3+2=11
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Longest Increasing Subsequence

* Find the Longest Increasing Subsequence (LIS) in array A

— Subsequence is not necessarily contiguous

Ali] -7
e The answeris {-7, 2, 3, 8} with length 4

Can we do this in O(n?)?

O
D

an we do this in O(n log k)?

9
Y




0-1 Knapsack / Subset Sum

Red=15kqg, $7

Blue =8 kg, $ 15

n = # items

| Can we do this in O(nS)? S = knapsack size
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Traveling Salesman Problem (TSP)

POL.

L
r“h_ ]
P
CZECH
REPUBLIC

' e —
AUSTRIA

o ew
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Traveling Salesman Problem (TSP)

o State: tsp(pos, bitmask)
* Transition:

— |f every cities have been visited
* tsp(pos, 2N-1) = dist[pos][0]
— Else, try visiting unvisited cities one by one

e tsp(pos, bitmask) =
min(dist[pos][nxt] + tsp(nxt, bitmask | (1 << nxt)))
Vnxt € [0..N-1], nxt != pos, bitmask & (1 << nxt) ==



Summary

 \We have seen:
— Basic DP concepts
— DP on some classical problems

 We will see more DP next week:
— DP on non classical problems
— DP and its relationship with DAG
— DP on Math & String Problems
— Some other “cool” DP (optimization) techniques




Good References about DP

e CP2.9, obviously ©

— Section 3.5 first

e Then Section 4.7.1 (DAG), 5.4 (Combinatorics),
6.5 (String + DP), 8.3 (more advanced DP), parts of Ch 9

e http://people.csail.mit.edu/bdean/6.046/dp/
— Current USACO Director

e TopCoder Algorithm Tutorial

— http://community.topcoder.com/tc?module=Static
&dl=tutorials&d2=dynProg






