This course material is now made available for public usage.

Special acknowledgement to School of Computing,

National University of Singapore

for allowing Steven to prepare and distribute these teaching materials.

International Collegiate
Programming Contest

CS3233 mr me

Competitive Programming

Dr. Steven H

Week 04 — Problem So

alim

ving Paradigms

(Dynamic Programming 1)

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Outline

Mini Contest #3 + Break + Discussion + Admins

Dynamic Programming — Introduction

— Treat this as revision for ex C52010/CS2020 students
— Listen carefully for the other group of students!

— | open consultation slots (Mon/Fri) for NUS students
who need help with this topic, especially those
who did not go through CS2010/CS2020 before

Dynamic Programming

— Some Classical Examples

PS: | will use the term DP in this lecture
— OOT: DP is NOT Down Payment!

Wedding Shopping
EXAMPLE 1

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Motivation

* How to solve UVa 11450 (Wedding Shopping)?

— Given 1 £ C <20 classes of garments
e e.g.shirt, belt, shoe

— Given 1 £ K < 20 different models for each class of garment
e e.g. three shirts, two belts, four shoes, ..., each with its own price

— Task: Buy just one model of each class of garment
— Our budget 1 £ M <200 is limited

 We cannot spend more money than it
e But we want to spend the maximum possible

— What is our maximum possible spending?

e Output “no solution” if this is impossible

* Budget M = 100 | |20

— Answer: 75 6 4
1 E
50 | 14 23
© Budget =20 II-II-
Garment
— Answer: 19

 Alternative answers 5
are possible

e

— Answer: no solution

10 6
C=2 7 3 1 7

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Greedy Solution?

 What if we buy the most expensive model for each
garment which still fits our budget?

 Counter example: Model
_M=12 Garment

— Greedy will produce:

* no solution

— Wrong answer!

e The correct answer is 12
e (seethe green dotted highlights)

\Y ™~

— Q: Can you spot one more potential optimal solution?

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Divide and Conquer?

e Anyidea?

Complete Search? (1)

 What is the potential state of the problem?
— g (which garment?)
— id (which model?)

— money (money left?)

e Answer:

— (money, g) or (g, money)

 Recurrence (recursive backtracking function):

shop(money, Q)
iIT (money < 0) return -INF
1T (g == C) return M — money
return max(shop(money — price[g][model], g + 1), Vmodel e [1..K]

Complete Search? (2)

e But, how to solve this?

0 Garment

 Time Complexity: 202
e Too many for

3s time limit ® BER : 3 7

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Overlapping Sub Problem Issue

e |nthe simple 20%° Complete Search solution,
we observe many overlapping sub problems!

— Many ways to reach state (money, g), e.g. see below, M = 12

2 3

DP to the Rescue (1)

e DP = Dynamic Programming

 Programming here is not writing computer code,
but a “tabular method”!

— a.k.a. table method

e A programming paradigm that you must know!
— And hopefully, master...

DP to the Rescue (2)

e Use DP when the problem exhibits:

— Optimal sub structure

e Optimal solution to the original problem contains
optimal solution to sub problems
— This is similar as the requirement of Greedy algorithm
— If you can formulate complete search recurrences, you have this

— Overlapping sub problems
* Number of distinct sub problems are actually “small”

e But they are repeatediy computed
— This is different from Divide and Conquer

DP Solution — Implementation (1)

 There are two ways to implement DP:
— Top-Down
— Bottom-Up

e Top-Down (Demo):

— Recursion as per normal + memoization table

* |tis just a simple change from backtracking
(complete search) solution!

Turn Recursion into Memoization
initialize memo table in main function (use ‘memset’)

return_value recursion(params/state) {

if this state is already calculated,
simply return the result from the memo table

calculate the result using recursion(other_params/states)
save the result of this state in the memo table
return the result

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Dynamic Programming (Top-Down)

 For our example:

shop(money, Q)
iIT (money < 0) return -INF
iIT (g == C) return M — money
1T (memo[money][g] !'= -1) return memo[money]ldg]l;
return memo[money][g] = max(shop(money — price[g][model], g + 1),
vmodel e [1..K]

e Assimple as that ©

If Optimal Solution(s) are Needed

* Clever solution for Top-Down DP

— (See solution for Bottom-Up DP in Example 2)

* For our example:

print_shop(money, Q)
iIT (money < 0 |] g == C) return
for each model € [1..K]
1T shop(money — price[g][model], g + 1) == memo[money][g]

print "take model = " + model + " for garment g = " + ¢
print_shop(money — price[g][model], g + 1)
break

e Assimple as that ©

DP Solution — Implementation (2)

 Another way: Bottom-Up:

— Prepare a table that has size equals to the number
of distinct states of the problem

— Start to fill in the table with base case values
— Get the topological order in which the table is filled

 Some topological orders are natural and
can be written with just (nested) loops!

— Different way of thinking compared to Top-Down DP
* Notice that both DP variants use “table”!

Dynamic Programming (Bottom-Up)

 For our example:

— Start with with table can_reach of size 20 (g) * 201 (money)

e The state (money, g) is reversed to (g, money) so that
we can process bottom-up DP loops in row major fashion
 |nitialize all entries to O (false)

e Fill in the first row with money left (column) reachable
after buying models from the first garment (g =0

— Use the information of current row g to update the values
atthenextrowg+1

- LN
) R R - oo O o olo o O
~ oy ~
=== il O O Mo O O
! i !
00 LN (&0 3 I T o R mlo o o o O D
| o= |
[l I T o T Ml O O (e I R T
i v i
v WO el O Wwled O o Wl e O O
o i =l -
(o) i o
Tl =R R - wlcll o O Tl = R = W -
! i !
o = = e o | lo o o | e O
! - !
== = e | (- I =IR =R
<t wn | - =
- e B R | et (- N e O
) A v v v
O N «|lo o o — o | o =)
®) bt i L L
S ¢© -
Q DL olo o o ol lo o olo o
m n | o= |
M Q o|lo o o = (- | S (-
O =
w|lo o o oo | © o w|lo o _—_—
[I TR o T o [(- [l (-
wlo o o Wlole O W O e
wn
[
Q wmlo o o wlolo o =
w oo ol I e T T =F | S e O = | & | el i
C . |
O O == R~ IR =N (== ==
~ @
UV —= [Vl B T o R o S e O | O e
o > 0
__ i ._alay $ === =R == ==
M L - m mn olo oo olo o o olo o o
DV o
. W + nru O w0 o =i
e S A a -
g n g l___lV
O <« °
o

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Top-Down or Bottom-Up?

* Top-Down e Bottom Up
— Pro: — Pro:

e Natural transformation e Faster if many sub
from normal recursion problems are visited:

° On|y Compute sub no recursive calls!
problems when necessary e Can save memory space*

— Cons: — Cons:

e Slower if there are many Maybe not intuitive for
sub problems due to those inclined to
recursive call overhead recursions?

e Use exactly O(states) e |f there are X states,
table size (MLE?) bottom up visits/fills the

value of all these X states

Flight Planner

(study this on your own)

EXAMPLE 2

Click me to jump to the next section

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Motivation -*W'“"

How to solve this: 10337 (Flight Planner)?

— Unit: 1 mile altitudeand 2 1 1 1 |9
1 (x100) miles distance 1 i 1 i : 3
e . 1 1 1 1 |6
Given wind speed map 1 1 1 1 |5
— Fuel cost: {climb (+60), i i 1 i : g
hold (+30), sink (+20)}- 1 1 1 1 |2

: - 1 9 9 1 |1
wind speed wspl[alt][dis] 1 o 2 1 Jo

0 1 2 3 4 (x100)

from (0O, 0) to (O, X = 4)!

Complete Search? (1)

* First guess:
— Do complete search/brute force/backtracking

— Find all possible flight paths and
pick the one that yield the minimum fuel cost

N\
K™
[/
,‘sﬂgﬂr :sﬂ‘ﬂlr

rr
LT

[/

Complete Search? (2)

 Recurrence of the Complete Search

— Ffuel(alt, dis) =
min3(60 - wsp[alt][dis] + fuel(alt + 1, dis + 1),
30 - wspf[alt][dis] + fuel(alt , dis + 1),
20 - wspl[alt][dis] + fuel(alt - 1, dis + 1))

— Stop when we reach final state (base case):
e alt=0and dis=X, i.e. fuel(0, X) =0
— Prune infeasible states (also base cases):

e alt<Ooralt>9ordis> Xl i.e. return INF*

— Answer of the problem is fuel(0, 0)

Complete Search Solutions (1)

e Solution 1 e Solution 2
1 1 1 1 | 9 1 1 1 1 | 9
1 1 1 1 | 8 1 1 1 1 | 8
1 1 1 1 | 7 1 1 1 1 | 7
1 1 1 1 | 6 1 1 1 1 | 6
1 1 1 1 | 5 1 1 1 1 | 5
1 1 1 1 | 4 1 1 1 1 | 4
1 1 1 1 | 3 1 1 1 1 | 3
1 1 1 1 | 2 1 1 1 1 | 2
1 9 9 1 | 1 1 9 9/,1\ | 1
1—>-9—->-9—->1—> | O 1—>-9—>-9 1 | O
0 1 2 3 4 (x100) 0 1 2 3 4 (x100)

29+ 39+ 39+ 29=136 29+ 39+ 69+ 19=156

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Complete Search Solutions (2)

e Solution 3 e Solution 4
1 1 1 1 | 9 1 1 1 1 | 9
1 1 1 1 | 8 1 1 1 1 | 8
1 1 1 1 | 7 1 1 1 1 | 7
1 1 1 1 | 6 1 1 1 1 | 6
1 1 1 1 | 5 1 1 1 1 | 5
1 1 1 1 | 4 1 1 1 1 | 4
1 1 1 1 | 3 1 1 1 1 | 3
1 1 1 1 | 2 1 1 1 1 | 2
1 9 59 1 | 1 1 9. 9 1 | 1
>0 9 N1 | O 1”9 Ngs 15 | O
0 1 2 3 4 (x100) 0 1 2 3 4 (x100)

29+ 69+ 11+ 29=138 59+ 11+ 39+ 29=138

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Complete Search Solutions (3)

e Solution 5 e Solution 6
1 1 1 1 | 9 1 1 1 1 | 9
1 1 1 1 | 8 1 1 1 1 | 8
1 1 1 1 | 7 1 1 1 1 | 7
1 1 1 1 | 6 1 1 1 1 | 6
1 1 1 1 | 5 1 1 1 1 | 5
1 1 1 1 | 4 1 1 1 1 | 4
1 1 1 1 | 3 1 1 1 1 | 3
1 1 1 1 | 2 1 1 1 1 | 2
1 9 9»¢\l|1 1 ,9—>9. 1 | 1
1->-97 -9 1 | O 17 -9 -9 Y15 | O
0 1 2 3 4 (x100) 0 1 2 3 4 (x100)

20+ 69+ 21+ 19=138 59+ 21+ 11+ 29=120(0PT)

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Complete Search Solutions (4)

e Solution?7 e Solution 8
1 1 1 1 | 9 1 1 1 1 | 9
1 1 1 1 | 8 1 1 1 1 | 8
1 1 1 1 | 7 1 1 1 1 | 7
1 1 1 1 | 6 1 1 1 1 | 6
1 1 1 1 | 5 1 1 1 1 | 5
1 1 1 1 | 4 1 1 1 1 | 4
1 1 1 1 | 3 1 1 1 1 | 3
1 1 1 1 | 2 1 1 71 1 | 2
L7991 | 1 1 9/9\1\ | 1
17 -9 -9 1 | O 17 -9 -9 1 | O
0O 1 2 3 4 (x100) 0 1 2 3 4 (x100)

59+ 21+ 21+ 19=120(0PT) 59+ 51+ 19+ 19=148

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Complete Search? (3)

* How large is the search space?

— Max distance is 100,000 miles
Each distance step is 100 miles
That means we have 1,000 distance columns!

* Note: this is an example of “coordinate compression”
— Branching factor per step is 3... (climb, hold, sink)

— That means complete search can end up
performing 31900 operations...

— Too many for 3s time limit ®

Overlapping Sub Problem Issue

e In simple 31990 Complete Search solution, we
observe many overlapping sub problems!
— Many ways to reach coordinate (alt, dis)

... INF
N
2 B 7 ... INF INF
[/
D\
1 B INF
[/

3 4

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

DP Solution

 Recurrence™® of the Complete Search
— fuel(alt, dis) =
min3(60 - wsp[alt][dis] + fuel(alt + 1, dis + 1),
30 - wspf[alt][dis] + fuel(alt , dis + 1),
20 - wspl[alt][dis] + fuel(alt - 1, dis + 1))

e Sub-problem fuel(alt, dis) can be overlapping!

— There are only 10 alt and 1,000 dis = 10,000 states

— A lot of time saved if these are not re-computed!
e Exponential 31°%0 to polynomial 10*1,000!

alt > 2 not shown E'l e
DP Solution (Top Down) . & 5o
0123 |4

e Create a 2-D table of size 10 * (X/100) < Save Space!

— Set “-1” for unexplored sub problems (memset)

— Store the computation value of sub problem
e Simply reuse when INE

it is needed again! <
/

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

DP Solution (Bottom Up)

fuel(alt, dis) =
min3(20 - wsp[alt + 1][dis - 1] + fuel(alt + 1, dis - 1),
30 - wsp]alt J[dis - 1] + fuel(alt , dis - 1),
60 - wsp[alt - 1][dis - 1] + fuel(alt - 1, dis - 1))

Tips:
(space-saving
trick)

We can reduce
one storage
dimension by
only keeping 2
recent columns
at atime...

RPRRRPRRPRRRRRPR
CORRPRRRRPRPRPR
CORRRPRRRPRRRR
RPRRRPRRPRRRRPR
OFRPNWMAOUON®O

oo But the time
O 1 2 3 4 (x100) | | complexityis
unchanged:
O(10 * X/ 100)

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

If Optimal Solution(s) are Needed

e Although not often, sometimes this is asked!

 As we build the DP table,
record which option is taken in each cell!

— Usually, this information is stored in different table
— Then, do recursive scan(s) to output solution

e Sometimes, there are more than one solutions!

noo 00 110 131 -
N

© 59<-80<101 -

-\ i

o [o< 68 910
o1]2 03 (4

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Shortest Path Problem? (1)

* Hey, | have alternative solution:
— Model the problem as a DAG
— Vertex is each position in the unit map

— Edges connect vertices reachable from vertex
(alt, dis), i.e. (alt+1, dis+1), (alt, dis+1), (alt-1, dis)
 Weighted according to flight action and wind speed!
* Do not connect infeasible vertices

—alt<Ooralt>9ordis>X

Visualization of the DAG

RPRRPRRRPRRRRPR
CORRPRRRRPRPRER
CORRRPRRRPRRRER
RPRRRPRRPRRRRPR
OFRPNWMAOUON®O

Source What is the
shortest path

from source

to destination?

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Shortest Path Problem? (2)

* The problem: find the shortest path from
vertex (0, 0) to vertex (0, X) on this DAG...
e O(V + E) solution exists!
— Vs just 10 * (X / 100)
— E is just 3V
— Thus this solution is as good as the DP solution

Break

e Coming up next, discussion of some Classical DPs:
— Max Sum (1-D for now) = Kadane’s Algorithm
— Longest Increasing Subsequence (LIS) = O(n log k) solution
— 0-1 Knapsack / Subset Sum = Knapsack-style parameter!
— Coin Change (the General Case) =2 skipped, see textbook
— Traveling Salesman Problem (TSP) = bitmask again :0

e | will try to cover as many as possible, but will stop
at 9 pm ©; the details are in Chapter 3 of CP2.9

Let’s discuss several problems that are solvable using DP

First, let’s see some classical ones...

LEARNING VIA EXAMPLES

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Max Sum (1D)

 Find a contiguous sub-array in 1D array A with the max sum

Ali] 1 -12 -6

e The answeris {6, 3, 2} with maxsum6+3+2=11

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Longest Increasing Subsequence

* Find the Longest Increasing Subsequence (LIS) in array A

— Subsequence is not necessarily contiguous

Ali] -7
e The answeris {-7, 2, 3, 8} with length 4

Can we do this in O(n?)?

O
D

an we do this in O(n log k)?

9
Y

0-1 Knapsack / Subset Sum

Red=15kqg, $7

Blue =8 kg, $ 15

n = # items

| Can we do this in O(nS)? S = knapsack size

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Traveling Salesman Problem (TSP)

POL.

L
r“h_]
P
CZECH
REPUBLIC

' e —
AUSTRIA

o ew

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Traveling Salesman Problem (TSP)

o State: tsp(pos, bitmask)
* Transition:

— |f every cities have been visited
* tsp(pos, 2N-1) = dist[pos][0]
— Else, try visiting unvisited cities one by one

e tsp(pos, bitmask) =
min(dist[pos][nxt] + tsp(nxt, bitmask | (1 << nxt)))
Vnxt € [0..N-1], nxt != pos, bitmask & (1 << nxt) ==

Summary

 \We have seen:
— Basic DP concepts
— DP on some classical problems

 We will see more DP next week:
— DP on non classical problems
— DP and its relationship with DAG
— DP on Math & String Problems
— Some other “cool” DP (optimization) techniques

Good References about DP

e CP2.9, obviously ©

— Section 3.5 first

e Then Section 4.7.1 (DAG), 5.4 (Combinatorics),
6.5 (String + DP), 8.3 (more advanced DP), parts of Ch 9

e http://people.csail.mit.edu/bdean/6.046/dp/
— Current USACO Director

e TopCoder Algorithm Tutorial

— http://community.topcoder.com/tc?module=Static
&dl=tutorials&d2=dynProg

