This course material is now made available for public usage.

Special acknowledgement to School of Computing,

National University of Singapore

for allowing Steven to prepare and distribute these teaching materials.

International Collegiate
Programming Contest

CS3233 mr me

Competitive Programming

Dr. Steven H

Week 05 — Problem So

alim

ving Paradigms

(Dynamic Programming 2)

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Outline

Mini Contest #4 + Break + Discussion + Admins
A simple DP problem to refresh our memory (Section 3.5.3)

DP and its relationship with (implicit) DAG (Section 4.7.1)
— These are CS2020/CS2010 materials

* Those who have not taken either module must consult Steven separately

DP on Math Problems (Section 5.4 and 5.6)
DP on String Problems (Section 6.5)

More DP techniques (Section 8.3)

Pointers to other DP techniques in CP2.9

More DP Problems in Chapter 3-4-5-6-8-9 of CP2.9 Book

NON CLASSICAL DP PROBLEMS

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Non Classical DP Problems

My definition:
— Not the pure form (or simple variant) of 1D/2D Max Sum,

LIS, 0-1 Knapsack/Subset Sum, Coin Change, TSP where
the DP states and transitions can be “memorized”

— Requires original* formulation of DP states and transitions

— Throughout this lecture, we will talk mostly in DP terms
o State (to be precise: “distinct state”)
e Space Complexity (i.e. the number of distinct states)
e Transition (which entail overlapping sub problems)
 Time Complexity (i.e. num of distinct states * time to fill one state)

CP2.9, Section 3.5.3

Refresher: Cutting Sticks

e State:index (I, r) wherel,r € [0..n+1]and I<r
— Q: Why these two parameters? *
e Space Complexity: O(n?) distinct states
* Transition: Try all possible cutting points i between | and r,
— j.e.cut (l, r) into (I, i) and (i, r) with cost (A[r] - A[l])
e Time Complexity: There are O(n) possible cutting points,
thus overall O(n? * n) = O(n3)

A = {25, 50, 75} — A = {0, 25, 50, 75, 100}
n=3,L=100 I I I I I

0/0 1/25 3/50 4/75 57100

0/0 1725 3/50 3/50 4/75 5/100

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

CP2.9, Section 4.7.1

DP on DAG

Overview

e Dynamic Programming (DP) has a close relationship
with (usually implicit) Directed Acyclic Graph (DAG)
— The states are the vertices of the DAG
— Space complexity: Number of vertices of the DAG
— The transitions are the edges of the DAG

e Logical, since a recurrence is always acyclic
— Time complexity: Number of edges of the DAG
— Top-down DP: Process each vertex just once via memoization

_ DAt+rAarm_1irn ND. D¢
LDULLVITITUp Uil . 1l

 Sometimes, the topological order can be written by just using simple
(nested) loops

The Injured Queen Problem

e Like N-queens problem, but the queens are “injured”
(can only attack the current column but acts as king otherwise)

e With some of K (0 <K < N) injured queens positions have been
predetermined, count how many possible arrangements of the
other (N-K) queens so that no two queens attack each other?

(black)

&
] -
3

b c d [f g h

(white)

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

CP2.9, Section 5.4 and 5.6

DP on Math Problems

e Some well-known mathematic problems involves DP

— Some combinatorics problem have recursive formulas
which entail overlapping subproblems
e e.g.those involving Fibonacci number, f(n) = f(n - 1) + f(n -2)
— Some probability problems require us to search the entire
search space to get the required answer

e |f some of the sub problems are overlapping, use DP,
otherwise, use complete search

— Mathematics problems involving static range
i~]

ot A A /1
SUITI/TTHITI/TTIAA

e Use dynamic tree DS for dynamic queries

Dice Throwing

n common cubic dice are thrown (1 < n < 24)

What is the probability that the sum of all thrown
dices is at least x? (0 < x < 150)

Basic probability = # events / | sample space]|
To compute the |sample space| is easy: It is 6"
The # events is harder to compute...

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

CP2.9, Section 6.5

DP on String Problems

e Some string problems involves DP

— Usually, we do not work with the string itself
— But we work with the integer indices to represent suffix/prefix/substring

*

— Reason: Too costly to pass (sub)strings around as function parameters

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

String Partition

e There are many ways to split a string of digits into a list of
non-zero-leading (O itself is allowed) 32-bit signed integers

— What is the maximum sum of the resultant integers if the string is split
appropriately? Examples:

* 1234554321
— 1234554321 < 2147483647, so the answer is 1234554321 itself

e 5432112345
— 5432112345 > 2147483647, thus 5432112345 must be partitioned
— There are two ways to partition 5432112345
» 54432112345 =432112350, or
» 543211234 +5=543211239 < the answer

e 121212121212

— 121212121212 > 2147483647, thus 121212121212 must be partitioned
— The answeris: 1 +2121212121 +2=2121212124

CP2.9, Section 8.3

DP with bitmask

e Bitmask technique can be used to represent lightweight set
of Boolean (up to 2% if using unsigned long long)

e Thisis important if one of the DP parameter is a “small set”
 We have seen this form earlier in DP-TSP

 One other useful application (there are many others):
— Finding min weighted perfect matching in small general graph

l—nmu.lhmm-qﬁumg

[

Forming Quiz Teams

pne more possible grouping?
ptimal)

Can you spat,

(whichis notg

o 8

)

O 6

5

F. |

& 3

2

O 1

1 2 3 4 5 6 7 8 910 0
N=2

Not Optimal

1 2 3 4 5 6 7 &8 910

Cost=8.60 + 7.61 =16.21

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

}h
Ok W B h =] 00 W O

=

N

I Optimal

1 2 3 4 5 6 7 & 910

Cost=200+283=4.83

Common DP States (1)

* Position:
— Original problem: [x,, X, ..., X,]
* Can be sequence (integer/double array), can be string (char array)
— Sub problems, break the original problem into
e Sub problem and Prefix: [X, Xy, ..., X,1] + X,
 Suffix and sub problem: x; + [x,, X3, ..., X,]
e Two sub problems: [xy, X5, ..., X + [Xi,1, Xisos oer X,

— Example: 1D Max Sum, LIS, etc

Common DP States (2)

Positions:
— This is similar to the previous slide
— Original problem: [x,, X,, ..., x,] and [y, ¥, ..., ¥,,]
e Can be two sequences/strings
— Sub problems, break the original problem into
e Sub problem and prefix: [x, X, ..., X,1] + X, and [y, Y5, -, Y] + Y,
 Suffix and sub problem: x; + [x,, X5, ..., x,] and y; + [y,, V3, ..., ¥,]
* Two sub problems: [X1, X, oy Xi] + [Xip1, Xiys - X,] @Nd
Y1 Yor v Vil + Yiers Yieor o0 Vil
— Example: String Alignment/Edit Distance, LCS,
Matrix Chain Multiplication (MCM), etc

Wl Wl Wi -

— PS: Can also be applied on 2D matrix, like 2D Max Sum, etc

Tips: When to Choose DP

e Default Rule:

— If the given problem is an optimization (max/min) or counting problem
* Problem exhibits optimal sub structures
* Problem has overlapping sub problems

e InICPC/IOLl:

— If actual solutions are not needed (only final values asked)

* |f we must compute the solutions too, a more complicated DP which stores
predecessor information and some backtracking are necessary

— The number of distinct sub problems is small enough (< 1M)
and you are not sure whether greedy algorithm works (why gamble?)

Dynamic Programming Issues (1)

Potential issues with DP problems:

— They may be disguised as (or looks like) non DP

* |t looks like greedy can work but some cases fails...

— e.g. problem looks like a shortest path with some constraints
on graph, but the constraints fail greedy SSSP algorithm!

— They may have subproblems but not overlapping

 DP does not work if overlapping subproblems not exist

— Anyway, this is still a good news as perhaps
Divide and Conquer technique can be applied

Dynamic Programming Issues (2)

— Optimal substructures may not be obvious

1. Find correct “states” that describe problem
— Perhaps extra parameters must be introduced?

2. Reduce a problem to (smaller) sub problems
(with the same states) until we reach base cases

— There can be more than one possible formulation
* Pick the one that works!

DP Problems in ICPC (1)

e The number of problems in ICPC that
must be solved using DP are growing!

— At |least one, likely two, maybe three per contest...

* These new problems are not the classical DP!
— They require deep thinking...

— Or those that look solvable using other (simpler)
algorithms but actually must be solved using DP

— Do not think that you have “mastered” DP

classical DP so

T

ncl

TaYals
viio.

\7 I\Y\I\l mf\mﬁv‘l-llhff

MYy ULy HHITHHTVULIZTTTS I I t

U’)

DP Problems in ICPC (2)

* |n 1990ies, mastering DP can make you “king” of
programming contests...

— Today, it is a must-have knowledge...
— So, get familiar with DP techniques!

By mastering DP, your ICPC rank is probably:
— from top ~[25-30] (solving 1-2 problems out of 10)

e Only easy problems

— to top "'[15-20] (solving 3-4 problem ut of 10)

° I:db'y pro blems + brute force + 'p“or) er

1S

For Week 07 homework ©
(You can do this over recess week too)

BE A PROBLEM SETTER

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Be a Problem Setter

 Problem Solver: Problem Setter:

A. Read the problem A. Write a good problem

B. Think of a good algorithm B. Write good solutions

C. Write ‘solution’ . The correct/best one

D. Create tricky |/O . The incorrect/slower ones
E. If WA, go to A/B/C/D C. Setagood secre’f /O

F. If TLE/MLE, go to A/B/C/D D. Set problem settings

G. IfAC, stop © * A problem setter must

think from a different angle!
— By setting good problems,
you wiil simuitaneously be
a better problem solver!!

Problem Setter Tasks (1)

e Write a good problem
— Options:

Pick an algorithm, then
find problem/story, or

Find a problem/story,
then identify a good
algorithm for it (harder)

— Problem description
must not be ambiguous

Specify input constraints
Good English!

Easy one: longer,
Hard one: shorter!

 Write good solutions

— Must be able to solve
your own problem!

To set hard problem,
one must increase his
own programming skill!

— Use the best possible
algorithm with lowest
time complexity

Use the inferior ones
‘that barely works’ to set
the WA/TLE/MLE
settings...

Problem Setter Tasks (2)

Set a good secret |/O

Tricky test cases to
check AC vs WA

Usually ‘boundary case’

Large test cases to
check AC vs TLE/MLE

Perhaps use input
generator to generate
large test case, then
pass this large input to
our correct solution

Set problem settings
— Time Limit:

e Usually 2 or 3 times the
timings of your own best
solutions
— Javais slower than C++!

— Memory Limit:
e Check OlJ setting”
— Problem Name:

e Avoid revealing the
algorithm in the problem
name

FYl: Be A Contest Organizer

e Contest Organizer Tasks:

— Set problems of various topic

e Better set by >1 problem setter

— Must balance the difficulty of the problem set
e Try to make it fun
 Each team solves some problems
e Each problem is solved by some teams
* No team solve all problems

— Every teams must work until the end of contest

More References

Competitive Programming 2.9
— Section 3.5,4.7.1,5.4, 5.6, 6.5, 8.3, and parts of Ch9

Introduction to Algorithms, p323-369, Ch 15
Algorithm Design, p251-336, Ch 6
Programming Challenges, p245-267, Ch 11

http://www.topcoder.com/

tc?module=Static&dl1=tutorials&d2=dynProg
R

|5?m 'I'ol
LI | U) Wi

ny nry
rJ OKR 111V rJ Wil

