This course material is now made available for public usage.
Special acknowledgement to School of Computing, National University of Singapore
for allowing Steven to prepare and distribute these teaching materials.

International Collegiate
Programming Contest

CS3233 TmE e,
Competitive Programm

=
0Q

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Outline (1)

e Mini Contest #4 + Break + Discussion
e Admins

e (CS2010/2020 Reviews (not discussed in details except red ones)
— Graph: Preliminary & Motivation

— Graph Traversal Algorithms

e DFS/BFS: Connected Components/Flood Fill

e DFS only: Toposort/Cut Vertex+Bridges/Strongly Connected Components
— Minimum Spanning Tree Algorithm

e Kruskal’s and Prim’s: Plus Various Applications

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Outline (2)

e (S2010/2020 Reviews (not discussed in details except red ones)

— Single-Source Shortest Paths
e BFS: SSSP on Unweighted graph/Variants
* Dijkstra’s: SSSP on Weighted (no -ve cycle) graph/Variants

— All-Pairs Shortest Paths
e Floyd Warshall’s + Variants

e Ir Enlar CGr h Di
I] [

Graph Terms — Quick Review

— Vertices/Nodes — (Strongly) Connected

— Edges Component

— Un/Weighted — Sub Graph

— Un/Directed — Complete Graph

— In/Out Degree — Directed Acyclic Graph

— Self-Loop/Multiple Edges — Tree/Forest
(Multigraph) vs Simple — Euler/Hamiltonian
Graph Path/Cycle

— Sparse/Dense — Bipartite Graph

— Path, Cycle :

— Isolated, Reachable

Kaohsiung 2006

Standings & Felix’s Analysis

A. Print Words in Lines A. DP

B. The Bug Sensor Problem B. Graph, MST

C. Pitcher Rotation C. DP+ memory reduction
D. Lucky and Good Monthes... D. Tedious Ad Hoc

E. Route Planning E. Search?

Shift Cipher (N/A in Live Archive) Complete Search + STL

F. A Scheduling Problem F. Greedy?

G. Checkthe Lines G. ?

H. Perfect Service H. DA Graph, DP on Tree

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

G m™mmOoO O WP

MODEX
JONES
ACORN
TUSK
SKYLINE
USHER
RACING

Singapore 2007/

Standings & Felix’s Analysis

Math, Modulo Arithmetic

DP

DP + memory reduction

Geometry

DS, Segment Tree

Graph, APSP, Min Weighted Cycle++
Graph, Maximum Spanning Tree

®© Mmoo ®p

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

- T Ireo mmooOmp

Jakarta 2008

Standings & Suhendry’s Analysis

Anti Brute Force Lock

Bonus Treasure

Panda Land 7: Casino Island
Disjoint Paths

Expert Enough?

Free Parentheses

Greatest K-Palindrome Sub...
Hyper-Mod

ICPC Team Strategy

Jollybee Tournament

=T Ieommoo® P

Graph, MST

Recursion

Trie?

DA Graph, DP on Tree
Complete Search (is enough)
DP, harder than problem |
String

Math

DP, medium

Ad Hoc, Simulation

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

A - T I omMmoO®P

ASCII Diamondi
Match Maker

Tariff Plan

Irreducible Fractions

Gun Fight

Unlock the Lock

Ironman Race in Treeland
Shooting the Monster
Addition-Substraction Game
The Great Game

Triangle Hazard

Kuala Lumpur 2008

Ad Hoc

DP, Stable Marriage Problem?
Ad Hoc

Math

Graph, MCBM (AlternatingPath)
Graph, SSSP (BFS)

DA Graph, Likely DP on Tree?
Comp Geo

?

?

Math

AS- T IToOmmoon®m P

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

ST IOmMMmMoDO0® P

Daejeon 2010

Sales

String Popping
Password

Mines

Binary Search Tree
Tour Belt

String Phone
Installations
Restaurant

KTX Train Depot

ST IeMmMMmMOoOON®p

Brute Force

Recursive Backtracking
Recursive Backtracking
Geometry + SCCs (Graph)
Graph, BST, Math, Combinatoric
Graph, MST (modified)

?

?
?
?

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Depth-First Search (DFS)

Breadth-First Search (BFS)
Reachability
Finding Connected Components
Flood Fill
Topological Sort
Finding Cycles (Back Edges)
Finding Articulation Points & Bridges
Finding Strongly Connected Components

GRAPH TRAVERSAL ALGORITHMS

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Motivation (1)

* How to solve these UVa problems:
— 469 (Wetlands of Florida)
e Similar problems: 260, 352, 572, 782, 784, 785, etc

— 11504 (Dominos)
e Similar problems: 1263, 11709, etc

e Without familiarity with Depth-First Search
algorithm and its variants, they look “hard”

Motivation (2)

* How to solve these UVa problems:

— 336 (A Node Too Far)
e Similar problems: 383, 439, 532, 762, 10009, etc

e Without familiarity with Breadth-First Search
graph traversal algorithm, they look “hard”

Graph Traversal Algorithms

 Given a graph, we want to traverse it!

* There are 2 major ways:
— Depth First Search (DFS)

e Usually implemented using recursion
e More natural
e Most frequently used to traverse a graph

— Breadth First Search (BFS)

e Usually implemented using queue (+ map), use STL
e Can solve special case™ of “shortest paths” problem!

Depth First Search — Template

e O(V +E) if using Adjacency List
e O(V?) if using Adjacency Matrix

typedef pair<int, Int> ii1; typedef vector<ii> Vi;

void dfs(int u) { // DFS for normal usage
printf("" %d", u); // this vertex i1s visited
dfs _numJu] = DFS_BLACK; // mark as visited
for (int j = 0; jJ < (int)AdjListJu].size; j++) {
11 v = AdjListfu]ljl; 7/ try all neighbors v of vertex u
iIT (dfs_num[v.first] == DFS _WHITE) // avoid cycle
dfs(v.first); // v i1s a (neighbor, weight) pair

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Breadth First Search (using STL)

e Complexity: also O(V + E) using Adjacency List

map<int, Int> dist; dist[source] = O;
queue<int> q; g.push(source); // start from source

while (1g.empty()) {
iInt u = g-front(); qg-pop(); 7/ queue: layer by layer!
for (int jJ = 0; jJ < (int)AdjListfu]-size(; j++) {
11 v = AdjListfu]]j]; 7/ for each neighbours of u
IT (Mdist.count(v.first)) {
dist[v.first] = distJu] + 1; // unvisited + reachable
gq-push(v.first); // enqueue v.Tirst for next steps

}
}
}

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

15t Application: Connected Components

 DFS (and BFS) can find connected components

— A call of dfs(u) visits only vertices connected to u

int numComp = 0;
dfs _num.assign(V, DFS WHITE);
REP (i, O, V - 1) // fTor each vertex 1 in [O..V-1]
iIT (dfs_num[1] == DFS WHITE) { 7/ 1T not visited yet
printf(""Component %d, visit", ++numComp);
dfs(i1); // one component found
printf("'\n"");
}

printf(""There are %d connected components\n', numComp);

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Finding Topological Sort (see text book/CS2010/CS2020)
Finding Articulation Points and Bridges (see text book)
Finding Strongly Connected Component

TARJAN’S DFS ALGORITHMS

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Input: A Directed Graph
dfs_num: visitation counter

Tarjan’s SCC

dfs_low: lowest dfs_num reachable from that vertex
using the current DFS spanning tree

dfs_num(2) = 3
fs - low(2) =

(- \ / \
dfs num(0)=0 |(dfs num(1)=1dfs_num(3) =2

dis low(0)=0 ||dfs low(1)=1 dfs_low(3) =1

@ num(4) = 4 dfs_num(5) b

dfs low(4) =4 dfs_low(5) =4

AN

dfs_num(6) =7 dfs_num(7) =6
dfs low(6) =4 dfs_low(7) }

DAG after
contracting
SCCs

CS3233 - Competitive Programming,

Steven Halim, SoC, NUS

| DFS
Spanning
Tree

Code: Tarjan’s SCC (not in 101 syllabus)

vi dfs_num, dfs _low, S, visited; // global variables

void tarjanSCC(int u) {
dfs_lowJu] = dfs_numfu] = dfsNumberCounter++; // dfs low[u] <= dfs num[u]
S.push_back(u); // stores u in a vector based on order of visitation
visitedfu] = 1;
for (int jJ = 0; J < (int)AdjListfu]-.size(); J++t) {
11 = AdjListfu]l)];
iIT (dfs_num[v.first] == DFS WHITE) // a tree edge
tarjanSCC(v.first);
iIT (visited[v.first]) // condition for update
dfs_low[u] = min(dfs_low[u], dfs low[v.first]); // update dfs low[u]
+
iIT (dfs_low[u] == dfs _numfu]) { 7/ if this i1s a root (start) of an SCC
printf("'SCC %d: ", ++numSCC); // this part is done after recursion
while (1) {
int v = S.back(); S.pop_back(); visited[v] = 0;
printf(" %d", v);
iIf (u == v) break;
t
printf("'\n"");
+
+

Graph Traversal Comparison

e DFS * BFS
* Pros: * Pros:
— Slightly easier to — Can solve SSSP on
code unweighted graphs
— Use IeSS memory (diSCUSSEd Iater)
e Cons: e Cons:
— Cannot solve SSSP on — Slightly longer to
unweighted graphs code

— Use more memory

KRUSKAL'S ALGORITHM FOR
MINIMUM SPANNING TREE

How to Solve This?

e Given this graph, select some edges s.t
the graph is connected

but with minimal total weight!

e MST!

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Spanning Tree & MST

* Given a connected undirected graph G,
select E € G such that a tree is formed and
this tree spans (covers) all V € G!

— No cycles or loops are formed!

* There can be several spanning trees in G

— The one where total cost is minimum
is called the Minimum Spanning Tree (MST)

e UVa: 908 (Re-connecting Computer Sites)

Example

The Original Graph A Spanning Tree An MST
Cost: 4+4+6+6 = 20 Cost: 4+6+6+2 = 18

Algorithms for Finding MST

 Prim’s (Greedy Algorithm)

— At every iteration, choose an edge with
minimum cost that does not form a cycle

e “grows” an MIST from a root
e Kruskal’s (also Greedy Algorithm)

— Repeatedly finds edges with minimum costs
that does not form a cycle

e forms an MST by connecting forests

e Which one is easier to code?

Kruskal’s Algorithm

* In my opinion, Kruskal’s algorithm is simpler -

sort edges by iIncreasing weight O(E log E)
while there are unprocessed edges left 0O(E)
pick an edge e with minimum cost
iIT adding e to MST does not form a cycle
add e to MST

— Simply store the edges in an array of Edges
(Edgelist) and sort them, or use Priority Queue

— Test for cycles using Disjoint Sets (Union Find) DS

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Kruskal’s Animation (1)

The original graph, Connect 1 and 2 Connect1 and O
no edge is selected As this edge is smallest No cycle is formed

Note: The sorted order of the edges determines how
the MST formed. Observe that we can also choose to
connect vertex 2 and 0 also with weight 4!

Kruskal’s Animation (2)

Cannot connect 0 and 2 Connect 0 and 3 Connect 0 and 4
As it will form a cycle The next smallest edge MST is formed...

Note: Again, the sorted order of the edges
determines how the MST formed; Connecting
0 and 4 is also a valid next move

Kruskal’s Animation (3)

But (standard) Kruskal’s However, it will not This is the final
algorithm will still continue modify anything else MST with cost 18

Kruskal’s Algorithm (Sample Code)

// sorted by edge cost

vector< pair<int, 11> > EdgelList;

// insert edges 1n format (weight, (u, v)) to EdgeList
sort(EdgeList.begin(), Edgelist.End();

mst _cost = 0; initSet(V); // all V are disjoint initially
for (int 1 = 0; I < E; 1++) {// while 7 more edges
pair<int, 11> front = EdgelList[1];
IT (1i1sSameSet(front.second.first, front.second.second)) {
// 1Tt adding e to MST does not form a cycle
mst _cost += front.first; // add the weight of e to MST
untonSet(front.second.first, front.second.second);

}
}

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

But...

You have not teach us Union Find DS in C§32337?7?
— It is also only covered briefly in CS2010/CS2020

Yeah, we choose to skip that DS in C53233...

If you want to solve MST problems,
learn Union Find DS on your own (Sec 2.3.2)

To be fair, | will not set any MST problems in CS3233
mini contests problems A+ B ©

— | do not say anything about problem C or mid/final contest

BFS (unweighted)
Dijkstra’s (non —ve cycle)

Bellman Ford’s (may have —ve cycle), not discussed “Destination
Floyd Warshall’s (all-pairs

SHORTEST PATHS

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

BFS for Special Case SSSP

e SSSP is a classical problem in Graph theory:

— Find shortest paths from one source to the rest®
e Special case: UVa 336 (A Node Too Far)
* Problem Description:

— Given an un-weighted & un-directed Graph,
a starting vertex v, and an integer TTL

— Check how many nodes are un-reachable from v
or has distance > TTL from v

e i.e. length(shortest_path(v, node)) > TTL

Example (1)

Q = {5}

D[5] = 0

Example (2)

Q =1{5}
Q={1, 6, 10}

5] =0

1]=D[5]+1=1
6]=D[5]+1=1
10]=D[5]+1=1

O O O O

O

Example (3)

Q= {5}

Q=1{1, 6, 10} D[5] =0

Q=1{6, 10,0, 2} D[1]=D[5]+1=1

Q ={10, 0, 2, 11} D[6] =D[5] +1=1

Q=1{0, 2, 11, 9} D[10]=D[5]+1=1
D[0]=D[1] +1 =2
D[2]=D[1] +1=2
D[11] = D[6] + 1 =2
D[9] = D[10] + 1 = 2

Example (4)

Q = {5}

Q ={1, 6, 10} D[5] = 0

Q ={6, 10, 0, 2} D[1] =D[5] + 1 =1

Q ={10, 0, 2, 11} D[6] = D[5] + 1 = 1

Q=1{0, 2, 11, 9} D[10] =D[5] + 1 =1

Q={2, 11, 9, 4} D[0] = D[1] + 1 = 2

Q={11, 9, 4, 3} D[2] =D[1] +1 =2

Q={9, 4,3, 12} D[11] = D[6] + 1 = 2

Q=1{4, 3,12, 8} D[9] = D[10] + 1 = 2
D[4] = D[0] + 1 = 3
D[3] =D[2] + 1 = 3
D[12] = D[11] + 1 = 3
D[8] =D[9] + 1 =3

Example (5)

Q={5}

Q=1{1, 6, 10} D[5] = 0

Q ={6, 10, 0, 2} D[1]=D[5]+1=1
Q ={10, 0, 2, 11} D[6]=D[5]+1=1
Q=1{0, 2, 11, 9} D[10]=D[5]+1=1
Q=1{2, 11,9, 4} D[0] =D[1] +1 =2
Q={11,9, 4, 3} D[2] =D[1] +1 =2
Q=1{9, 4,3, 12} D[11] = D[6] + 1 =2
Q=1{4,3, 12,8} D[9] = D[10] + 1 = 2
Q={3, 12, 8} D[4]=D[0]+1=3
Q={12,8, 7} D[3]=D[2] +1 =3
Q=1{8,7} D[12]=D[11] +1 =3
Q={7} D[8] =D[9] +1=3
Q={} D[7]=D[3]+1=4

This is the BFS = SSSP © spanning
tree when BFS is started from vertex 5

For SSSP on Weighted Graph but without Negative Weight Cycle

DIJKSTRA's

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Single-Source Shortest Paths (1)

e |f the graph is un weighted, we can use BFS
— But what if the graph is weighted?

e UVa 341 (Non Stop Travel)

e Solution: Dijkstra O((V+E) log V)
— A Greedy Algorithm
— Use Priority Queue

Modified Dijkstra’s — Example (1)

pg ={(0, 2)}

We store this pair of information to the
priority queue: (D[vertex], vertex),
sorted by increasing D[vertex], and
then if ties, by vertex number

See that our priority queue is “clean” at

tha hoa nf (Mmodifiad) Diiclktra’e
mne UCUIIIIIIIIU Oi \IIIUUIIICU} |.J|Jor\uao

algorithm, it only contains (0, the
source S)

Modified Dijkstra’s — Example (2)

Pq = {62}
pg =1(2, 1), (6,0), (7, 3)}

We greedily take the vertex in the front of
the queue (here, it is vertex 2, the source),
and then successfully relax all its neighbors
(vertex 0, 1, 3).

Priority Queue will order these 3 vertices as
1, O, 3, with shortest path estimate of
2, 6, 7, respectively.

Modified Dijkstra’s — Example (3)

Vertex 3 appears twice in the
priority queue, but this does
not matter, as we will take
only the first (smaller) one

Pq = {62}
Pq = &3, (6:0), (7,8)}

pg =1(5, 3), (6, 0), (7, 3), (8, 4)}

We greedily take the vertex in the front of
the queue (now, it is vertex 1), then
successfully relax all its neighbors (vertex 3
and 4).

riority Queue will order the items as
0, 3, 4 with shortest path estimate of
6, 7, 8, respectively.

P
31]
51]

Modified Dijkstra’s — Example (4)

3 pq = {{0-2))
1 3 pq = {21, (6, 0), (7, 3)}
-7 pq = {53}, (6, 0), (7, 3), (8, 4)}

Z 7 |
2 ; pq ={(6.0), (7. 3), (8, 4)

We greedily take the vertex in the front of
the queue (now, it is vertex 3), then try to
relax all its neighbors (only vertex 4).
However D[4] is already 8. Since D[3] +
w(3, 4) =5 + 5 is worse than 8, we do not

do anything.

8 -
Priority Queue will now have these items

0, 3, 4 with shortest path estimate of

6, 7, 8, respectively.

Modified Dijkstra’s — Example (5)

Pq = {62}

Pg = 23, (6, 0), (7, 3)}

Pg =533, (6, 0), (7, 3), (8, 4)}
Pq = 66}, (7, 3), (8, 4)}

pa =1(7,3), (7, 4), (8, 4)}

We greedily take the vertex in the front of
the queue (now, it is vertex 5), then
successfully relax all its neighbors (only
vertex 4).

Priority Queue will now have these items
3, 4, 4 with shortest path estimate of
7,7, 8, respectively.

Modified Dijkstra’s — Example (6)

Remember that vertex 3
appeared twice in the priority
gueue, but this Dijkstra’s
algorithm will only consider the
first (shorter) one

(7,3), (8 4}
, 3), (8, 4)}

pq = {%} (7,4), (8, 4)}

pg ={ (8, 4)}
Pg = {{8;
pg = {}

Similarly for vertex 4. The one
with shortest path estimate 7
will be processed first and the
one with shortest path
estimate 8 will be ignored,
although nothing is changed
anymore

Dijkstra’s Algorithm (using STL)

vi dist(V, INF); dist[s] = 0; // INF = 2B
priority queue< 11, vector<ii>, greater<ii> > pq;
pg.-push(1i1 (0, s)); // sort based on increasing distance
while ('pqg.empty()) { 7/ main loop
11 top = pg.top(); pg-pop(); // greedy
int d = top.first, u = top.second;
iIT (d == distfu]) {
for (int jJ = 0; jJ < (int)AdjListfu]-size(; j++) {
11 v = AdjListfu][j]; 7/ all outgoing edges from u
iIT (distJu] + v.second < dist[v.first]) {
dist[v.first] = distJu] + v.second; // relax
pg.-push(rr(distfv.first], v.first));
} // enqueue this neighbor regardless i1t is
} // already i1In pg or not

}

} CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

For All-Pairs Shortest Paths

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

UVa 11463 — Commandos (1)

Al-Khawarizmi, Malaysia National Contest 2008

e Given:

— A table that stores the amount of minutes to travel
between buildings (there are at most 100 buildings)

— 2 special buildings: startB and endB
— K soldiers to bomb all the K buildings in this mission

— Each of them start at the same time from startB,
choose one building B that has not been bombed by other
soldier (bombing time negligible),
and then gather in (destroyed) building endB.

e What is the minimum time to complete the mission?

UVa 11463 — Commandos (2)

Al-Khawarizmi, Malaysia National Contest 2008

e How long do you need to solve this problem?
e Solution:

— The answer is determined by sp from
starting building, detonate furthest building,
and sp from that furthest building to end building
 max(dist[start][i] + dist[i][end]) for alli e V

e How to compute sp for many pairs of vertices?

UVa 11463 — Commandos (3)

Al-Khawarizmi, Malaysia National Contest 2008

 This problem is called: All-Pairs Shortest Paths

 Two options to solve this:

— Call SSSP algorithms multiple times
e Dijkstra O(V * (V+E) * log V), if E= V2 2> O(V3 log V)
e Bellman Ford O(V * V * E), if E = V? =2 O(V?)
e Slow to code
— Use Floyd Warshall, a clever DP algorithm
e O(V3) algorithm
e Very easy to code!
* In this problem, V is <= 100, so Floyd Warshall is DOABLE!!

Floyd Warshall — Template

e O(V3) since we have three nested loops!

e Use adjacency matrix: GEMAX_V][MAX_ V];
— So that weight of edge(i, j) can be accessed in O(1)
for (int k = 0; k < V; k++)

for (int i = 0; 1 < V; i++)
for (int j = 0; j < V; j++)
GLila]1 = min(GLil103]1. GLillK]l + GIKII1):

— See more explanation of this three-liner DP
algorithm in CP

Tree, Euler Graph, Directed Acyclic Graph (basics)
DAG is also re-visited (next week, Week 06)
Bipartite Graph (Week 08)

SPECIAL GRAPHS (Part 1)

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Special Graphs in Contest

e 4 special graphs frequently appear in contest:
— Tree, keywords: connected, E = V-1, unique path!
— Eulerian Graph, keywords: must visit each edge once
» Actually also rare now
— Directed Acyclic Graph, keywords: no cycle

— Bipartite, keywords: 2 sets, no edges within set!
» Currently not in IOl syllabus

e Some classical ‘hard’” problems may have
faster solution on these special graphs

— This allows problem setter to increase input size!

» Eliminates those who are not aware of the faster solution as solution for
general graph is slower (TLE)
or harder to code (slower to get AC)...

TREE

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Tree

 Tree is a special Graph. It:
— Connected
— Has V vertices and exactly E =V - 1 edges
— Has no cycle
— Has one unique path between two vertices

— Sometimes, it has one special vertex called “root”
(rooted tree): Root has no parent

— A vertex in n-ary tree has either {0, 1,...,n} children
e n=2is called binary tree (most popular one)

— Has many practical applications:

* Organization Tree, Directories in Operating System, etc

SSSP and APSP Problems
on Weighted Tree

* In general weighted graph

— SSSP problem: O((V+E) log V) Dijkstra’s
or O(VE) Bellman Ford’s

— APSP problem: O(V3) Floyd Warshall’s

* |In weighted tree

— SSSP problem: O(V+E = V+V = V) DFS or BFS
 There is only 1 unique path between 2 vertices in tree

— APSP problem: simple V calls of DFS or BFS: O(V?)

e But can be made even faster using LCA... not covered

Diameter
of a Tree

* In general weighted graph

— We have to run O(V3) Floyd Warshall’s and pick
the maximum over all dist[i][j] that is not INF

* |In weighted tree
— Do DFS/BFS twice!

 From any vertex s, find furthest vertex x with DFS/BFS
e Then from vertex x, find furthest vertex y with DFS/BFS

e Answer is the path length of x-y
e O(V+E =V+V =V) only — two calls of DFS/BFS

Tree Illustration

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

RONINGSHERGA

Euler Graph

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Eulerian Graph (1)

 An Euler path is defined as a path in a graph which
visits each edge exactly once

e An Euler tour/cycle is an Euler path which starts and
ends on the same vertex

A graph which has either Euler path or Euler tour is
called Eulerian graph

Eulerian Graph (2)

 To check whether an undirected graph has an Euler
tour is simple ©

— Check if all its vertices have even degrees.

e Similarly for the Euler path

— An undirected graph has an Euler path if all except two
vertices have even degrees and at most two vertices have
odd degrees. This Euler path will start from one of these
odd degree vertices and end in the other

e Such degree check can be done in O(V + E), usually
done simultaneously when reading the input graph

Eulerian Graph (3)

Konigsberg UVa 291 Non Eulerian
Non Eulerian Eulerian

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

DIRECTED ACYCLIC GRAPH (DAG)

Directed Acyclic Graph (DAG)

e Some algorithms become simpler when used on DAGs instead of
general graphs, based on the principle of topological ordering

e For example, it is possible to find shortest paths and longest
paths from a given starting vertex in DAGs in linear time by
processing the vertices in a topological order, and calculating the
path length for each vertex to be the minimum or maximum length
obtained via any of its incoming edges

e |n contrast, for arbitrary graphs the shortest path may require
slower algorithms such as Dijkstra's algorithm or the Bellman-Ford
algorithm, and longest paths in arbitrary graphs are NP-hard to find

Single-Source Shortest Paths
In DAG

* In general weighted graph

— Again this is O((V+E) log V) using Dijkstra’s
or O(VE) using Bellman Ford'’s

* In DAG

— The fact that there is no cycle simplifies this
problem substantially!

e Simply “relax” vertices according to topological order!
This ensure shortest paths are computed correctly!

* One Topological sort can be found in O(V+E)

Single-Source Longest Paths
In DAG

* In general weighted graph

— Longest (simple) paths is an NP complete problem
* |[n DAG

— The solution is the same as shortest paths in DAG,
just that we have tweak the relax operator
(or alternatively, negate all edge weight in DAG)

Summary (1)

 Today, we have quickly gone through various
well-known graph problems & algorithms
— Depth First Search and Breadth First Search

e Connected versus Strongly Connected Components
— Kruskal’s for MST (briefly)

— Shortest Paths problems

e BFS (unweighted), Dijkstra’s (standard), Floyd Warshall’s
(all-pairs, three liners)

— Special Graph: Tree, Eulerian, DAG

Summary (2)

 Note that just knowing these algorithm will
not be too useful in contest setting...

* You have to practice using them

— At least code each of the algorithms discussed
today on a contest problem!

