This course material is now made available for public usage.
Special acknowledgement to School of Computing, National University of Singapore
for allowing Steven to prepare and distribute these teaching materials.

-\:HC-":"j

International Collegiate
acm Programming Contest

CS3233 o (g
Competitive Programming

Dr. Steven Halim
We k 09 — Mathematics

Nn Pro 0gra amming Contests

l IIIIIIIIID w1l] Cowd WS

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Outline

e Mini Contest #7 + Discussion + Break + Admins

e Mathematics-Related Problems & Algorithms
— Ad Hoc Mathematics Problems (quick overview)

* Those that do not need specific algorithm, just basic coding/math skill
— Java Biglnteger Class
— Number Theory, especially Prime Factors and Modulo Arithmetic
— Many other topics are for self-reading at home (CP2.9)

Mathematics, CS, and ICPC/IOI (1)

e Computer Science is deeply rooted in Maths
— Compute = Math

e |tis not a surprise to see many Maths problems
in ICPC (PS: 101 tasks are usually not Maths-specific)
— Many of which, | do not have time to teach you...

— Few others, | cannot teach you as | do not know them yet...
— (CS3233is NOT a pure Mathematics module

e Only 1 week (1.5 hours) is devoted for Mathematics-related topic
— Itis nice if we can improve our ranks by solving
some mathematics problems in programming contest

Mathematics, CS, and ICPC/IOI (2)

 Tips:
— Revise your high school mathematics
— (In NUS): Take MAXXXX modules as CFM :D

— Read more references about powerful math algorithms
and/or interesting number theories, etc

— Study C++ <cmath> & Java.Util.Math/Java.Math Library
— Try maths problems in UVa/other OJ and at projecteuler

The Lecture Plan (more at home)

 Today, we will discuss a small subset of this big domain

 Plan:
— We will skip/fast forward the “not so interesting” stuffs

— | will give several Maths-related pop-quizzes using clicker *
system to see how far you know these tricks...

— We will focus on several related subjects:
Big Integer, Prime Factors, and Modulo Arithmetic
e All involve “Big (Large) Integers”...
— You will then have to read Chapter 5 of CP2.9 on your own

(it is a huge chapter btw...)

Mathematics-Related Problems
(as currently listed in CP2.9)

1. Ad Hoc Mathematics

The Simple Ones

Mathematical Simulation (Brute Force)
Finding Pattern or Formula

Grid

Number Systems or Sequences
Logarithm, Exponentiation, Power
Polynomial

©® N o s wDN e

Base Number Variant
9. Just Ad Hoc

2. Java Biginteger
1. Basic Features
2. Bonus Features

3. Combinatorics

1. Fibonacci Numbers
2. Binomial Coefficients
3. Catalan Numbers

4. Others

4. Number Theory

Prime Numbers: Sieve of Eratosthenes

GCD & LCM

Factorial

Prime Factors

Working with Prime Factors

Functions involving Prime Factors

Modified Sieve

Modulo Arithmetic

Extended Euclid/Linear Diophantine Equation
Others

O 0 N UL R WDNPRE

=
©

Probability Theory

Cycle-Finding
1. Floyd’s Tortoise-Hare Algorithm
Game Theory

1 Twon Plavar
= o 1LVV I IuyL.l

2. Nim Game (Sprague Grundy Theorem)
Also see Chapter 9

CS3233 - Competitive Programming,

Steven Halim, SoC, NUS

Programming problems that are from the domain of mathematics,
but we do not need specialized data structure(s) or algorithm(s) to solve them

We will do A QUICK SPLASH AND DASH... Learn the details at home ©
Section 5.2

AD HOC MATHEMATICS

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

The Simpler Ones

* Nothing to teach ®

e They are too simple, really...

 You can get ~¥10 ACs in < 1 hour if you solve all
problems listed in this category in CP2.9 ©

Mathematical Simulation (Brute Force)

 Nothing to teach other than the ones already
presented during iterative/recursive
“Complete Search” topic

— Just remember to prune the search space

whenever possible...
 Note: Problems that require other technique (like
number theory knowledge) and cannot be solved
with brute-force are NOT classified in this category

Finding Pattern or Formula

This requires your mathematical insights to obtain
those patterns/formulas as soon as possible to
reduce the time penalty (in ICPC setting)

Useful trick:
— Solve some small instances by hand
— List the solutions and see if there is/are any pattern(s)?

Let’s do a quick exercise ©

Grid

* Also about finding pattern

* |t requires creativity on manipulating the grid or
converting it to simpler ones

* Example:

., % - - b Y/ Y -

__,.'" N Y LR - ".__,.'" b __,.'" "'.__
S A N+ A N - T L S A Y Y
Voo h /B1N . 31N fBsN N/
SN Fs0N_ 30N /3N SseN SN
AL E A AN S AN - A - AN
FooN_ /2By 14N f1ehN_ S3aN SN
"'.___,.'" 48h, __,.'" 13 __,.'" 5 "'.__,.'" 174, __,.'" 58 "'.__,.'"
R F AN A AN A E LN
"'.___l.-" a7, __."-. 124 __."'. 1 "-.__l.'" 1ah, __.": 549 "-.__l.'"
N F AN A AN A AT AT A
"'.___l.-" Gl __.": 1 __.": 2 "-.__l.'" g%, __.": B0 "-.__l.'"
L o FEBN O FIDY BN FETN N
1".___,."- 454 S 24 __,."- 9 -".__,."-.E ay, __,.'" &1 "'.__,."-
.. Yoo faah fR3N 0 F21N 0 f3BN S i
'!'-.__,.'; ah, __,.';-43 5 ;22 .".__,.'; 394 __,.'; G2 .".__,.';
RN T AN AN L UL L AT
"'.___l.'" ! J BB _ fal ."'__.": B4, __.": "'.__l.'"
FoN N FEeTN fesN N N
LY A N Y 2 -T- A N A Y A N |

AT T Y L T
o ey

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Number Systems or Sequences

 Nothing much to teach :0O

e Most of the time, carefully following the problem
description is sufficient

Logarithm, Exponentiation, Power

In C/C++ <cmath>, we have 10g (base e) and
10910 (base 10)

In Java.lang.Math, we only have 10g (base e)
To do 1og,(a) (base b), we can use:
log(a) /7 log(b)

Btw, what does this code snippet do?
(int)floor(1 + 1oglO0((double)a))

And how to compute the n-th root of a?

*
*

Polynomial

 Representation: Usually the coefficients of the terms
in some sorted order (based on power)

 Polynomial formatting, evaluation, derivation
(Horner’s rule), division, remainder, roots (Ruffini’s
rule)...

 The solution usually requires careful loops...

Base Number Variants

Do you know that base number conversion is now
super easy with Java Biginteger?

e However, for some variants, we still have to go to the
basics method...

— The solution usually use base 10 (decimal)
as an intermediate step

And A Few Others...

 Best way to learn these: Via practice...

Section 5.3
A Powerful API for Programming Contests

JAVA BIGINTEGER CLASS

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Java Biglnteger...

| am a Java user but | have
never used it before

| am a (pure) C++ user so
| never used it before

| am a Java user and | have
used it before ©

| am bilingual (Java/C++)
and | have used it before ©

0 0 0 0

Co3233 J Competitive Progiimming, 2 3 4
Oof 5 Stgven Halim, SoC, NUS

Big Integer (1)

 Range of default integer data types (C++)
— unsigned int = unsigned long: 232 (9-10 digits)
— unsigned long long: 24 (19-20 digits)

Question:
— Whatis “777!”, i.e. factorial of 7777

e Solution?
— Big Integer: Use string to represent number

e ~ number can be as long as computer memory permits

e FYI, this is similar to how basic data types

vpes a
memory. Just that this time we do not have
number of bits (digits) used...

put
imitation of the

re stored in combputer

Big Integer (2)

 QOperations on Big Integer
— Basic: add, subtract, multiply, divide, etc
— Use “high school method”

e Some examples below:

1 < carry 218
218 45

45 -—= X

¥ 1090 (218*5)
263 872 (218*4)*10

Big Integer (3)

Note:

— Writing these “high school methods” during stressful contest
environment is not a good strategy!

Fortunately, Java has Biginteger library

— They are allowed to be used in contests (ICPC and CS3233)
* So use it...

— Note: IOl does not allow Java yet,
and anyway, | have not see Biglnteger-related tasks in |Ol...

Or, if you insist, build your own BiglInt library and bring its
hardcopy to future contests!

Java Biglnteger Class

* This class is rather powerful

— Not just it allows for basic mathematical operations
involving big integers (addition, subtraction, multiplication,
division, mod or remainder, and power)...

— |t also provides support for:

e Finding GCD of big numbers
Finding the solution of XY mod m (modulo arithmetic)

Very Easy Base Number Conversion, quite useful

new in cp2.o: [*

1, 7

See various examples in the book ©

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

COMBINATORICS

0

Combinatorics

Given problem description,
find some nice formula to count something

— Coding is (usually very) short
— Finding the formula is not straightforward...

 |f formula has overlapping sub problems = use DP
e |f formula yield huge numbers = use Java Biginteger

Memorize/study the basic ones: Fibonacci-based
formulas, Binomial Coefficients, Catalan Numbers...

[V a = I I LA“AI‘C AAAAAAAAA

NDC. N : ~~i~rlAanAAIiA AF LA .
Fo. Ull-LIll ICYCIOpPCEUId Ol ITILEgCEl OoCQUCTICES

e
— Can be a good reference: http://oeis.org/

Programming problems that requires the knowledge of number theory,
otherwise you will likely get Time Limit Exceeded (TLE) response

for solving them naively...
Section 5.5

NUMBER THEORY

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Prime Numbers

First prime and the only even prime: 2
First 10 primes: {2, 3,5, 7, 11, 13, 17, 19, 23, 29}

Primes in range:

— 11to 100 : 25 primes 1to 1,000 : 168 primes
— 1to0 7,919 :1,000 primes 1to 10,000: 1,229 primes

Largest prime in signed 32-bit int = 2,147,483,647
Used/appear in:

— Factoring
— Cryptography
— Many other problems in ICPC, etc

Optimized Prime Testing

e Algorithms for testing if N is prime: isPrime(N)
— First try: check if N is divisible by i € [2 .. N-1]?
* O(N)
— Improved 1: Is N divisible by i € [2 .. sqrt(N)]?
* O(sqrt(N))
— Improved 2: Is N divisible by i € [3, 5, .. sgrt(N)]?
e One test fori=2, no need to test other even numbers!
e O(sqgrt(N)/2) = O(sqrt(N))
— Improved 3: Is N divisible by i € primes < sqrt(N)
* O(m(sqrt(N))) = O(sqrt(N)/log(sart(N)))

— 1(M) = num of primes up to M
— For this, we need smaller primes beforehand

Prime Generation

* What if we want to generate a list of

prime numbers between [0 ... N]?
* Slow naive algorithm:

Loop 1 from [O .. N]

1T (isPrime(1))
print 1

e Can we do better?

— Yes: Sieve of Eratosthenes

Sieve of Eratosthenes Algorithm

 Generate primes between [0 ... NJ:

— Use bitset of size N, set all true except index 0 & 1
— Start from i = 2 until k*i > N

e |f bitset at index i is on, cross all multiple of |
(i.e. turn off bit at index i) starting from i*i

— Finally, whatever not crossed are primes

e Example:

-~ 0,1,2,3,4,5,6,7,8,9, 10, 11, ..., 51, 52, 53, 54, 55, ..., 75, 76, 77, ...
~0,1,2,3,4,5,6,7,8,9, 10,11, .., 51,52, 53, 54, 55, ..., 75, 76, 77, ...
-~ 0,1,2,3,4,5,6,7,8,9, 10,11, ..., 51,52, 53, 54, 55, ..., 75, 76, 77, ...
-~ 0,1,2,3,4,5,6,7,8,9, 10,11, ..., 51, 52, 53, 54, 55, ..., 75, 76, 77, ...
~ 0,1,2,3,4,5,6,7,8,9, 10,11, ..., 51, 52, 53, 54, 55, ..., 75, 76, 77, ...

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Code: sieve & isPrime

#include <bitset> // compact STL for Sieve, better than vector<bool>!
Il _sieve_size; // 11 1s defined as: typedef long long 11;
bitset<10000010> bs; // 10~7 should be enough for most cases
Vi primes; // compact list of primes 1n form of vector<int>
void sieve(ll upperbound) { // create list of primes in [O..upperbound]
_sieve_size = upperbound + 1; // add 1 to include upperbound
bs.set(); // set all bits to 1
bs[0] = bs[1] = O; // except index 0 and 1

for (Il 1 = 2; 1 <= _sieve_size; 1++) 1T (bs[i]) {
// cross out multiples of 1 starting from 1 * 1!
for (Il J =1 * 1; J <= _sieve_size; J += 1) bs[j] = O;

primes.push_back{((int)i); // add this prime to the list of primes

} 3} // call this method i1n main method
bool i1sPrime(ll N) { // a good enough deterministic prime tester
iIT (N <= sieve_size) return bs[N]; // 0(1) for small primes

for (int i = 0; i1 < (int)primes.size(); i++)
IT (N % primes[i] == 0) return false;
return true; // i1t takes longer time if N is a large prime!
} // note: only work for N <= (last prime iIn vi "primes™)"2

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Greatest Common Divisor (GCD)

Naive Algorithm:

— Find all divisors of a and b (slow)

— Find those that are common

— Pick the greatest one

Better & Famous algorithm: D & C Euclid algorithm

— GCD(a, 0) = a

— GCD(a, b) = GCD(b, a % b) // problem size decreases a lot!!
Its recursive code is easy to write:

int gcd(int a, int b) { return (b == 0 ? a - gcd(b, a % b)); }

Lowest Common Multiple (LCM)

e [cm(a, b) =a*b /gcd(a, b)
int Iem(int a, int b) { return (a /7 gcd(a, b) * b); }

// Q: why we write the Icm code this way?

e Note for gcd/lcm of more than 2 numbers:
— ged(a, b, c) = ged(a, ged(b, c));

* Both gcd and lecm runs in O(log,, n)
where n = max(a, b)

Factorial

 What is the highest n so that factorial(n) still fits in
64-bits unsigned long long?
— Answer: n=20
« 20! = 2432902008176640000
« ull = 18446744073709551615
« 211 = 51090942171709440000
e Hm... so almost all factorial related questions require
Java Biginteger? *

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

Prime Factors

Direct algorithm: Generate list of primes (use sieve),
check how many of them can divide integer N

— This can be improved!

Better algorithm: Divide and Conquer!

— An integer N can be expressed as:
e N=PF*N' But if integer | Is a

large prime, then

this is still slow.

— PF = a prime factor
— N'=another number which is N / PF
e If N'=1, stop; otherwise, repeat This fact is the basis

e Nis reduced every time we find a divisor | for cryptography
techniques

Code: Prime Factors

vi primeFactors(ll N) { // remember: vi is vector<int>, Il is long long
vi factors;
Il PF _1dx = 0, PF = primes[PF _i1dx]; // PF = 2, then 3,5,7,... 1s also ok
while (N =1 && (PF * PF <= N)) { // stop at sqrt(N); N can get smaller
while (N % PF == 0) { N /= PF; factors.push _back(PF); } // remove PF

PF = primes[++PF_i1dx]; // only consider primes!

}
iIf (N = 1) factors.push_back(N); // special case if N i1s a prime
return factors; // 1Tt N does not fit in 32-bit integer and iIs a prime
} // then “factors® will have to be changed to vector

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS

THE OTHER MATHS PROBLEMS

2
LL

2

O
O

O
Z

nl
P
nl
>

o'
O

O
e
o
<

Not Covered in Lecture this Sem

Linear Diophantine Equation (Section 5.5)
Probability Theory (Section 5.6)
Cycle-Finding (Section 5.7)

Game Theory (Section 5.8)

Gaussian Elimination (Section 9.4)

Matrix Power (Section 9.13)

Roman Numerals (Section 9.20)

They are aIready written in CP2.9

— Thn\l ar nnd rnar~| ﬂ

— Read them on your own
— These problems will not appear as problem A or B in mini contest 8

Many More Still Not in CP2.9 Yet...

Mathematics is a large field

— Pollard’s Rho integer factoring algorithm

— Many other Prime theorems, hypotheses, conjectures
— Chinese Remainder Theorem

— Lots of Divisibility Properties

— Combinatorial Games, etc

Again CS3233 = Math Module

Chapter 5 of CP2.9 has a collection of ~372 UVa programming
exercises... the highest among the 9 chapters in CP2.9!

The Pace of this Lecture

1. Too slow, | already
know all these...
| want to know more

2. Fine; we are used to
it now ©

3. Crazy as always...
and we still have
lots of reading 0

material athome _(T——

jjjjjjj Competitive Prograniming, 2 3
0 of 30 Stpven Halim, SoC, NUS

Summary

We have seen some mathematics-related problems
and algorithms
— Too many to be learned in one night...

— Even so, many others are left uncovered
(some are inside CP2.9 for you to read on your own pace)

— Best way to learn: Lots of practice
In the next two weeks, two more new topics:

— Week 10: String Processing (Focus on SA)
— Week 11: (Computational) Geometry (Focus on Polygons)

References

e CP2.9, Chapter 5 © and parts of Chapter 9
e Introduction to Algorithms, Ch 31, Appendix A/B/C
* Project Euler, http://projecteuler.net/

