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Abstract. Encryption is a common method to assure privacy of stored
data. In many practical situations, decrypting data before applying logic
compromises privacy. The challenge is to come up with logic transfor-
mation techniques and result-mapping methods so that the exact result
of applying logic to data-in-the-clear is obtained by applying the trans-
formed logic to encrypted data and mapping the result produced. In
the scope of relational aggregation queries and in the presence of logical
predicates, we show how to support needed transformations and map-

pings.

1 Introduction

Increasingly, large companies are outsourcing their IT department and some-
times their entire data center [2]. Privacy of the data stored in these service
environments is a growing concern. We will give a working definition for the
database-as-a -service (DAS) model [75], and focus on the certain aspects of the
privacy challenge in the model. Specifically, we explore techniques to support
aggregation in relational databases on encrypted data without decryption in the
presence of logical predicates.

In order to explain our methods in a limited space, we use the following
simple but general query form:

SELECT <grouping attributes>, <aggregation function>

FROM <relations> WHERE <predicates> GROUP BY <grouping attributes>
<aggregation function> refers to an SQL aggregation function (SUM, COUNT,
AVG, MIN, MAX) with an arithmetic expression as the parameter. <predicates>
may include logical comparisons.

Our techniques exploit a specialized encryption method, privacy homomor-
phism (PH for short), that allows basic arithmetic (+,—,%) over encrypted data.
The primary contributions of this paper include: (1) The first application of PH
to aggregation queries in relational databases including extensions to make it
applicable, (2) Formal techniques to transform SQL aggregation queries to exe-
cute over encrypted tables, and (3) performance studies based on a real queries
against a real database to validate the ideas.

The DAS model: The DAS model [7][B], is an instantiation of the com-
puting model involving trusted clients, who store their data at an untrusted
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server that are administrated by the service provider. The challenge is to make
it impossible for the system provider to correctly interpret the data. The data is
owned by clients. The clients only have limited computational power and stor-
age, and they rely on the server for the mass computational power and storage.
The server exposes mechanisms for the clients to create and manage the client
databases at the server.

Data originates from the client. We propose that authorized clients be given
needed encryption key(s). The data is encrypted by the client before it is sent
to the server for inclusion in a table. Data is always encrypted when it is stored
on, or processed by the server. At no time is the encryption key given to any
administrator, thus data cannot be decrypted by the server. Queries against
data-in-the-clear, originate from the client. Algorithms, based on the metadata
known to the client, decompose the query into client and server queries. The
server query is sent to the server to be executed against encrypted data. Pro-
cessing algorithms are designed such that the results of the original query are
obtained if the client decrypts and further processes the answers of the server
query using the decomposed client query.

Furthermore, data privacy is assured under the conditions that the client does
not share the encryption keys, the metadata or the unencrypted data with any
party who might be an adversary and the server is considered as an adversary.

2 Aggregation over Encrypted Data

2.1 Background on Privacy Homomorphisms

Definition of PH: Assume A is the domain of unencrypted values, & an
encryption function using key k, and Dy, the corresponding decryption function,
ie, Vae A, Dy(Ek(a)) = a. Let & = {oq,a9,...,0,} and 8 = {01,062, ..., 0n}
be two (related) function families. The functions in & are defined on the domain
A and the functions on 3 are defined on the domain of encrypted values of
A. (&, Dy, @, B) is defined as a privacy homomorphism if Dy (5;(Ex(a1), Ek(az)
oo &rlam))) = ai(ar,ag, ... am) : 1 <4 < n. Informally, (Ek,Dk,&,B) is a
privacy homomorphism on domain A, if the result of the application of function
«; on values may be obtained by decrypting the result of 3; applied to the
encrypted form of the same values.

Given the above general definition of PH, we next describe a specific ho-
momorphism proposed in [§] that we will use in the remainder of the paper.
We illustrate how the PH can be used to compute basic arithmetic operators
through an example.

e The key, k = (p,q), where p and ¢ are prime numbers, is chosen by the client
who owns the data.

en =p-q,pand g are needed for encryption/decryption and are hidden from
the server. n is revealed to the server. The difficulty of factorization forms the
basis of encryption.

e & (a) = (a mod p,a mod q), where a € Z,,. We will refer to these two compo-
nents as the p component and q component, respectively.
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e Di(dy,dy) = digq~! + dapp™ (mod n) , where d; = a (mod p),ds = a
(mod q), and ¢! is such that q¢~* =1 (mod p) and p~* is such that pp=! =1
(mod g). (1)
e & = {+,,—n, Xn}, that is addition, subtraction, and multiplication in mod n.
e 3 ={+,—, x}, where operations are performed componentwise.

Example: Let p = 5,q = 7. Hence, n = pg = 35,k = (5,7). Assume that
the client wants to add a; and ag, where a1 = 5,a2 = 6. £(a1) = (0,5),E(az) =
(1,6) (previously computed) are stored on the server. The server is instructed to
compute £(a1) + E(az) componentwise (i.e., without decrypting the data). The
computation £(a1)+E(az) = (04+1,54+6) = (1,11). The result, (1,11) is returned
to the client. The client decrypts (1,11) using the function (dyqq~' + dapp™!)
(mod n) = (1-7-3+11-5-3) (mod 35) =186 (mod 35), which evaluates to 11,
the sum of 5 and 6[] The scheme extends to multiplication and subtraction.

2.2 Extensions to PH

The basic PH scheme above works for modular addition, subtraction, and multi-
plication of integers only, and needs to be extended in several directions for it to
be useful in SQL query processing. SQL arithmetic requires arbitrary expression
evaluation using non-modular addition, subtraction, multiplication, and division
functions on signed integers and floating point data types. We discuss some of
these extensions below (full discussion can be found in [6]).

Negative numbers can be dealt by offsetting the range of numbers. To see the
need for this, recall that arithmetic is defined on modulo n in PH. For example,
the numbers 33 and -2 are indistinguishable when we represent them in modulo
35. That is, 33 (mod 35) = -2 (mod 35). Let vy, be the smallest negative and
Umae the largest positive number representable on a machine. We map the range
of numbers [Umin, Vmaz] to a new range [0, (Vmaz — Umin)], 1 is chosen to be
greater than v,,qz — Vmin. A number x is mapped to a shifted value 2’ in the
new range as ' = x — Upin. After decryption, the client corrects the answer and
maps, in a straightforward manner, back to the values in the original domain.
Preventing Test for Equality: Picking n such that n > vyee — Umin (as we
did above) enables the server to test for equality. Say x and y are two numbers
encrypted as (zp,z4) and (yp,yq), respectively. Let z = x * y, which implies
in the encrypted domain, (2p,24) = (2p,%q) * (Yp, yq). The server could start
adding (x,,z4) to itself every time checking the equality between the sum and
(2p, zq). When the equality is satisfied, the server learns the unencrypted value
of y. Thus, (2p, 2¢) = (Tp, xq) + (Tp, Zq) + ... + (Tp, T4)-

y times
We plug this exposure by adding random noise to the encrypted value.
We encrypt an original value z as follows; £(z) = (r (mod p) + R(z) - p,x
(mod ¢) + R(x) - q), where R(z) is a pseudorandom number generator with seed
x. R(z) value is generated during every insertion/update by the client. This
prevents equality testing for the server and the server cannot remove the noise

! n is selected in such a way that results always fall in [0,n); for this example [0, 35).
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without knowing p and q. The noise is automatically removed at the client upon
decryption. In the presence of noise, the following decryption function should
be used in place of equation (1): Dy (dy,d2) = (dy mod p)gqg~! + (dz mod q)pp~*
(mod n) This equation is true because noise had been added in multiples of p
for the first and in multiples of ¢ in the second term. The modulo of each (mod
p) and (mod ¢) term removes the added noise.

Another benefit of introducing the noise is that p and ¢ components are no
longer stored in modulo p and ¢, respectively. It makes it additionally difficult
for the server to guess their values.

3 Selecting Tuples over Encrypted Data

3.1 Aggregation Queries without Predicates

Consider an aggregation query that computes the total compensation of em-
ployees: that is SUM(salary + commission) from an employee relation. Let
employee® be the encrypted server side representation of the employee relation.
The relation is encrypted at the row level by treating a record as a bit string
that is encrypted as a unit. employee®, besides storing the resulting cipher-
text as a special field, also contains fields salaryg and Salaryf; that store the
values salary (mod p), and salary (mod q); i.e., together the two fields encode
EPH (salary), where EPH is a PH used to encrypt salary. Similarly, commissionﬁ
and commissionl}; fields represent commission using the PH strategy. The origi-
nal query can be evaluated by computing the aggregation componentwise at the
server using the following query:

SELECT SUM(salaryZ+ commission;j) as si, SUM(salaryf;+ commissionf;) as s2
FROM employees

The client can decrypt the result by computing: s1 mod p* ¢ * ¢~ ! 4+ s2 mod ¢ *
p*p~t (mod n).

3.2 Handling Logical Comparisons

To support logical comparisons over encrypted data, we differentiate between
equality and inequality operators. Consider an attribute A; on which equality
test needs to be performed (e.g., as part of a equi-join or selection operation). If
we encrypt the attribute value using a deterministic encryption algorithm, such
as AES [I], and store the encrypted field value at the server, equality can be
directly tested since ¥V domain values v;, vj, v; = v; < Ek(v;) = E(v;), where &
is a deterministic encryption algorithm with key k.

For inequality comparisons we utilize the strategy proposed in [5]. Consider
a relation employee (eid,ename salary,city,did) an instance of which is
shown in Table[Il Suppose we wish to retrieve eid of employees who make more
than 60K. To evaluate conditions such as salary > $60K, a coarse indezx is
stored at the server. Such an index is derived by first partitioning the domain of
salary into a set of partitions (or buckets) over the domain of salary (assumed
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Table 1. Relation employee Table 2. Partitions

leid [ename[salary[city [did‘

23 [Tom [70K [Maple[10
860|Mary |60K |[Maple|55 [0,25K] 59
320|John |23K |River [35 (25K,50K] | 49
875|Jerry |45K |Maple|58 (50K,75K] | 81
870|John |50K [Maple|10 (75K,100K]| 7
200(Sarah [55K |River (10

Table 3. Relation employee® : encrypted version of relation employee

salary™

letuple(encrypted tuple)‘eidid\salaryid‘cityid‘didid‘ city” ‘ did* salary{j‘salary?
=*TEwQR*((ji=+,-... | 2 81 18 | 2 [?Ew...[@R*...[ 7 27
b*((ii(*7Bwa=Lr... | 4 | 81 | 18 | 3 |[?Ew...|=+,...| 18 17
wQ=W*((ji(*?E:,j... | 7 59 22 | 4 |t | 2 23
(FQ=W*((?E;r... | 4 | 49 | 18 | 3 [?Ew...| E:,... | 3 2
*G(*@=U(jS?/6... | 4 | 49 | 18 | 2 [?Ew...|@R*...| 8 7
fTi* @=U(j?G+.a... | 7 | 49 | 22 | 2 |i(*... |arR*...| 13 12

to be between [0,100K] below). For example, partition(employee.salary) =
{[0K,25K], (25K,50K], (50K,75K], (75K,100K]}. Associated with each par-
tition is its identity determined by an identification function ident that could
be derived using, for example, a one-way hashing technique. A particular as-
signment of identifiers to 4 salary partitions is shown in Table 2] For instance,
identemployee.salary ([0, 20K]) = 59. A value in the domain can be mapped using
the partitioning to its corresponding partition. For example, the salary of Tom in
the above table maps to partition 81; that is, Mapempioyee.cia(7T0K) = 81. This
mapping is used as a coarse index at the server in order to support comparison
operators over the encrypted data. For example, to test if a tuple satisfies the
condition salary > 60K, we can test the condition salary’® = 81 OR salary’d
= 7 at the server. If the tuple satisfies the condition, its encrypted representation
is returned to the client that can decrypt the results to filter out false positives.

4 Query Processing over Encrypted Data

Having developed basic methods to compute aggregations and compare values,
we now turn our attention to techniques to evaluate SQL queries over encrypted
data. We begin by first formally specifying how relational data is stored at the
server. We will then discuss the techniques to map a query into the server side
representation.

4.1 Storage Model

Let R be a relation with the set of attributes R = {ry,...,7,}. R is repre-
sented at the server as an encrypted relation R® that contains an attribute
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etuple = (E¥(r1,ra,...,7ms)), where £ is the function used to encrypt a row of
the relation R. R also (optionally) stores other attributes based on the follow-
ing classification of the attributes of R:
o Aggregation attributes (A; € R:1<j <j < n): are attributes of R on which
we expect to do aggregation. For each Aj, RS contains an attribute A? that
represents the encrypted form of corresponding original attribute A; with PH,
thus A;L = EPH(A;), where EPH is a PH.
e Ficld-level encrypted attributes (Fy, € R:1<k<k < n): are attributes in R
on which equality selections, equijoins, and grouping might be performed. For
each F;, RS contains an attribute ka = Sf(F,f), where 7 is a deterministic
encryption used to encode the value of the field Fj.
e Partitioning attributes (P, € R:1<m<m< n): are attributes of R on
which general selections/joins might be performed. For each P,,, R® contains an
attribute P! that stores the partition index of the base attribute values, thus
Pfg :MapR.Pm(Pm)' N N
e Embedded attributes (Ey € R : 1 < £ < ¢ < n): are attributes in R that are
not in any of the above three categories. These attributes are, most likely, not
accessed individually by queries for either selections, group creation, or aggre-
gation. They need not be encrypted separately. Their values can be recovered
after the decryption operation on the encrypted row (i.e., etuple) is executed on
the client site.

Given the above attribute classification, the schema for the relation RS is as
follows:

RS (etuple, P{%,... Pl F} ... Fl, Al ... AD)

Table [ shows a possible instance of the server side representation of the
the employee relation given in Table[Il In the mapping, we assumed that parti-
tioning attributes are {eid, salary, city, did}, field-level encrypted attributes are
{city, did}, and aggregation attributes are {salary}. Note that for a relation,
the categories may overlap.

4.2 Approach Overview

Given a query @, our problem is to decompose the query to an appropriate
query @° on the encrypted relations R such that results of Q° can be filtered
at the client in order to compute the results of Q. Ideally, we would like Q°
to perform bulk of the work of processing @Q. The effectiveness of the decom-
position depends upon the specifics of the conditions involved in @ and on the
server side representation R of the relations involved. Consider, for example, a
query to retrieve sum of salaries of employee in did = 40. If did is a field-level
encrypted field, the server can exactly identify records that satisfy the condition
by utilizing the equality between the client-supplied values and the encrypted
values stored on the server. In such a case, aggregation can be fully performed
on the salary attribute of the selected tuples exploiting the PH representation.
If, on the other hand, the condition were more complex, (e.g., did > 35 AND
did < 40), such a query will be mapped to the server side by mapping the did
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to the corresponding partitions associated with the did field that cover the range
of values from 35 to 40. Since the tuples satisfying the server side query may
be a superset of the actual answer, aggregation cannot be completely performed
at the server. Our strategy is to separate the qualified records into those that
certainly satisfy the query conditions, and those that may satisfy it - the former
can be aggregated at the server, while the latter will need to be transmitted to
the client, which on decrypting, can filter out those that do not, and aggregate
the rest. The strategy suggests a natural partitioning of the server side query
Q7 into two queries Q3 and Q2 as follows:
e Certain Query (Q%): that selects tuples that certainly qualify the conditions
associated with Q. Results of Q7 can be aggregated at the server.
e Maybe Query (Q2): that selects etuples corresponding to records that may
qualify the conditions of () but it cannot be determined for sure without decrypt-
ing. The client decrypts these etuples, and then selects the ones that actually
qualify and performs the rest of the query processing.

To finalize the computation, the client combines results from these queries to
reach the actual answers. We next discuss how a client side query @ is translated
into the two server side representations Q2 and Q2.

4.3 Mapping Conditions

The principal issue in decomposing the query @ into its server side represen-
tations QJ and Q2 is to map the conditions specified in @ to corresponding
conditions on the server side representation. We first consider how an individual
condition Cy, of @ is mapped. Our mapping function M apeenq(Ch) consists of two
components: MapS,,,,(Cr) and Map . (Ck). MapS,,,, maps Cy to a server side
condition such that every tuple satisfying Map¢, , ,(Ck) certainly satisfies Cy,
while Map??, , maps C}, into a condition that qualifies tuples that maybe satisfies
C. Together, the two conditions identify (a superset of) tuples that satisfy the
original condition Cy. Naturally, Mapcona(Cr) = MapS,,,,(Crk) V Map. .(Ck).
We will use the following notation to describe how the conditions in the original
query are mapped to their server side representations.

Let R be a relation, R.A; be a partitioning attribute of R, let {p1,p2,...,Pn}
be the set of partitions associated with with R.A;, and v be a value in the domain
of R.A;. We define the following mapping functions on the partitions associated
with A;: Mapg, 4 (v) = {identr. a,(px) | pr-high > v}, and Mapy 4 (v) =
{identgr.a,(pr) | px.low < v}, where pi.low and py.high are the lower and the
upper boundary of the partition py, respectively.

Attribute = Value: We can evaluate the condition by testing equality
between the field level encrypted values of the attribute A; and the value v
given in the condition, i.e., A{ = &k(v). The result is exactly the set of records
that satisfy the condition since, for a deterministic encryption, A{ = &x(A;) and
Ai =V = gk(Al) = Ek(v) Thus,

Mapeona(A; = v) = MapS,, ,(A; = v) = Al = & (v)
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Attribute < Value: We utilize partitioning attributes to map the condition.
Since the query condition may fully contain some of the partitions and partially
overlap with the others, Mapconq function will have both Map¢,,, and Mapl” .
components.

Mapeona(A; <v) = Mapt,, ;(A; <v)V Map  (A; <v)

Mapt,,.(A; <v) = \/ A = ident(p;)

p;j €Pc, Apj.high<v

Map? (A <v) = \/ Al = ident(py)
;DgEPCk Apg-low<vy

Apg-high>v

where Po, = {p: | pt € Mapji (v)}

Attributel = Attribute2: For this case, we again exploit the field level
encrypted attributes of an encrypted relation. We can test the equality of two
attribute values directly over their encrypted values, as A, = A; & & (4;) =
Ek(A;) due to deterministic encryptionld As a result, Mapconqg includes only
Mapt,,,, component for this type of condition. Thus,

Mapeona(A; = Aj) = Mapt,, 4(A; = A;) = Al = Al

Attributel < Attribute2: To evaluate the condition, we need to test the
order of the values of two attributes mentioned in the condition. Since the en-
cryption algorithms, which may be used for field level encrypted attributes and
for aggregation attributes do not preserve the order of the original data, they
may not be used for the test. Therefore, we use partitioning attributes to evaluate
the condition.

The condition is mapped by considering all pairs of partitions of A; and
A; that could satisty the condition. The pairs that have overlap (either fully or
partially) are subject to Map[” ., function. The other pairs, which do not overlap
while satisfying the condition, are subject to Map¢, ,, function. Formally the
mapping is defined as follows:

Mapeona(Ai < Aj) = Mapt,, .(Ai < Aj)V Maply, .(Ai < Aj)

Mapg,,q(Ai < Aj) = \/(Aﬁd =identa,(Pm) N A;d = ident 4, (pn))
®

Map, ,(A; < Aj) = \/(A::d = ident 4, (pr) A A;d = ident 4, (pr))
©

where ¢ iS p. € partition(A;), pn € partition(A;), pn.low > pm.high and ¢ is
pr € partition(A;), pe € partition(A;), pelow < p.high.

2 We make an assumption that the same key is used to encrypt the attributes A; and
Aj
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Input: Composite condition W of original query @
1 for each atomic condition C; in W
Compute mapped condition C; : Mapeona(Ci) = MapS,,,.q(Ci) V Mapl,,.(Ci)
Build mapped composite condition W' with C;’s
Convert W' into DNF
Define D¢ as set of disjuncts having only Map¢,,.4
Define D™ as set of disjuncts having Map_,, 4
Form query Q2 with D¢ in WHERE clause
Form query Q2, with D™ in WHERE clause

N O Uk WN

Fig. 1. Condition mapping algorithm

4.4 Query Decomposition

Once all conditions are translated according to the mappings given above, we
need to identify the parts of the conditions that will be evaluated by Q% and Q5.
To separate the conditions, we first map each condition by using the mapping
functions given above. Then, we convert the resulting conditions into disjunctive
normal form (DNF) and split the disjuncts into two classes:

e Certain disjuncts: These are the disjuncts that contain only Mapt,,,, func-
tions. Note that tuples satisfying these disjuncts certainly satisfy the conditions
associated of the original query Q.

e Maybe disjuncts: These disjuncts contain Map[?, ; functions (they may also
contain Map¢,,,; functions). Tuples that satisfy these disjuncts may or may not
satisfy the conditions specified with the original query Q.

The above classification suggests a natural splitting of the server side query
into two parts: QY and Q3. QF is formed with the certain disjuncts, which
only contain Map¢ , ; functions and Q7 is formed with the maybe disjuncts,
which contain Map! . functions. Algorithmic steps of this procedure is given
in Figure [

For @5, the GROUP BY attributes in the SELECT clause are replaced by their
field-level encrypted attributes and the aggregation is replaced with the corre-
sponding aggregation over the PH representation of the attribute. The result
of Q% will be the encrypted representation of the group value along with the
PH encrypted value of the corresponding aggregation. The client can decrypt
the group values and the encrypted aggregations. For Q2 , the SELECT clause is
replaced by the selection of the etuples that will be sent to the client. The client
will need to decrypt the etuples to determine those that satisfy the conditions
associated with query @. Subsequently, the client will perform the corresponding
GROUP BY and aggregations.

The client can determine the final result of the aggregation query by merging
the results of the individual computations of the two queries. The mechanism
to merge the results of the two queries depends upon the specific aggregation
function associated with the query.
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4.5 Handling Other Aggregation Functions

We note that COUNT, by itself, does not involve arithmetic and hence does not
pose any additional difficulty due to PH. AVG function can be implemented as
SUM / COUNT.

The MIN and MAX functions cannot be directly supported using PH. The PH
does not preserve the order of the original data. It is already established in [8]
3l4] that if a PH preserves order then it is insecure. Hence, we have devised
different mechanisms to compute minimum and maximum values as follows.

We note that, the domain partitioning strategy can also be used to support
the MIN and MAX functions. Since the order of the partitions is known to the client,
the client can exactly identify and request the partition(s) that may contain
the minimum and maximum values. After receiving the etuples in the requisite
partitions, the client can decrypt and find the exact values of MIN and MAX
function by only evaluating within those partitions.

4.6 Example

In this section, we explain our strategy by walking through the steps of the
query translation discussed above using an example query over the employee and
manager tables. Sample population of employee table is given in Table [ and
partitioning scheme of salary attribute of employee is given in Table[2l Consider
the following query, which has composite condition W : city =‘Maple’Asalary <
65K A emp.did = mgr.did consists of three atomic conditions, namely, C; :
caty =‘Maple’, Cs : salary < 65K, Cs : emp.did = mgr.did;

SELECT SUM(salary) FROM employee, manager

WHERE city=‘Maple’ AND salary < 65K AND emp.did=mgr.did

Let us now generate the server side representation of the original query by
following the algorithm steps given in Figure [Tl

1. We first map each atomic condition by identifying Map¢_,, and Mapl’  ,

parts. Hence, the conditions are mapped as follows:

For C1: Mapeona(city = Maple') = MapS,,q(city =" Maple') = city? = E( Maple')

For Cy: Mapcona(salary < 65K) = Mapg,,q(salary < 65K)V Mapls, q(salary < 65K)
MapS,,q(salary < 65K) = salary'® = 49 V salary™ = 59
Map™, 4(salary < 65K) = salary'® = 81

For Cs: Mapcond(emp.did = mgr.did) = Mapg,,.(emp.did = mgr.did)
= emp.did® = mgr.did®

2. Thus, mapped composite condition W’ is formed as:
W' city? = E( Maple') A (salary™ = 49 V salary™® = 59 V salary®® = 81)
Nemp.did® = mgr.did”
3. Now we can convert W’ into DNF:
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W' (city! = E( Maple') A salary’ = 49 A emp.did’ = mgr.did’) — D

Map¢,, ,(C1) Map¢,,, ,(C2) Mape,, ,(C3)

cond

V (city! = E( Maple') A salary™ = 59 A emp.did’ = mgr.did’) — Do

Map¢,, ,(C1) Mapg,, ,(C2) Map¢,, ,(C3)

cond cond

V (city! = E( Maple') A salary™ = 81 A emp.did’ = mgr.did’) — Ds

Map¢,, (C1) Map??  (C2) Map¢,, 4(C3)
4. From step 3, the set D¢, only having Map¢,,,,, is defined as {D1, D2}.
5. The set D™, having Map?, .. is defined as {Ds}.
Now we can form the server side representation of the original query by
forming two queries: QS and Q2 as follows:
6. Qf SELECT SUM"# (salary") FROM employee®,manager®
WHERE city/=£(‘Maple’) AND (salary’?=49 OR salary'?=59)
AND emp.did/ = mgr.did’
7. Qil: SELECT employees.etuple,managers.etuple
FROM employee®, manager® WHERE city’=€(‘Maple’) AND salary'?=8i
AND emp.didf = mgr.didf

Q7 evaluates and returns the aggregation, SUM(salary), on encrypted relation.

5 selects tuples, which may satisfy the original query condition. In our ex-
ample, these correspond to the first two tuples of the employee® relation (see
Table[]). The query returns the corresponding etuples to the client. Upon decryp-
tion, the client can figure that, the first tuple (which has salary = 70K) does not
satisfy the query and should be eliminated. The second tuple, however, which
has salary = 60K, satisfies the query condition. The client finalizes the compu-
tation by combining the answer returned by Qf , and those condition-satisfying
tuples returned by the second query, Q.

4.7 Experimental Evaluation

To evaluate our strategy we used Query #1 from the TPC-H benchmark. The
TPC-H tables were appropriately mapped to the server such that the query
evaluation could exploit all the mechanisms to compute over encrypted data
discussed in earlier sections. Figure [2 compares the performance of TPC Q#1
for three strategies: (1) executing Q#1 directly over original TPC-H data in the
clear; (2) executing Q#1 by simply selecting the corresponding etuples without
any aggregation at the server as presented in [B]. Tuples are decrypted and
aggregated at the client; and (3) composite strategy that corresponds to our
strategy where aggregation evaluation is pushed to encrypted data as much as
possible. The first strategy forms the base line of comparison of results while the
other two highlight the advantage of our scheme. Figure Blplots the relative query
response. As expected, strategy 2 performs poorly due to the dominant cost
of decryption and increased communication. The composite strategy, however,
shows significantly less overhead even with small number of buckets. As the
number of buckets increases, lesser number of buckets partially overlap with
the query range, hence more aggregation work is done at the server and the
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Fig. 2. Comparison of the query process- Fig. 3. Server side vs. Client side query
ing schemes performance for composite scheme

network traffic as well as decryption cost at the client reduces. Figure B] shows
the client and server components of the query response times. The server side
query execution time remains steady with the number of buckets. Client side
query, however, significantly benefits from the increasing number of buckets,
which suggests less number of etuples returned and decrypted. As a result of
declining decryption cost, client side query shows much improved performance.

5 Conclusions

The privacy of information stored in the databases is an issue of increasing
importance. In this paper, we have shown how to execute SQL aggregations
efficiently over encrypted data, a significant advance in privacy of data subject
to SQL processing. To achieve this, we have developed an enhanced encrypted
data storage model and introduced formal query implementation techniques to
translate original aggregation queries to a form that can directly be executed
over the encrypted data.
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