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Hakan Hacıgümüş1, Bala Iyer2, and Sharad Mehrotra3

1 IBM Almaden Research Center, USA, hakanh@acm.org
2 IBM Silicon Valley Lab., USA, balaiyer@us.ibm.com

3 University of California, Irvine, USA, sharad@ics.uci.edu

Abstract. Encryption is a common method to assure privacy of stored
data. In many practical situations, decrypting data before applying logic
compromises privacy. The challenge is to come up with logic transfor-
mation techniques and result-mapping methods so that the exact result
of applying logic to data-in-the-clear is obtained by applying the trans-
formed logic to encrypted data and mapping the result produced. In
the scope of relational aggregation queries and in the presence of logical
predicates, we show how to support needed transformations and map-
pings.

1 Introduction

Increasingly, large companies are outsourcing their IT department and some-
times their entire data center [2]. Privacy of the data stored in these service
environments is a growing concern. We will give a working definition for the
database-as-a -service (DAS) model [7,5], and focus on the certain aspects of the
privacy challenge in the model. Specifically, we explore techniques to support
aggregation in relational databases on encrypted data without decryption in the
presence of logical predicates.

In order to explain our methods in a limited space, we use the following
simple but general query form:

SELECT <grouping attributes>, <aggregation function>

FROM <relations> WHERE <predicates> GROUP BY <grouping attributes>

<aggregation function> refers to an SQL aggregation function (SUM, COUNT,
AVG, MIN, MAX) with an arithmetic expression as the parameter. <predicates>
may include logical comparisons.

Our techniques exploit a specialized encryption method, privacy homomor-
phism (PH for short), that allows basic arithmetic (+,−,×) over encrypted data.
The primary contributions of this paper include: (1) The first application of PH
to aggregation queries in relational databases including extensions to make it
applicable, (2) Formal techniques to transform SQL aggregation queries to exe-
cute over encrypted tables, and (3) performance studies based on a real queries
against a real database to validate the ideas.

The DAS model: The DAS model [7][5], is an instantiation of the com-
puting model involving trusted clients, who store their data at an untrusted
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server that are administrated by the service provider. The challenge is to make
it impossible for the system provider to correctly interpret the data. The data is
owned by clients. The clients only have limited computational power and stor-
age, and they rely on the server for the mass computational power and storage.
The server exposes mechanisms for the clients to create and manage the client
databases at the server.

Data originates from the client. We propose that authorized clients be given
needed encryption key(s). The data is encrypted by the client before it is sent
to the server for inclusion in a table. Data is always encrypted when it is stored
on, or processed by the server. At no time is the encryption key given to any
administrator, thus data cannot be decrypted by the server. Queries against
data-in-the-clear, originate from the client. Algorithms, based on the metadata
known to the client, decompose the query into client and server queries. The
server query is sent to the server to be executed against encrypted data. Pro-
cessing algorithms are designed such that the results of the original query are
obtained if the client decrypts and further processes the answers of the server
query using the decomposed client query.

Furthermore, data privacy is assured under the conditions that the client does
not share the encryption keys, the metadata or the unencrypted data with any
party who might be an adversary and the server is considered as an adversary.

2 Aggregation over Encrypted Data

2.1 Background on Privacy Homomorphisms

Definition of PH: Assume A is the domain of unencrypted values, Ek an
encryption function using key k, and Dk the corresponding decryption function,
i.e., ∀a ∈ A, Dk(Ek(a)) = a. Let α̃ = {α1, α2, . . . , αn} and β̃ = {β1, β2, . . . , βn}
be two (related) function families. The functions in α̃ are defined on the domain
A and the functions on β̃ are defined on the domain of encrypted values of
A. (Ek, Dk, α̃, β̃) is defined as a privacy homomorphism if Dk(βi(Ek(a1), Ek(a2)
, . . . , Ek(am))) = αi(a1, a2, . . . , am) : 1 � i � n. Informally, (Ek, Dk, α̃, β̃) is a
privacy homomorphism on domain A, if the result of the application of function
αi on values may be obtained by decrypting the result of βi applied to the
encrypted form of the same values.

Given the above general definition of PH, we next describe a specific ho-
momorphism proposed in [8] that we will use in the remainder of the paper.
We illustrate how the PH can be used to compute basic arithmetic operators
through an example.
• The key, k = (p, q), where p and q are prime numbers, is chosen by the client
who owns the data.
• n = p · q, p and q are needed for encryption/decryption and are hidden from
the server. n is revealed to the server. The difficulty of factorization forms the
basis of encryption.
• Ek(a) = (a mod p, a mod q), where a ∈ Zn. We will refer to these two compo-
nents as the p component and q component, respectively.
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• Dk(d1, d2) = d1qq
−1 + d2pp−1 (mod n) , where d1 = a (mod p), d2 = a

(mod q), and q−1 is such that qq−1 = 1 (mod p) and p−1 is such that pp−1 = 1
(mod q). (1)
• α̃ = {+n, −n, ×n}, that is addition, subtraction, and multiplication in mod n.
• β̃ = {+, −, ×}, where operations are performed componentwise.

Example: Let p = 5, q = 7. Hence, n = pq = 35, k = (5, 7). Assume that
the client wants to add a1 and a2, where a1 = 5, a2 = 6. E(a1) = (0, 5), E(a2) =
(1, 6) (previously computed) are stored on the server. The server is instructed to
compute E(a1) + E(a2) componentwise (i.e., without decrypting the data). The
computation E(a1)+E(a2) = (0+1, 5+6) = (1, 11). The result, (1, 11) is returned
to the client. The client decrypts (1, 11) using the function (d1qq

−1 + d2pp−1)
(mod n) = (1·7·3+11·5·3) (mod 35) = 186 (mod 35), which evaluates to 11,
the sum of 5 and 6.1 The scheme extends to multiplication and subtraction.

2.2 Extensions to PH

The basic PH scheme above works for modular addition, subtraction, and multi-
plication of integers only, and needs to be extended in several directions for it to
be useful in SQL query processing. SQL arithmetic requires arbitrary expression
evaluation using non-modular addition, subtraction, multiplication, and division
functions on signed integers and floating point data types. We discuss some of
these extensions below (full discussion can be found in [6]).
Negative numbers can be dealt by offsetting the range of numbers. To see the
need for this, recall that arithmetic is defined on modulo n in PH. For example,
the numbers 33 and -2 are indistinguishable when we represent them in modulo
35. That is, 33 (mod 35) ≡ -2 (mod 35). Let vmin be the smallest negative and
vmax the largest positive number representable on a machine. We map the range
of numbers [vmin, vmax] to a new range [0, (vmax − vmin)], n is chosen to be
greater than vmax − vmin. A number x is mapped to a shifted value x′ in the
new range as x′ = x− vmin. After decryption, the client corrects the answer and
maps, in a straightforward manner, back to the values in the original domain.
Preventing Test for Equality: Picking n such that n > vmax − vmin (as we
did above) enables the server to test for equality. Say x and y are two numbers
encrypted as (xp, xq) and (yp, yq), respectively. Let z = x ∗ y, which implies
in the encrypted domain, (zp, zq) = (xp, xq) ∗ (yp, yq). The server could start
adding (xp, xq) to itself every time checking the equality between the sum and
(zp, zq). When the equality is satisfied, the server learns the unencrypted value
of y. Thus, (zp, zq) = (xp, xq) + (xp, xq) + . . . + (xp, xq)

︸ ︷︷ ︸

y times

.

We plug this exposure by adding random noise to the encrypted value.
We encrypt an original value x as follows; E(x) = (x (mod p) + R(x) · p, x
(mod q) + R(x) · q), where R(x) is a pseudorandom number generator with seed
x. R(x) value is generated during every insertion/update by the client. This
prevents equality testing for the server and the server cannot remove the noise
1 n is selected in such a way that results always fall in [0, n); for this example [0, 35).
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without knowing p and q. The noise is automatically removed at the client upon
decryption. In the presence of noise, the following decryption function should
be used in place of equation (1): Dk(d1, d2) = (d1 mod p)qq−1 + (d2 mod q)pp−1

(mod n) This equation is true because noise had been added in multiples of p
for the first and in multiples of q in the second term. The modulo of each (mod
p) and (mod q) term removes the added noise.

Another benefit of introducing the noise is that p and q components are no
longer stored in modulo p and q, respectively. It makes it additionally difficult
for the server to guess their values.

3 Selecting Tuples over Encrypted Data

3.1 Aggregation Queries without Predicates

Consider an aggregation query that computes the total compensation of em-
ployees: that is SUM(salary + commission) from an employee relation. Let
employeeS be the encrypted server side representation of the employee relation.
The relation is encrypted at the row level by treating a record as a bit string
that is encrypted as a unit. employeeS , besides storing the resulting cipher-
text as a special field, also contains fields salaryh

p and salaryh
q that store the

values salary (mod p), and salary (mod q); i.e., together the two fields encode
EPH(salary), where EPH is a PH used to encrypt salary. Similarly, commissionh

p

and commissionh
q fields represent commission using the PH strategy. The origi-

nal query can be evaluated by computing the aggregation componentwise at the
server using the following query:
SELECT SUM(salaryh

p+ commissionh
p) as s1, SUM(salaryh

q + commissionh
q ) as s2

FROM employeeS

The client can decrypt the result by computing: s1 mod p ∗ q ∗ q−1 + s2 mod q ∗
p ∗ p−1 (mod n).

3.2 Handling Logical Comparisons

To support logical comparisons over encrypted data, we differentiate between
equality and inequality operators. Consider an attribute Ai on which equality
test needs to be performed (e.g., as part of a equi-join or selection operation). If
we encrypt the attribute value using a deterministic encryption algorithm, such
as AES [1], and store the encrypted field value at the server, equality can be
directly tested since ∀ domain values vi, vj , vi = vj ⇔ Ek(vi) = Ek(vj), where Ek

is a deterministic encryption algorithm with key k.
For inequality comparisons we utilize the strategy proposed in [5]. Consider

a relation employee (eid,ename salary,city,did) an instance of which is
shown in Table 1. Suppose we wish to retrieve eid of employees who make more
than 60K. To evaluate conditions such as salary > $60K, a coarse index is
stored at the server. Such an index is derived by first partitioning the domain of
salary into a set of partitions (or buckets) over the domain of salary (assumed
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Table 1. Relation employee

eid ename salary city did
23 Tom 70K Maple 10
860 Mary 60K Maple 55
320 John 23K River 35
875 Jerry 45K Maple 58
870 John 50K Maple 10
200 Sarah 55K River 10

Table 2. Partitions

employee.salary

Partitions ID
[0,25K] 59

(25K,50K] 49
(50K,75K] 81
(75K,100K] 7

Table 3. Relation employeeS : encrypted version of relation employee

salaryh

etuple(encrypted tuple) eidid salaryid cityid didid cityf didf salaryh
p salaryh

q

=*?Ew@R*((¡¡=+,-. . . 2 81 18 2 ?Ew. . . @R*. . . 7 27
b*((¡¡(*?Ew@=l,r. . . 4 81 18 3 ?Ew. . . =+,. . . 18 17
w@=W*((¡¡(*?E:,j. . . 7 59 22 4 ¡(*. . . ¡(*. . . 2 23
¡(* @=W*((¡?E;,r. . . 4 49 18 3 ?Ew. . . E:,. . . 3 2
*(¡(* @=U(¡S?/,6. . . 4 49 18 2 ?Ew. . . @R*. . . 8 7
ffTi* @=U(¡?G+,a. . . 7 49 22 2 ¡(*. . . @R*. . . 13 12

to be between [0, 100K] below). For example, partition(employee.salary) =
{[0K, 25K], (25K, 50K], (50K, 75K], (75K, 100K]}. Associated with each par-
tition is its identity determined by an identification function ident that could
be derived using, for example, a one-way hashing technique. A particular as-
signment of identifiers to 4 salary partitions is shown in Table 2. For instance,
identemployee.salary([0, 25K]) = 59. A value in the domain can be mapped using
the partitioning to its corresponding partition. For example, the salary of Tom in
the above table maps to partition 81; that is, Mapemployee.eid(70K) = 81. This
mapping is used as a coarse index at the server in order to support comparison
operators over the encrypted data. For example, to test if a tuple satisfies the
condition salary > 60K, we can test the condition salaryid = 81 OR salaryid

= 7 at the server. If the tuple satisfies the condition, its encrypted representation
is returned to the client that can decrypt the results to filter out false positives.

4 Query Processing over Encrypted Data

Having developed basic methods to compute aggregations and compare values,
we now turn our attention to techniques to evaluate SQL queries over encrypted
data. We begin by first formally specifying how relational data is stored at the
server. We will then discuss the techniques to map a query into the server side
representation.

4.1 Storage Model

Let R be a relation with the set of attributes R̃ = {r1, . . . , rn}. R is repre-
sented at the server as an encrypted relation RS that contains an attribute



130 H. Hacıgümüş, B. Iyer, and S. Mehrotra

etuple = 〈Et(r1, r2, . . . , rn)〉, where Et is the function used to encrypt a row of
the relation R. RS also (optionally) stores other attributes based on the follow-
ing classification of the attributes of R:
• Aggregation attributes (Aj ∈ R̃ : 1 � j � j′ � n): are attributes of R on which
we expect to do aggregation. For each Aj , RS contains an attribute Ah

j that
represents the encrypted form of corresponding original attribute Aj with PH,
thus Ah

j = EPH(Aj), where EPH is a PH.
• Field-level encrypted attributes (Fk ∈ R̃ : 1 � k � k′ � n): are attributes in R
on which equality selections, equijoins, and grouping might be performed. For
each Ft, RS contains an attribute F f

k = Ef (F f
k ), where Ef is a deterministic

encryption used to encode the value of the field Fk.
• Partitioning attributes (Pm ∈ R̃ : 1 � m � m′ � n): are attributes of R on
which general selections/joins might be performed. For each Pm, RS contains an
attribute P id

m that stores the partition index of the base attribute values, thus
P id

m = MapR.Pm(Pm).
• Embedded attributes (E� ∈ R̃ : 1 � � � �′ � n): are attributes in R̃ that are
not in any of the above three categories. These attributes are, most likely, not
accessed individually by queries for either selections, group creation, or aggre-
gation. They need not be encrypted separately. Their values can be recovered
after the decryption operation on the encrypted row (i.e., etuple) is executed on
the client site.

Given the above attribute classification, the schema for the relation RS is as
follows:

RS(etuple, P id
1 , . . . , P id

m′ , F
f
1 , . . . , F f

k′ , A
h
1 , . . . , Ah

j′)

Table 3 shows a possible instance of the server side representation of the
the employee relation given in Table 1. In the mapping, we assumed that parti-
tioning attributes are {eid, salary, city, did}, field-level encrypted attributes are
{city, did}, and aggregation attributes are {salary}. Note that for a relation,
the categories may overlap.

4.2 Approach Overview

Given a query Q, our problem is to decompose the query to an appropriate
query QS on the encrypted relations RS such that results of QS can be filtered
at the client in order to compute the results of Q. Ideally, we would like QS

to perform bulk of the work of processing Q. The effectiveness of the decom-
position depends upon the specifics of the conditions involved in Q and on the
server side representation RS of the relations involved. Consider, for example, a
query to retrieve sum of salaries of employee in did = 40. If did is a field-level
encrypted field, the server can exactly identify records that satisfy the condition
by utilizing the equality between the client-supplied values and the encrypted
values stored on the server. In such a case, aggregation can be fully performed
on the salary attribute of the selected tuples exploiting the PH representation.
If, on the other hand, the condition were more complex, (e.g., did > 35 AND
did < 40), such a query will be mapped to the server side by mapping the did
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to the corresponding partitions associated with the did field that cover the range
of values from 35 to 40. Since the tuples satisfying the server side query may
be a superset of the actual answer, aggregation cannot be completely performed
at the server. Our strategy is to separate the qualified records into those that
certainly satisfy the query conditions, and those that may satisfy it - the former
can be aggregated at the server, while the latter will need to be transmitted to
the client, which on decrypting, can filter out those that do not, and aggregate
the rest. The strategy suggests a natural partitioning of the server side query
QS into two queries QS

c and QS
m as follows:

• Certain Query (QS
c ): that selects tuples that certainly qualify the conditions

associated with Q. Results of QS
c can be aggregated at the server.

• Maybe Query (QS
m): that selects etuples corresponding to records that may

qualify the conditions of Q but it cannot be determined for sure without decrypt-
ing. The client decrypts these etuples, and then selects the ones that actually
qualify and performs the rest of the query processing.

To finalize the computation, the client combines results from these queries to
reach the actual answers. We next discuss how a client side query Q is translated
into the two server side representations QS

c and QS
m.

4.3 Mapping Conditions

The principal issue in decomposing the query Q into its server side represen-
tations QS

c and QS
m is to map the conditions specified in Q to corresponding

conditions on the server side representation. We first consider how an individual
condition Ck of Q is mapped. Our mapping function Mapcond(Ck) consists of two
components: Mapc

cond(Ck) and Mapm
cond(Ck). Mapc

cond maps Ck to a server side
condition such that every tuple satisfying Mapc

cond(Ck) certainly satisfies Ck,
while Mapm

cond maps Ck into a condition that qualifies tuples that maybe satisfies
Ck. Together, the two conditions identify (a superset of) tuples that satisfy the
original condition Ck. Naturally, Mapcond(Ck) = Mapc

cond(Ck) ∨ Mapm
cond(Ck).

We will use the following notation to describe how the conditions in the original
query are mapped to their server side representations.

Let R be a relation, R.Ai be a partitioning attribute of R, let {p1, p2, . . . , pn}
be the set of partitions associated with with R.Ai, and v be a value in the domain
of R.Ai. We define the following mapping functions on the partitions associated
with Ai: Map>

R.Ai
(v) = {identR.Ai(pk) | pk.high � v}, and Map<

R.Ai
(v) =

{identR.Ai(pk) | pk.low � v}, where pk.low and pk.high are the lower and the
upper boundary of the partition pk, respectively.

Attribute = Value: We can evaluate the condition by testing equality
between the field level encrypted values of the attribute Ai and the value v
given in the condition, i.e., Af

i = Ek(v). The result is exactly the set of records
that satisfy the condition since, for a deterministic encryption, Af

i = Ek(Ai) and
Ai = v ⇔ Ek(Ai) = Ek(v) Thus,

Mapcond(Ai = v) ≡ Mapc
cond(Ai = v) ≡ Af

i = Ek(v)
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Attribute < Value: We utilize partitioning attributes to map the condition.
Since the query condition may fully contain some of the partitions and partially
overlap with the others, Mapcond function will have both Mapc

cond and Mapm
cond

components.

Mapcond(Ai < v) ≡ Mapc
cond(Ai < v) ∨ Mapm

cond(Ai < v)

Mapc
cond(Ai < v) ≡

∨

pj∈PCk
∧pj .high<v

Aid
i = ident(pj)

Mapm
cond(Ai < v) ≡

∨

p�∈PCk
∧p�.low�v

∧p�.high�v

Aid
i = ident(p�)

where PCk
= {pt | pt ∈ Map<

Ai
(v)}

Attribute1 = Attribute2: For this case, we again exploit the field level
encrypted attributes of an encrypted relation. We can test the equality of two
attribute values directly over their encrypted values, as Ai = Aj ⇔ Ek(Ai) =
Ek(Aj) due to deterministic encryption.2 As a result, Mapcond includes only
Mapc

cond component for this type of condition. Thus,

Mapcond(Ai = Aj) ≡ Mapc
cond(Ai = Aj) ≡ Af

i = Af
j

Attribute1 < Attribute2: To evaluate the condition, we need to test the
order of the values of two attributes mentioned in the condition. Since the en-
cryption algorithms, which may be used for field level encrypted attributes and
for aggregation attributes do not preserve the order of the original data, they
may not be used for the test. Therefore, we use partitioning attributes to evaluate
the condition.

The condition is mapped by considering all pairs of partitions of Ai and
Aj that could satisfy the condition. The pairs that have overlap (either fully or
partially) are subject to Mapm

cond function. The other pairs, which do not overlap
while satisfying the condition, are subject to Mapc

cond function. Formally the
mapping is defined as follows:

Mapcond(Ai < Aj) ≡ Mapc
cond(Ai < Aj) ∨ Mapm

cond(Ai < Aj)

Mapc
cond(Ai < Aj) ≡

∨

φ

(

Aid
i = identAi(pm) ∧ Aid

j = identAj (pn)
)

Mapm
cond(Ai < Aj) ≡

∨

ϕ

(

Aid
i = identAi(pk) ∧ Aid

j = identAj (p�)
)

where φ is pm ∈ partition(Ai), pn ∈ partition(Aj), pn.low > pm.high and ϕ is
pk ∈ partition(Ai), p� ∈ partition(Aj), p�.low � pk.high.
2 We make an assumption that the same key is used to encrypt the attributes Ai and

Aj
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Input: Composite condition W of original query Q
1 for each atomic condition Ci in W

Compute mapped condition C′
i : Mapcond(Ci) ≡ Mapc

cond(Ci) ∨ Mapm
cond(Ci)

2 Build mapped composite condition W ′ with Ci’s
3 Convert W ′ into DNF
4 Define Dc as set of disjuncts having only Mapc

cond

5 Define Dm as set of disjuncts having Mapm
cond

6 Form query QS
c with Dc in WHERE clause

7 Form query QS
m with Dm in WHERE clause

Fig. 1. Condition mapping algorithm

4.4 Query Decomposition

Once all conditions are translated according to the mappings given above, we
need to identify the parts of the conditions that will be evaluated by QS

c and QS
m.

To separate the conditions, we first map each condition by using the mapping
functions given above. Then, we convert the resulting conditions into disjunctive
normal form (DNF) and split the disjuncts into two classes:
• Certain disjuncts: These are the disjuncts that contain only Mapc

cond func-
tions. Note that tuples satisfying these disjuncts certainly satisfy the conditions
associated of the original query Q.
• Maybe disjuncts: These disjuncts contain Mapm

cond functions (they may also
contain Mapc

cond functions). Tuples that satisfy these disjuncts may or may not
satisfy the conditions specified with the original query Q.

The above classification suggests a natural splitting of the server side query
into two parts: QS

c and QS
m. QS

c is formed with the certain disjuncts, which
only contain Mapc

cond functions and QS
m is formed with the maybe disjuncts,

which contain Mapm
cond functions. Algorithmic steps of this procedure is given

in Figure 1.
For QS

c , the GROUP BY attributes in the SELECT clause are replaced by their
field-level encrypted attributes and the aggregation is replaced with the corre-
sponding aggregation over the PH representation of the attribute. The result
of QS

c will be the encrypted representation of the group value along with the
PH encrypted value of the corresponding aggregation. The client can decrypt
the group values and the encrypted aggregations. For QS

m, the SELECT clause is
replaced by the selection of the etuples that will be sent to the client. The client
will need to decrypt the etuples to determine those that satisfy the conditions
associated with query Q. Subsequently, the client will perform the corresponding
GROUP BY and aggregations.

The client can determine the final result of the aggregation query by merging
the results of the individual computations of the two queries. The mechanism
to merge the results of the two queries depends upon the specific aggregation
function associated with the query.
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4.5 Handling Other Aggregation Functions

We note that COUNT, by itself, does not involve arithmetic and hence does not
pose any additional difficulty due to PH. AVG function can be implemented as
SUM / COUNT.

The MIN and MAX functions cannot be directly supported using PH. The PH
does not preserve the order of the original data. It is already established in [8,
3,4] that if a PH preserves order then it is insecure. Hence, we have devised
different mechanisms to compute minimum and maximum values as follows.

We note that, the domain partitioning strategy can also be used to support
the MIN and MAX functions. Since the order of the partitions is known to the client,
the client can exactly identify and request the partition(s) that may contain
the minimum and maximum values. After receiving the etuples in the requisite
partitions, the client can decrypt and find the exact values of MIN and MAX
function by only evaluating within those partitions.

4.6 Example

In this section, we explain our strategy by walking through the steps of the
query translation discussed above using an example query over the employee and
manager tables. Sample population of employee table is given in Table 1 and
partitioning scheme of salary attribute of employee is given in Table 2. Consider
the following query, which has composite condition W : city =‘Maple’∧salary <
65K ∧ emp.did = mgr.did consists of three atomic conditions, namely, C1 :
city =‘Maple’, C2 : salary < 65K, C3 : emp.did = mgr.did;

SELECT SUM(salary) FROM employee, manager

WHERE city=‘Maple’ AND salary < 65K AND emp.did=mgr.did

Let us now generate the server side representation of the original query by
following the algorithm steps given in Figure 1.

1. We first map each atomic condition by identifying Mapc
cond and Mapm

cond

parts. Hence, the conditions are mapped as follows:
For C1: Mapcond(city =′ Maple′) ⇒ Mapc

cond(city =′ Maple′) ⇒ cityf = E(′Maple′)
For C2: Mapcond(salary < 65K) ⇒ Mapc

cond(salary < 65K) ∨ Mapm
cond(salary < 65K)

Mapc
cond(salary < 65K) ⇒ salaryid = 49 ∨ salaryid = 59

Mapm
cond(salary < 65K) ⇒ salaryid = 81

For C3: Mapcond(emp.did = mgr.did) ⇒ Mapc
cond(emp.did = mgr.did)

⇒ emp.didf = mgr.didf

2. Thus, mapped composite condition W ′ is formed as:
W ′ : cityf = E(′Maple′) ∧ (salaryid = 49 ∨ salaryid = 59 ∨ salaryid = 81)

∧emp.didf = mgr.didf

3. Now we can convert W ′ into DNF:
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W ′ : (cityf = E(′Maple′)
︸ ︷︷ ︸

Mapc
cond

(C1)

∧ salaryid = 49
︸ ︷︷ ︸

Mapc
cond

(C2)

∧ emp.didf = mgr.didf

︸ ︷︷ ︸

Mapc
cond

(C3)

) −→ D1

∨ (cityf = E(′Maple′)
︸ ︷︷ ︸

Mapc
cond

(C1)

∧ salaryid = 59
︸ ︷︷ ︸

Mapc
cond

(C2)

∧ emp.didf = mgr.didf

︸ ︷︷ ︸

Mapc
cond

(C3)

) −→ D2

∨ (cityf = E(′Maple′)
︸ ︷︷ ︸

Mapc
cond

(C1)

∧ salaryid = 81
︸ ︷︷ ︸

Mapm
cond

(C2)

∧ emp.didf = mgr.didf

︸ ︷︷ ︸

Mapc
cond

(C3)

) −→ D3

4. From step 3, the set Dc, only having Mapc
cond, is defined as {D1, D2}.

5. The set Dm, having Mapm
cond, is defined as {D3}.

Now we can form the server side representation of the original query by
forming two queries: QS

c and QS
m as follows:

6. QS
c : SELECT SUMPH(salaryh) FROM employeeS,managerS

WHERE cityf=E(‘Maple’) AND (salaryid=49 OR salaryid=59)

AND emp.didf = mgr.didf

7. QS
m: SELECT employeeS.etuple,managerS.etuple

FROM employeeS, managerS WHERE cityf=E(‘Maple’) AND salaryid=81

AND emp.didf = mgr.didf

QS
c evaluates and returns the aggregation, SUM(salary), on encrypted relation.

QS
m selects tuples, which may satisfy the original query condition. In our ex-

ample, these correspond to the first two tuples of the employeeS relation (see
Table 3). The query returns the corresponding etuples to the client. Upon decryp-
tion, the client can figure that, the first tuple (which has salary = 70K) does not
satisfy the query and should be eliminated. The second tuple, however, which
has salary = 60K, satisfies the query condition. The client finalizes the compu-
tation by combining the answer returned by QS

c , and those condition-satisfying
tuples returned by the second query, QS

m.

4.7 Experimental Evaluation

To evaluate our strategy we used Query #1 from the TPC-H benchmark. The
TPC-H tables were appropriately mapped to the server such that the query
evaluation could exploit all the mechanisms to compute over encrypted data
discussed in earlier sections. Figure 2 compares the performance of TPC Q#1
for three strategies: (1) executing Q#1 directly over original TPC-H data in the
clear; (2) executing Q#1 by simply selecting the corresponding etuples without
any aggregation at the server as presented in [5]. Tuples are decrypted and
aggregated at the client; and (3) composite strategy that corresponds to our
strategy where aggregation evaluation is pushed to encrypted data as much as
possible. The first strategy forms the base line of comparison of results while the
other two highlight the advantage of our scheme. Figure 2 plots the relative query
response. As expected, strategy 2 performs poorly due to the dominant cost
of decryption and increased communication. The composite strategy, however,
shows significantly less overhead even with small number of buckets. As the
number of buckets increases, lesser number of buckets partially overlap with
the query range, hence more aggregation work is done at the server and the
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Fig. 2. Comparison of the query process-
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Fig. 3. Server side vs. Client side query
performance for composite scheme

network traffic as well as decryption cost at the client reduces. Figure 3 shows
the client and server components of the query response times. The server side
query execution time remains steady with the number of buckets. Client side
query, however, significantly benefits from the increasing number of buckets,
which suggests less number of etuples returned and decrypted. As a result of
declining decryption cost, client side query shows much improved performance.

5 Conclusions

The privacy of information stored in the databases is an issue of increasing
importance. In this paper, we have shown how to execute SQL aggregations
efficiently over encrypted data, a significant advance in privacy of data subject
to SQL processing. To achieve this, we have developed an enhanced encrypted
data storage model and introduced formal query implementation techniques to
translate original aggregation queries to a form that can directly be executed
over the encrypted data.
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5. H. Hacıgümüş, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over Encrypted

Data in Database Service Provider Model. In Proc. of ACM SIGMOD, 2002.
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