
Database Encryption
Luc Bouganim

INRIA Rocquencourt
Le Chesnay, FRANCE
Luc.Bouganim@inria.fr

Yanli GUO
INRIA Rocquencourt

Le Chesnay, FRANCE
yanli.guo@inria.fr

Related concepts and keywords
Database security, Data confidentiality, Hardware Security Module

Definition
Database encryption refers to the use of encryption techniques to transform a

plain text database into a (partially) encrypted database, thus making it unreadable
to anyone except those who possess the knowledge of the encryption key(s).

Theory

Database security encompasses three main properties: confidentiality, integrity
and availability. Roughly speaking, the confidentiality property enforces predefined
restrictions while accessing the protected data, thus preventing disclosure to
unauthorized persons. The integrity property guarantees that the data cannot be
corrupted in an invisible way. Finally, the availability property ensures timely and
reliable access to the database.

To preserve the data confidentiality, enforcing access control policies defined on
the database management system (DBMS) is a prevailing method. An access
control policy, that is to say a set of authorizations, can take different forms
depending on the underlying data model (e.g., relational, XML), and the way by
which authorizations are administered, following either a Discretionary access
control (DAC), Role Based Access Control (RBAC) or Mandatory Access Control
(MAC).

Whatever the access control model, the authorizations enforced by the database
server can be bypassed in a number of ways. For example, an intruder can infiltrate
the information system and try to mine the database footprint on disk. Another
source of threats comes from the fact that many databases are today outsourced to
Database Service Providers (DSP). Then, data owners have no other choice than
trusting DSP’s arguing that their systems are fully secured and their employees are
beyond any suspicion, an assumption frequently denied by facts [1]. Finally, a
database administrator (DBA) has enough privileges to tamper the access control
definition and to spy on the DBMS behavior.

With the spirit of an old and important principle called defense in depth (i.e.,
layering defenses such that attackers must get through layer after layer of defense),
the resort to cryptographic techniques to complement and reinforce the access
control has recently received much attention from the database community [1][2].
The purpose of database encryption is to ensure the database opacity by keeping
the information hidden to any unauthorized persons (e.g., intruders). Even if

attackers get though the firewall and bypass access control policies, they still need
the encryption keys to decrypt data.

Encryption can provide strong security for data at rest, but developing a
database encryption strategy must take many factors into consideration. For
example, where should be performed the encryption, in the storage layer, in the
database or in the application where the data has been produced? How much data
should be encrypted to provide adequate security? What should be the encryption
algorithm and mode of operation? Who should have access to the encryption keys?
How to minimize the impact of database encryption on performance?

Encryption Level
 Storage-level encryption amounts to encrypt data in the storage subsystem

and thus protects the data at rest (e.g., from storage media theft). It is well suited for
encrypting files or entire directories in an operating system context. From a
database perspective, storage-level encryption has the advantage to be transparent,
thus avoiding any changes to existing applications. On the other side, since the
storage subsystem has no knowledge of database objects and structure, the
encryption strategy cannot be related with user privileges (e.g., using distinct
encryption keys for distinct users), nor to data sensitivity. Thus, selective encryption
– i.e., encrypting only portions of the database in order to decrease the encryption
overhead – is limited to the file granularity. Moreover, selectively encrypting files is
risky since one should ensure that no replica of sensitive data remains unencrypted
(e.g., in log files, temporary files, etc).

Database-level encryption allows securing the data as it is inserted to, or
retrieved from the database. The encryption strategy can thus be part of the
database design and can be related with data sensitivity and/or user privileges.
Selective encryption is possible and can be done at various granularities, such as
tables, columns, rows. It can even be related with some logical conditions (e.g.,
encrypt salaries greater than 10K€/month). Depending on the level of integration of
the encryption feature and the DBMS, the encryption process may incur some
change to applications. Moreover, it may cause DBMS performance degradation
since encryption generally forbids the use of index on encrypted data. Indeed,
unless using specific encryption algorithms or mode of operation (e.g., order
preserving encryption, ECB mode of operation preserving equality, see below),
indexing encrypted data is useless.

For both strategies, data is decrypted on the database server at runtime. Thus,
the encryption keys must be transmitted or kept with the encrypted data on the
server side, thereby providing a limited protection against the server administrator
or any intruder usurping the administrator identity. Indeed, attackers could spy the
memory and discover encryption keys or plain text data.

Application-level encryption moves the encryption/decryption process to the
applications that generate the data. Encryption is thus performed within the
application that introduces the data into the system, the data is sent encrypted, thus
naturally stored and retrieved encrypted [1][3][4], to be finally decrypted within the
application. This approach has the benefit to separate encryption keys from the

encrypted data stored in the database since the keys never have to leave the
application side. However, applications need to be modified to adopt this solution. In
addition, depending on the encryption granularity, the application may have to
retrieve a larger set of data than the one granted to the actual user, thus opening a
security breach. Indeed, the user (or any attacker gaining access to the machine
where the application runs) may hack the application to access unauthorized data.
Finally, such a strategy induces performance overheads (index on encrypted data
are useless) and forbids the use of some advanced database functionalities on the
encrypted data, like stored procedures (i.e., code stored in the DBMS which can be
shared and invoked by several applications) and triggers (i.e., code fired when
some data in the database are modified). In terms of granularity and key
management, application-level encryption offers the highest flexibility since the
encryption granularity and the encryption keys can be chosen depending on
application logic.

The three strategies described above are pictured in Figure 1.

Figure 1. Three options for database encryption level

Encryption Algorithm and Mode of Operation
 Independently of the encryption strategy, the security of the encrypted data

depends on the encryption algorithm, the encryption key size and its protection.
Even having adopted strong algorithms, such as AES, the cipher text could still
disclose plain text information if an inappropriate mode is chosen. For example, if
encryption algorithm is implemented in electronic codebook mode (ECB), identical
plaintext blocks are encrypted into identical cipher text blocks, thus disclosing
repetitive patterns. In database context, repetitive pattern are common as many
records could have same attribute values, so much care should be taken when
choosing the encryption mode. Moreover, simple solutions that may work in other
context (e.g., using counter mode with an initialization vector based on the data
address) may fail in the database one since data can be updated (with previous
example, performing an exclusive OR between old and new version of encrypted
data will disclose the exclusive OR between old and new version of plain text data).
All specificity of the database context should be taken into account to guide the
choice of an adequate encryption algorithm and mode of operation: repetitive

Encrypted Data

Storage layer
Encrypt/Decrypt

Server
RAM

Database Server

DBMS engine

Keys

Data

Application

Client
RAM

a. Storage-level encryption

Encrypted Data

Server
RAM

Database Server

Keys
Data

Application

Client
RAM

b. Database-level encryption

Encrypted Data

Server
RAM

Database Server

Keys
Data Application

Client
RAM

Encrypt/Decrypt

c. Application-level encryption

Storage layer

DBMS engine
Encrypt/Decrypt

Storage layer

DBMS engine

Encrypted Data

Storage layer
Encrypt/Decrypt

Server
RAM

Database Server

DBMS engine

Keys

Data

Application

Client
RAM

Application

Client
RAM

a. Storage-level encryption

Encrypted Data

Server
RAM

Database Server

Keys
Data

Application

Client
RAM

Application

Client
RAM

b. Database-level encryption

Encrypted Data

Server
RAM

Database Server

Keys
Data Application

Client
RAM

Encrypt/Decrypt

c. Application-level encryption

Storage layer

DBMS engine
Encrypt/Decrypt

Storage layer

DBMS engine

patterns, updates, huge volume of encrypted data. Moreover, the protection should
be strong enough since the data may be valid for a very long time (several years).
Thus, state-of-the-art encryption algorithm and mode of operation (without any
concession) should be used.

Key Management

 Key management refers to the way cryptographic keys are generated and
managed throughout their life. Because cryptography is based on keys that encrypt
and decrypt data, the database protection solution is only as good as the protection
of the keys. The location of encryption keys and their access restrictions are thus
particularly important. Since the problem is quite independent of the encryption level,
the following text assumes database-level encryption.

For database level encryption, an easy solution is to store the keys in a
restricted database table or file, potentially encrypted by a master key (itself stored
somewhere on the database server). But all administrators with privileged access
could also access these keys and decrypt any data within the system without ever

being detected.

Figure 2. Key Management Approaches

 To overcome this problem, specialized tamper-resistant cryptographic chipsets,
called hardware security module (HSM), can be used to provide secure storage
for encryption keys [14][16]. Generally, the encryption keys are stored on the server
encrypted by a master key which is stored in the HSM. At encryption/decryption
time, encrypted keys are dynamically decrypted by the HSM (using the master key)
and remove from the server memory as soon as the cryptographic operations are
performed, as shown in Figure 2.a.

An alternative solution is to move security-related tasks to distinct software
running on a (physically) distinct server, called security server, as shown in Figure
2.b. The security server then manages users, roles, privileges, encryption policies

Encrypted Data

Server
RAM

Database Server

Keys

Data

Application

Client
RAM

users, user
privileges,

encryption keys

Security Server

b. Security Server Approacha. HSM Approach

Encrypted Data

Server
RAM

Database Server

Keys
Data

Application

Client
RAM

Hardware
Security
Module

Keys

K
ey

E

nc
/D

ec

Master
key

Keys

Keys

Security engine

Storage layer

DBMS engine

Storage layer

DBMS engine

Security Module

Encrypted Data

Server
RAM

Database Server

Keys

Data

Application

Client
RAM

Application

Client
RAM

users, user
privileges,

encryption keys

Security Server

b. Security Server Approacha. HSM Approach

Encrypted Data

Server
RAM

Database Server

Keys
Data

Application

Client
RAM

Application

Client
RAM

Hardware
Security
Module

Keys

K
ey

E

nc
/D

ec

Master
key

Keys

Keys

Security engine

Storage layer

DBMS engine

Storage layer

DBMS engine

Security Module

and encryption keys (potentially relying on a HSM). Within the DBMS, a security
module communicates with the security server in order to authenticate users, check
privileges and encrypt or decrypt data. Encryption keys can then be linked to user or
to user’s privileges. A clear distinction is also made between the role of the DBA,
administering the database resources, and the role of the SA (Security
Administrator), administering security parameters. The gain in confidence comes
from the fact that an attack requires a conspiracy between DBA and SA.

While adding a security server and/or HSM minimizes the exposure of the
encryption keys, it does not fully protect the database. Indeed encryption keys, as
well as decrypted data still appear (briefly) in the database server memory and can
be the target of attackers.

Applications

Since several years, most DBMS manufacturers provide native encryption
capabilities that enable application developers to include additional measures of
data security through selective encryption of stored data. Such native capabilities
take the form of encryption toolkits or packages (Oracle8i/9i [15]), functions that can
be embedded in SQL statements (IBM DB2 [5]), or extensions of SQL (Sybase [18]
and SQL Server 2005 [14]). To limit performance overhead, selective encryption
can be generally done at the column level but may involve changing the database
schema to accommodate binary data resulting from the encryption process [14].

SQL Server 2008 [14] introduces transparent data encryption (TDE) which is
actually very similar to storage-level encryption. The whole database is protected by
a single key (DEK for Database Encryption Key), itself protected by more complex
means, including the possibility to use HSM. TDE performs all of the cryptographic
operations at the I/O level, but within the database system, and removes any need
for application developers to create custom code to encrypt and decrypt data.

TDE (same name as SQL Server but different functionalities) has been
introduced in Oracle10g/11g, greatly enlarging the possibilities of using
cryptography within the DBMS [16]. Encryption keys can now be managed by a
HSM or be stored in an external file named wallet which is encrypted using an
administratively defined password. Selective encryption can be done at the column
granularity or larger (tablespace, i.e., set of data files corresponding to one or
several tables and indexes). To avoid the analysis of encrypted data, Oracle
proposes to include in the encryption process a Salt, a random 16 bytes string
stored with each encrypted attribute value. An interesting, but rather dangerous,
feature is the possibility to use encryption mode that preserve equality (typically a
CBC mode with a constant initialization vector), thus allowing, for instance, to use
indexes for equality predicates encrypting the searched value.

The database-level encryption with security server approach mentioned above is
proposed by IBM DB2 with the Data Encryption Expert (DEE [5]) and by third-party
vendors like Protegrity [6], RSA BSAFE [17] and SafeNet [19] (appliance-based
solution). The third-party vendors’ products can adapt to most DBMS engine
(Oracle, IBM DB2, SQL Server and Sybase).

Open Problems and future directions

Encryption Scheme

 While all existing commercial database products adopt classical encryption
algorithms for database encryption, specific encryption schemes have attracted
much attention in the academic field, specifically in the Database as a Service
paradigm. In this paradigm, database service providers offer its customers
seamless mechanisms to create, store, and access their databases at the host
site [1]. In this context, the database server may manage encrypted data without
having access to the encryption keys (similar to application-level encryption).

 Privacy homomorphic (PH) encryption is a form of encryption where one can
perform some specific algebraic operations on the plaintext by performing (possibly
different) algebraic operations on the cipher text. The first application of PH to
aggregation queries in relational databases is exploited in [7], but this homomorphic
encryption function is insecure against cipher text-only attacks. In [8], it supports
complex aggregate queries and nested queries, but this scheme may reveal
information about the input distribution, which can be exploited. Order preserving
encryption scheme (OPES) [9] allows building directly indexes on cipher text. OPES
can handle, without decryption, any interesting SQL query types. Unfortunately,
OPES has been shown insecure in [10] and their authors introduced the fast
comparison encryption (FCE) scheme for the database-level encryption strategy.
FCE can be used for fast comparison through partial decryption technique. It
encrypts plaintext byte by byte allowing fast comparison starting from the most
significant byte and stopping as soon as a difference is found.

An alternative proposal is to use classical encryption algorithms and to store
additional auxiliary fuzzy information, next to the cipher text in order to allow partial
query processing on encrypted data [1][3]. Such auxiliary information shouldn’t
reveal plain text content, thus a trade-off exists between security and efficiency:
increasing the precision of auxiliary information increases the performance since
more processing can be done on encrypted data, but it also increases the risk of
data disclosure.

New database encryption strategies

 Currently existing architecture including database encryption are not fully
satisfactory since, as mentioned above, encryption keys appears in plain text in the
RAM of the server or of the client machine where the application runs. HSM acts as
a safe storage to minimize the risk diminishing the keys exposure during its lifetime.
Research is being conducted to make a better use of HSM, avoiding exposing
encryption keys during the whole process. Two architectures can be considered:
server-HSM when the HSM is shared by all users and is located on the server;
client-HSM when the HSM is dedicated to a single user and is located near the
user, potentially on the client machine. These two architectures are pictured in
figure 3.

Figure 3. HSM based new database encryption strategies

Logically, the server-HSM is nothing more than a database-level encryption with
a security-server embedded in the HSM. The HSM now manages users, privileges,
encryption policies and keys. It has the same advantages as the database-level
encryption with security-server approach but does not expose encryption keys at
any moment (since encryption/decryption is done within the HSM). Moreover, the
security server cannot be tampered since it is fully embedded in the tamper-
resistant HSM. With this approach, the only data that appears in plain-text is the
query results that are delivered to the users. The main difficulty of this approach is
its complexity, since a complex piece of software must be embedded in a HSM with
restricted computation resources (due to security constraints).

While the client-HSM approach seems very similar to the server-HSM one and
brings the same benefit in terms of security, it poses several new challenges.
Indeed, the HSM is now dedicated to a single user and is potentially far from the
server thus making difficult any tight cooperation between the database server and
the HSM. Thus, the database server must work on encrypted-data, and provide to
the HSM a super-set of the query results, then decrypted and filtered in the HSM.
Despite these difficulties, since the HSM is dedicated to a single user, the
embedded code is simpler and less resource demanding, making this approach
practical [4].

Other Security Issues

 Encrypting the data only guarantees data confidentiality, but gives no
assurance on data integrity, i.e., on the fact that the data has not been illegally
forged or modified (authenticity) or replaced by older versions (freshness). In
addition, if the database server is untrusted, (e.g., it may have been tampered by
attackers), one should check the query results correctness (results corresponds to
the query specification) and completeness (no query result is missing).

 Cryptographic techniques and more specifically cryptographic hash functions
are important component for building integrity checking techniques. Typically,
Message Authentication Code (MAC) can be used to ensure data authenticity and,
when combined with Merkle Hash Tree (MHT), can bring proofs of correctness and

a. Server-HSM

Encrypted Data

Server
RAM

Database Server

Data

Application

Client
RAM

Data

Encrypted Data

Server
RAM

Database Server

b. Client-HSM

Application

Client
RAM

Data

Data

Storage layer

DBMS engine

Storage layer

DBMS engine

HW Security Module

users, user
privileges,

encryption keys

Encrypt/Decrypt

Access control

HW Security Module

users, user
privileges,

encryption keys

Encrypt/Decrypt

Access control

a. Server-HSM

Encrypted Data

Server
RAM

Database Server

Data

Application

Client
RAM

Application

Client
RAM

Data

Encrypted Data

Server
RAM

Database Server

b. Client-HSM

Application

Client
RAM

Data

Data

Storage layer

DBMS engine

Storage layer

DBMS engine

HW Security Module

users, user
privileges,

encryption keys

Encrypt/Decrypt

Access control

HW Security Module

users, user
privileges,

encryption keys

Encrypt/Decrypt

Access control

HW Security Module

users, user
privileges,

encryption keys

Encrypt/Decrypt

Access control

HW Security Module

users, user
privileges,

encryption keys

Encrypt/Decrypt

Access control

completeness [11] . Ensuring freshness is more complex since an element of trust
is needed to keep information about the current version of each data.

 Using cryptographic techniques “as-is” to provide the aforementioned
guarantees has a large negative impact on the database size (e.g., a 20 bytes MAC
is added to each encrypted attribute value in Oracle 11g TDE to ensure data
authenticity) and on the database performance, thus motivating many on-going
research on that topics. For instance, in the Database as a Service (DAS) context
[1], as MHT imposes severe concurrency constraints that slow down data updates,
a new signature based authentication method has been introduced recently, for
checking the authenticity, completeness and freshness of query answers [12]. In
addition, some probabilistic approaches are also used to provide integrity assurance
for outsourced database [13].

Recommended reading

[1] Hacigümüs H., Iyer B., Li C., Mehrotra S., Providing Database as a Service,
International Conference on Data Engineering (ICDE), 2002, pp. 29-39.

[2] Rakesh Agrawal , Jerry Kiernan , Ramakrishnan Srikant , Yirong Xu,
Hippocratic databases, Proceedings of the 28th international conference on
Very Large Data Bases, 2002, pp.143-154.

[3] Ernesto Damiani, S. De Capitani Vimercati, Sushil Jajodia, Stefano Paraboschi,
and Pierangela Samarati, Balancing confidentiality and efficiency in untrusted
relational dbms, Proceedings of the 10th ACM conference on Computer and
communications security, ACM, 2003, pp. 93-102.

[4] Luc Bouganim and Philippe Pucheral, Chip-secured data access: confidential
data on untrusted servers, Proceedings of the 28th international conference on
Very Large Data Bases. 2002, pp. 131-142.

[5] IBM corporation, IBM Database Encryption Expert: Securing data in DB2, 2007.
[6] Mattsson U., Transparent Encryption and Separation of Duties for Enterprise

Databases: A practical implementation for Field Level Privacy in Databases,
Protegrity Technical Paper, 2004, http://www.protegrity.com/whitepapers.

[7] Hakan Hacigumus, Balakrishna R. Iyer, and Sharad Mehrotra, Effcient
execution of aggregation queries over encrypted relational databases,
DASFAA, 2004, pp. 125-136.

[8] Sun S. Chung and Gultekin Ozsoyoglu, Anti-tamper databases: Processing
aggregate queries over encrypted databases, Proceedings of the 22nd
International Conference on Data Engineering Workshops, Washington, 2006,
pp. 98-107.

[9] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu, Order
preserving encryption for numeric data, Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, ACM, 2004, pp.
563-574.

[10] Tingjian Ge and S. Zdonik, Fast, secure encryption for indexing in a column-
oriented dbms, IEEE 23rd International Conference on data engineering, 2007,
pp. 676-685.

[11] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin, Dynamic
authenticated index structures for outsourced databases, Proceedings of the
2006 ACM SIGMOD international conference on Management of data, ACM,
2006, pp. 121-132.

[12] HweeHwa Pang, Jilian Zhang, and Kyriakos Mouratidis, Scalable Verification
for Outsourced Dynamic Databases, Proceedings of the 35th international
conference on Very Large Data Bases. 2009, pp. 802-813.

[13] Min Xie, Haixun Wang, Jian Yin, and Xiaofeng Meng, Integrity auditing of
outsourced data, Proceedings of the 33rd international conference on Very
large data bases, 2007, pp. 782-793.

[14] Sung Hsueh, Database Encryption in SQL Server 2008 Enterprise Edition,
SQL Server Technical Article, 2008. http://msdn.microsoft.com/en-
us/library/cc278098.aspx.

[15] Oracle Corporation, Database Encryption in Oracle9i, technique white paper,
2001.

[16] Oracle Corporation, Oracle Advanced Security Transparent Data Encryption
Best Practices, White Paper, 2009.

[17] RSA Security company, Securing Data at Rest: Developing a Database
Encryption Strategy, whiter paper, 2002.

[18] Sybase Inc, Sybase Adaptive Server Enterprise Encryption Option: Protecting
Sensitive Data, 2008. http://www.sybase.com.

[19] Safenet, database encryption, 2009. http://www.safenet-
inc.com/products/database_encryption/index.asp.

