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ABSTRACT
As critical records are increasingly stored in electronic form, which
tends to make for easy destruction and clandestine modification, it
is imperative that they be properly managed to preserve their trust-
worthiness, i.e., their ability to provide irrefutable proof and accu-
rate details of events that have occurred. The need for proper record
keeping is further underscored by the recent corporate misconduct
and ensuing attempts to destroy incriminating records. Currently,
the industry practice and regulatory requirements (e.g., SEC Rule
17a-4) rely on storing records in WORM storage to immutably pre-
serve the records. In this paper, we contend that simply storing
records in WORM storage is increasingly inadequate to ensure that
they are trustworthy. Specifically, with the large volume of records
that are typical today, meeting the ever more stringent query re-
sponse time requires the use of direct access mechanisms such as
indexes. Relying on indexes for accessing records could, however,
provide a means for effectively altering or deleting records, even
those stored in WORM storage.

In this paper, we establish the key requirements for a fossilized
index that protects the records from such logical modification. We
also analyze current indexing methods to determine how they fall
short of these requirements. Based on our insights, we propose
the Generalized Hash Tree (GHT). Using both theoretical analy-
sis and simulations with real system data, we demonstrate that the
GHT can satisfy the requirements of a fossilized index with perfor-
mance and cost that are comparable to regular indexing techniques
such as the B-tree. We further note that as records are indexed on
multiple fields to facilitate search and retrieval, the records can be
reconstructed from the corresponding index entries even after the
records expire and are disposed of. Therefore, we also present a
novel method to eliminate this disclosure risk by allowing an index
entry to be effectively disposed of when its record expires.

1. INTRODUCTION
Records such as electronic mail, financial statements, medical

images, drug development logs, quality assurance documents and
purchase orders are valuable assets. They represent much of the
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data on which key decisions in business operations and other criti-
cal activities are based. Having records that are accurate and read-
ily accessible is therefore vital. Records also serve as evidence of
activity, but to be effective the records must be credible and acces-
sible. Given the high stakes involved, tampering with the records
could yield huge gains and must be specifically guarded against,
especially as the records are increasingly in electronic form, which
makes them relatively easy to delete and modify without leaving
so much as a trace. Ensuring that the records are trustworthy, i.e.,
not only readily accessible and accurate, but also credible and ir-
refutable, is particularly imperative in the litigious US. On average,
a Fortune 500 company is the target of 125 non-frivolous lawsuits at
any given time, and the damages awarded are increasingly rapidly,
as is the cost of electronic data discovery, which is projected to rise
at 65% per year to reach $2 billion in 2006 [22].

Furthermore, a growing proportion of the records are subject to
regulations that specify how they should be managed. In the US
alone, there are currently more than 10,000 such regulations [26].
The key focus of many of these regulations (e.g., Sarbanes-Oxley
Act [5], SEC Rule 17a-4 [21]) is to ensure that records are trust-
worthy. Non-compliance with these regulations could result in stiff
penalties. For example, unprecedented fines have recently been
levied by several regulatory bodies, including the Securities Ex-
change Commission (SEC) and the Food and Drug Administration
(FDA), for non-compliance. The bad publicity of non-compliance
and the ensuing investor flight alone could cost an organization
dearly. As information becomes more valuable to organizations
and with recent headlines of corporate misdeeds, accounting scan-
dals and securities fraud, the number and scope of such regulations
are likely to grow. Worldwide, the volume of compliant records is
projected to increase by 64% per year to almost 2 PB in 2006 [26].

Thus, there has been a recent rush to introduce Write-Once-
Read-Many (WORM) storage devices (e.g., [8, 12, 16, 23]) to en-
able the effective preservation of records. However, simply storing
records in WORM storage, as is the current focus, is far from ad-
equate to ensure that the records are trustworthy. We contend that
while WORM storage is essential for establishing trustworthy elec-
tronic records, it alone effectively offers no value in ensuring that
records are trustworthy. The key issue is that with today’s large vol-
ume of records and increasingly stringent query response time [4],
some form of direct access mechanism such as an index must be
available as needed to access the records. But unless the index is
properly realized, the records stored in WORM storage can in ef-
fect be hidden or altered. For example, Figure 1 illustrates that a
record stored in WORM storage can, for all intents and purposes,
be modified or deleted if the index through which it is accessed can
be suitably manipulated.
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Figure 1: Non-Fossilized Index Allows Logical Modification. This diagram shows that even if record B is stored in WORM storage, it can effectively
be altered or deleted if the index through which it is accessed can be suitably manipulated. The records are depicted as cast in slabs of stone to indicate that
they are not modifiable. The index blocks are illustrated as written in sand to show that they can be easily changed.

In this paper, we establish the basic requirements for an indexing
method that is impervious to such logical modification of records.
We call such an index a fossilized index because its structure is ef-
fectively cast in stone. A fossilized index can be used to ensure
that once a record is preserved in WORM storage, the record will
be quickly accessible in an unaltered form through the index. We
analyze current indexing methods to determine how these methods,
even those designed for WORM storage, fall short of the fossilized
index requirements. Based on the insights we obtained, we propose
a novel indexing method, the Generalized Hash Tree (GHT), that
satisfies all of the requirements. The GHT is, in effect, a tree that
grows from the root down to the leaves in a balanced fashion with-
out requiring dynamic adjustments to its structure. Using theoreti-
cal analysis and simulations with real system data, we demonstrate
that the GHT can provide performance and cost that are compa-
rable to regular indexing techniques such as the B-Tree. In other
words, it is practical to protect records from logical modification.

Note that while immutability is often specified as a requirement
for records, what is required in practice is that the records be “term-
immutable”, i.e., immutable for a specified retention period. For
example, SEC Rule 17a-4 [21] specifies a retention period of three
years for email, attachments, memos, instant messaging, etc. Even
after records have passed any mandated retention periods, if they
are available, they are subject to discovery, and typically at great
expense to the owning organization [22]. Thus, it is important for
an organization to properly dispose of records that are no longer
useful to the organization and have passed any mandated retention
periods. However, as records are indexed on multiple fields to facil-
itate search and retrieval, the records can be reconstructed (e.g., by
performing a “join” on the record ID) from the corresponding index
entries even after the records expire and are disposed of. There-
fore, in this paper, we further present a novel method to eliminate
this disclosure risk by allowing an index entry to be effectively dis-
posed of when the corresponding record expires.

The rest of the paper is organized as follows. We establish the
key requirements for a fossilized index in Section 2. We analyze
how previous indexing methods fall short of these requirements in
Section 3. In Section 4, we present the GHT and in Section 5, we
discuss selective disposition of index entries. Simulation results are
reported in Section 6. Section 7 concludes the paper.

2. TRUSTWORTHY RECORD KEEPING
The fundamental purpose of record keeping is to establish solid

proof and accurate details of events that have occurred. Trustwor-
thy records are, therefore, those that can be relied upon to achieve

this purpose. In [11], we make the case that trustworthiness has
to be established from an end-to-end perspective, i.e., from when
the records are created to when they are actually used by an agent
conducting an audit, a legal or regulatory discovery, an internal in-
vestigation, etc. We further develop a process called fossilization
for achieving end-to-end trust in record keeping. Here, we briefly
outline some of the key ideas in fossilization.

The process of creating accurate records for all of the relevant
events as they occur is generally trusted. This is the case espe-
cially if the records are used in the normal course of business, and
are hence required for the proper functioning of the organization.
Furthermore, record creation is an ongoing process for which pe-
riodic audits are effective in ensuring proper execution. More im-
portantly, it is extremely unlikely that one can anticipate at record
creation time how a record could be modified for personal gain. In
any case, if one is privy to such knowledge, one would arguably
be better off trying to infiuence the events themselves. The basic
objective of record keeping is not to prevent the writing of history,
but to prevent the changing of history; in other words, changing the
records after the fact.

Therefore, the key requirement for trustworthy record keeping
is to ensure that in an enquiry, all of the relevant records can be
quickly located and retrieved in an untampered form. This means
that the records have to be protected from any physical modifica-
tion during their storage. Modification of records could result from
user errors, such as issuing the wrong commands and replacing
the wrong disks, and from software bugs. Given our increasing
reliance on computer records, the potential gain from manipulat-
ing and modifying the records is huge. Thus, more importantly,
the records have to be protected from intentional attacks, even in-
side attacks launched by disgruntled employees, company insiders,
or conspiring technology experts. An adversary is likely to have
the highest (e.g., executive) level of support and insider access,
privilege and knowledge. He can be thought of as the super sys-
tem administrator. Although the adversary has physical access to
the records, he cannot destroy them in a blatant fashion because it
would result in severe penalties and even the presumption of guilt.
His mission is to clandestinely hide or modify specific records.

Typically, the records are stored in some form of WORM stor-
age to protect them from modification. With the growing volume
of records and the ever more stringent response time to enquiries,
direct access mechanisms such as indexes increasingly have to be
maintained to ensure that all of the records relevant to an enquiry
can be discovered and retrieved in a timely fashion, typically within
days and sometimes even within hours [4]. As illustrated earlier in
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Figure 2: Examples of Previous Indexing Methods

Figure 1, however, if records are accessed through an index, even
if they are stored in WORM storage, they will still be vulnerable
to logical modification if the index can be suitably manipulated. In
particular, an adversarial system administrator could write carefully
crafted data to the WORM storage to subvert the index and logi-
cally hide or modify selected records. He could, for example, fake
an adjustment to the index structure (e.g. tree rebalance), which
would enable him to omit crucial records from the new structure.
He could also prevent timely access to crucial records by causing
the index to degenerate (e.g. by inserting carefully chosen spurious
records).

The linchpin of trustworthy records is, therefore, a fossilized in-
dex that ensures that once a record is preserved in WORM storage,
it is accessible in an unaltered form and in a timely fashion. The
key properties for such an index are as follows:

• Once a record is committed, both the index entry for that
record and the path to that entry must be immutable. Specif-
ically, the insertion of a new record into the system must
not in any way affect how previously inserted records are
accessed through that index. This means that once the inser-
tion of a record into the index has been committed to WORM
storage, the record is guaranteed to be accessible through that
index unless the WORM storage is compromised. In other
words, the accessibility of the record is dependent only on
the non-rewritability of the WORM storage.

• The index must support incremental growth and be able to
scale to extremely large collections of records to support the
rapidly growing volume of records.

• Records must be quickly accessible through the index when
events such as investigation or litigation occurs. The in-
dex must not, for example, degenerate into requiring a linear
scan.

• The space overhead of the index must be acceptable. Al-
though storage has become relatively inexpensive with the
rapid improvement in disk areal density, with the large vol-
ume of records typical today, storage efficiency is still a ma-
jor consideration. This is the case especially because there
is a tendency in the short term to view some of the record
keeping largely as an overhead needed just for satisfying the
current intense regulatory scrutiny.

• The index should support selective disposition of index en-
tries to ensure that expired records cannot be recovered or re-
constituted from the index entries, even with the use of data
forensics.

Note that a fossilized index must be used for any trusted means
of finding and accessing a record. Examples of such include the
file system directory which allows records to be located by the
file name, the database index which enables records to be retrieved
based on the value of some specified field or combination of fields,
and the full-text index which allows records containing some par-
ticular words or phrases to be found.

3. INSIGHTS FROM PREVIOUS WORK
There is a lot of previous work on indexing techniques, including

several focused on effective indexing methods for WORM storage.
For the most part, these indexing techniques for WORM storage
were motivated by the desire to store data on optical disks, which
at that time had an advantage over magnetic disks in terms of cost
and storage capacity. Thus, they were designed mainly for storage
and operational efficiency, and not for trustworthy record keeping.

Index in Rewritable Storage: In this approach, the records are
stored in WORM storage while the index structures are stored in
rewritable storage (e.g., [24]. Clearly, regardless of the type of in-
dex used, an adversary can easily modify the index to cause records
to be effectively hidden or altered.

Copy on Rebalance: A balanced tree can be maintained in WORM
storage simply by making a new copy of the tree each time an in-
sertion occurs. The time and space overhead of this approach is,
however, prohibitive. A straightforward optimization used to re-
alize persistent search trees is to copy only the nodes that are in-
volved in rebalancing the tree [13, 18, 19, 25]. Because any node
that contains a pointer to a node that is copied must itself be copied,
copying a node requires copying the entire path to the node from
the root of the tree. Thus this method is called “path copying”.
As shown in Figure 2(a), the effect of this method is to create a
set of search trees having different roots but sharing common sub-
trees. If an index entry is omitted or counterfeited during path copy,
the corresponding record could be effectively deleted or modified.
More importantly, an adversary could modify records at will by ex-
ploiting this provision for creating new paths to any node. Note
that even if all of the previous versions of the tree are preserved in
WORM storage, probing each in an effort to guard against tamper-
ing is impractical.

Grow from Leaves Up: One way to avoid having to rebalance the
tree is to grow the tree from the leaves up to the root. For example,
in write-once B-tree [7] (Figure 2(b)), a node is split into two new
nodes when it overflows. Two pointers are added to the end of its
parent node, superseding the earlier pointer to the old node. If the
parent node overflows, it is split as well and only the most recent
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pointers are copied. When the root node splits, a new root is cre-
ated. Such a design allows an adversary to effectively modify any
record he wishes to by creating a new version of the appropriate
nodes. Again, even if every alteration of the nodes is preserved in
WORM storage, it is infeasible to look up each version of the tree
to defend against tampering. The same issue applies to the multi-
version B-tree [2] and the append-only trie [17](Figure 2(c)).

Relocate to Grow: In dynamic hashing [6, 9] and its extensions
(e.g., [3]), when the number of records in a hash table exceeds a
high watermark, a new hash table with a larger size is allocated
and all the records are rehashed and moved into the new table. In
this way, dynamic data growth can be supported with good perfor-
mance. The ability to relocate records, however, clearly provides an
opportunity for an adversary to alter the records. The trie proposed
in [1], which stores records in the leaf nodes and moves records to
new leaf nodes as the trie grows, suffers similar exposure. Dynamic
hashing can, in principle, be adapted to defeat logical modification
of records by, for example, storing all versions of the hash table
in WORM storage and probing each of the versions on a lookup.
Later in Section 4.2, we will consider an optimized adaptation that
prevents any logical modification of records and that does not re-
quire duplicating entries and probing all the hash tables.

4. GHT: GENERALIZED HASH TREE
Although the previous indexing methods for WORM storage fall

short of what is required to achieve a fossilized index, they pro-
vide valuable insights into how to design one. First, any approach
that requires the rebalancing of a tree is vulnerable to compromise
because it inevitably allows an adversary to create new paths to
records. Second, trees that grow from the leaves up to the root
are similarly exposed because an adversary could modify records
at will by exploiting the provision for creating new versions of the
tree nodes. Third, any method that permits index entries to be relo-
cated is inherently not trustworthy because it opens the door for an
adversary to create new versions of any entry.

Therefore, a fossilized index essentially requires that we design:

• a tree that grows from the root down to the leaves without
relocating committed entries and that is balanced without re-
quiring dynamic adjustments to its structure.

• efficient dynamic hashing schemes that do not require re-
hashing.

In this paper, we describe a fossilized index method based on
a novel data structure called the Generalized Hash Tree (GHT).
The GHT is effectively a tree that grows from the root down to the
leaves and that is balanced without requiring any dynamic rebalanc-
ing. Attempts to insert or lookup a record are made beginning at
the root node of the tree and if unsuccessful, the process is repeated
at one or more of its children subtrees. When a record cannot be
inserted into any of the existing nodes, a new node is created and
added to the tree as a leaf. At each level, the possible locations
for inserting the record are determined by a hash of the record key.
Consequently, the possible locations of a record in the tree are fixed
and determined solely by that record. Moreover, inserted records
are never rehashed or relocated. We consider the tree “generalized”
because it represents a family of hash trees. By using different pa-
rameters and hash functions, we achieve hash trees with different
characteristics.

We first discuss the design of the GHT in Section 4.1 and de-
scribe four instances – thin tree, fat tree, multi-level hash table and
hash trie – in Section 4.2. In Section 4.3, we present theoretical

analysis of the GHT’s performance and cost, and in Section 4.4,
we consider several optimizations. We assume that the underlying
storage supports reads from and writes to a random location, and
ensures that any data that has been written cannot be overwritten,
at least for a specified period. This assumption is in line with the
current industry trend of providing WORM storage using magnetic
disks (e.g. [8, 12, 16]). For improved storage efficiency, it is pre-
ferred that the storage has a small write granularity, which can be
achieved, for example, by allowing data to be appended to a sector.

4.1 General Design
To make our presentation precise, we first define some terms.

1. We consider only single key retrieval in which a record is
represented by a key and a pointer to the actual data.

2. A bucket is an entry in a tree node to store a record.

3. A tree node consists of buckets and is the basic allocation
unit of a tree. The size of a tree node may vary with its level
in the tree. Let M = {m0, m1, m2, ...} where mi is the size
of a tree node at level i. To reduce clutter, if the size of the
tree node is constant across the levels, we denote it by m.

4. A growth factor, ki, denotes that the tree may have ki times
as many buckets at level (i+1) as at level i. The growth fac-
tor may vary for each level. Let K = {k0, k1, k2, ...} where
ki is the growth factor for level i. We denote the growth
factor by k if it is constant across the levels.

5. Let H = {h0, h1, h2, ...} denote a set of hash functions
where hi is the hash function for level i.

A GHT is defined by the tuple {M, K, H}. When traversing the
GHT, the candidate buckets, i.e., the target hash table, at a given
level is composed of the children of the node at which the collision
occurred at the previous level. The root node is itself a hash table.

There are three criteria to consider when choosing the hash func-
tions, H . First, they should be independent to reduce the chances
that records colliding at one level of the tree will also collide at
the next. Second, they should be efficient to calculate. Third, they
should be insensitive to the size of the target range. In this paper,
we use universal hash functions defined as follows:

h(x) = ((ax + b)mod p)mod r,

where p is a prime chosen such that all the possible keys are less
than p, r is the size of the target range, a ∈ {1, 2, ..., p − 1}, and
b ∈ {0, 1, 2, ..., p−1}. The hash function for each level is selected
randomly at the time the level is created by picking random values
for a and b. Using randomly selected hash functions prevents the
GHT from degenerating largely into a list on specific inputs and
allows it to achieve provably good performance on average.

To insert a record, we use the procedure TREE-INSERT. Given
a pointer to the root of a tree, t, and a record, x, TREE-INSERT re-
turns SUCCESS if the insertion succeeds and FAILURE if a record
with the same key already exists in the tree. Given a key, we cal-
culate the target bucket at a given level by using the corresponding
hash function. The target range of the hash function or, in other
words, the size of the hash table at a given level, is determined by
GetHashTableSize(). GetNode() gives the tree node which holds
the bucket and GetIndex() returns the index of the bucket in that
tree node. Depending on how these functions are defined, we can
realize a family of GHTs. Table 1 lists some sample instantiations
of these functions for the various hash trees we will describe in
section 4.2.
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GetHashTableSize(i) GetNode(i, j) GetIndex(i, j)
Thin Tree (Hash Trie) m (if i = 0); m× k (if i 6= 0) j div m j mod m

Fat Tree m× ki j div m j mod m

Multi-Level Hash Table m0 × ki 0 j

Table 1: Tree-Specific Functions

Algorithm 1 TREE-INSERT(t,x)
1: i← 0; p← t.root; index← h0(key)
2: loop
3: if node p does not exist then
4: p← allocate a tree node
5: p[index]← x
6: return SUCCESS
7: end if
8: if p[index] is empty then
9: p[index]← x

10: return SUCCESS
11: end if
12: if p[index].key = x.key then
13: return FAILURE
14: end if
15: i← i+1 {Go to the next tree level}
16: j← GetNode(i, hi(key))
17: p← p.child[j]
18: index← GetIndex(i, hi(key))
19: end loop

(3, 0, 3)

(2, 0, 1)

(1, 1, 2)

(0, 0, 1)

Empty Bucket Old Record CollisionNew Record

(a) Before insertion (b) After insertion

1)(0 =keyh

6)(1 =keyh

1)(2 =keyh

3)(3 =keyh

2,4 == km

(a) Before Insertion (b) After Insertion

Figure 3: Example of Inserting Records into a GHT

Figure 3 illustrates the insertion of a record into a tree where
m = 4, k = 2 and H is as defined earlier. Let us assume that
(h0, h1, h2, h3)(key) = (1, 6, 1, 3) and use (level, node, index)
to denote a bucket. We first try to insert the record into the root
node. However, the target bucket (0,0,1) is not empty. Next, we
try again in the hash table at the next level, which is formed by
the two children nodes of the root. h1(key) = 6 indicates that
the target bucket is (1, 1, 2) which is not empty either. Since the
collision happens in node 1, its two children nodes form the next-
level hash table. Unfortunately, the next attempt collides in the
bucket (2,0,1). The fourth attempt succeeds since the tree node
containing the target bucket does not exist. We allocate a new tree
node and insert the record into the bucket (3,0,3). Intuitively, if the
hash functions are uniform, the tree grows from the root down in a
balanced fashion. We will prove this assertion of balanced growth
later in Section 4.3.

The procedure TREE-SEARCH lists the steps to retrieve a record
given its key. The procedure returns the record if it exists in the tree

Algorithm 2 TREE-SEARCH(t, key)
1: i← 0; p← t.root; index← h0(key)
2: loop
3: if node p does not exist then
4: return NULL
5: end if
6: if p[index] is empty then
7: return NULL
8: end if
9: if p[index].key = key then

10: return p[index]
11: end if
12: i← i+1 {Go to the next tree level}
13: j← GetNode(i, hi(key))
14: p← p.child[j]
15: index← GetIndex(i, hi(key))
16: end loop

and NULL otherwise. When a target bucket is full, we test if its
key matches the search key. If they match, then the record is found;
otherwise we follow the same process as in insertion to probe the
next level of the tree. When a target bucket is empty or the target
tree node has not been allocated, the search fails.

We do not consider deletion here but will discuss disposition of
index entries in Section 5.

4.2 Case Studies
The GHT is actually a family of hash trees. The members dif-

fer in the way the tree is organized. Each of them has its own
strengths and weaknesses. In this section, we discuss four repre-
sentative cases: thin tree, fat tree, multi-level hash table and hash
trie. Their tree-specific functions are shown in Table 1.

Thin Tree: Thin trees are standard trees in which each node has a
fixed size, a fixed number of children nodes, and at most one parent
node. Figure 4(a) depicts a thin tree with m = 4 and k = 2. Ear-
lier in Section 4.1, we used such a thin tree to illustrate the record
insertion operation. Thin trees can be implemented with each node
containing m buckets and k pointers to its children nodes.

If the hash functions are uniform and independent, a new record
is equally likely to follow any path from the root to a leaf node.
Thus, thin trees grow from the root down in a balanced fashion.
The expected depth of the tree is O(log(n)) where n is the number
of records. The most attractive property of thin trees is its linearly
bounded space cost. Since a node is allocated only when a record is
about to be inserted into it, each node contains at least one record.
The space cost is thus O(m × n) in the worst case.

Fat Tree: The fat tree is a hash tree in which each node has multiple
parents. The fatness indicates how many parents each node can
have. Figure 4(b) shows a fully fat tree where all the nodes at the
level above a node are its parents. For simplicity, we discuss only
fully fat trees and refer to them simply as fat trees. In Figure 4(b),
m = 4 and k = 2, as is the case in the thin tree example. The
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Figure 4: A Family of GHTs

hash functions are, however, different because the hash table size
is m× ki for each level i. In other words, when a collision occurs,
the record can be inserted into any node at the next level.

If the hash functions are uniform and independent, fat trees be-
have similar to thin trees and, thus, the expected tree depth is also
O(log(n)). However, in reality, it is difficult to ensure that the
hash functions are exactly uniform. One advantage of fat trees is
that they can tolerate non-ideal hash functions better than thin trees
because they have many more potential target buckets at each level.

Another advantage of fat trees is that the hashing at different
levels is actually independent. In thin trees, the target hash table
at a given level is dependent on the node at which the collision
occurred at the previous level. In contrast, all the nodes at the same
level in a fat tree form the target hash table. Therefore, if we locate
each level of a fat tree in a different disk, we can access these levels
in parallel using their corresponding hash functions.

In implementing fat trees, since the number of children node in-
creases exponentially with the level in the tree, it is expensive in
space to maintain the children pointers for each node. As the chil-
dren of a node are the same as those of its peers, we maintain an
extra array for each level to track whether a tree node is allocated
and if so, its location.

Multi-Level Hash Table: If we double the size of the tree nodes
at each level, and still set the growth factor, k, to be 2, we end up
with the multi-level hash table shown in Figure 4(c). In this case,
mi = m0×ki where m0 is the size of the root node. For simplicity,
however, we still use m = 4 to denote the structure.

The hash functions are the same as those of the corresponding fat
trees. Therefore, the multi-level hash table has the same tree depth
as the corresponding fat tree for a given insertion sequence. Access
to the multi-level hash table can also be parallelized.

The multi-level hash table has the advantage of simplicity. How-
ever, a collision in the leaf may lead to the allocation of a large
chunk of space – k times as large as the current leaf. As a result,
the space usage of the multi-level hash table grows much faster than
that of the fat tree, as we shall see in Section 6.

Hash Trie: If we hash the key of a record and store the record in a
trie based on this hash value, we obtain the hash trie. For example,
suppose that the size of a trie node is 256 buckets, which means
that the fan-out is 256. We use 8 bits of the hash value as an index
to the target bucket at each level. If the target bucket is empty, the
record is inserted; otherwise, we proceed to the subtrie pointed to
by the index and use the next 8 bits of the hash value as a new index.
To reduce the chances of collisions, a cryptographic hash function
such as SHA-1 [14] can be used.

In essence, a hash trie is a special case of the thin tree where m
and k are equal and a power of 2. The sample trie above is a thin
tree with m = k = 256. The corresponding hash functions are as
follows: at the first level, use the first 8 bits of the hashed record
key as the hash value; at the second level, use bits 0-15 as the hash

value; at the third level, use bits 8-23; and so on.

4.3 Theoretical Analysis

Figure 5: A Full Thin Tree with a Depth of Clogkn

Theorem I: The expected tree depth of a GHT is O(logkn).

Proof: First, we consider a thin tree where m = 1. We construct
a full thin tree with a depth of Clogkn where C ≥ 3 and n is the
number of records. Figure 5 shows such a tree. We use this tree
to establish a bound on the probability that an initially empty thin
tree will become deeper than Clogkn after n insertions. We then
utilize this bound to derive the expected depth of a thin tree after n
insertions.

Let P (i, j) be the probability that the insertion of the ith record
(i ∈ [1, n]) results in a tree deeper than Clogkn via a particular
leaf node j. Assuming uniform and independent hashing,

P (i, j) ≤ (
1

k
)Clogkn =

1

nC
(1)

Since a tree grows deeper only when a collision occurs in the leaf
nodes and there are at most n leaf nodes that are filled with records,
P (i), the probability that the insertion of the ith record results in a
tree deeper than Clogkn, satisfies the following inequality:

P (i) ≤ n×
1

nC
=

1

nC−1
(2)

Therefore, the probability that the tree is not deeper than Clogkn
after n insertions is

P (d ≤ Clogkn) ≥ (1 −
1

nC−1
)n (3)

By the Bernoulli Inequality, (1− x)n ≥ 1− nx for x < 1,

P (d ≤ Clogkn) ≥ 1− n×
1

nC−1
= 1−

1

nC−2
(4)

It follows that the probability that the tree becomes deeper than
Clogkn after n insertions is

P (d > Clogkn) ≤
1

nC−2
(5)

Using this bound, we prove that the expected tree depth is

E(d) =

n
X

d=1

d× P (d) ≤ Clogkn× 1 + n×
1

nC−2
= θ(logkn)

(6)
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For m > 1, inequalities 1-4 still hold by considering buckets
in leaf nodes rather than leaf nodes. Therefore, the expected tree
depth of a thin tree is O(logkn).

For a fat tree, the following relationship holds for P (i, j), the
probability that the insertion of the ith record leads to a tree deeper
than Clogkn via a particular leaf node j:

P (i, j) ≤
1

kClogkn
=

1

nC
(7)

This is because there are nC leaf nodes into which a record is
equally likely to be hashed. Other inequalities remain as above.
Therefore, the expected tree depth of a fat tree is O(logkn).

Since a multi-level hash table has the same depth as its corre-
sponding fat tree, its expected tree depth is also O(logkn).

Theorem II: The expected space cost of a thin tree is θ(n).

Proof: A thin tree only allocates a tree node when a record is about
to be inserted into it. In other words, an allocated tree node contains
at least one record. Therefore, s, the space cost of a thin tree, has
the following property:

(m + k)d
n

m
e ≤ s ≤ (m + k) × n, (8)

where for simplicity, we assume that the size of both a bucket and
a pointer is 1 unit.

It follows that the expected space cost of a thin tree is θ(n).

Theorem III: With high probability, the space cost of a fat tree and
a multi-level hash table is O(n3).

Proof: When a tree grows to a depth of Clogkn, a fat tree allocates
a pointer array of size kClogkn = nC while a multi-level hash table
allocates a tree node of size m× nC . Inequality 4 indicates that

P (d ≤ 3logkn) ≥ 1−
1

n
(9)

Therefore, with high probability, the space cost of a fat tree and
a multi-level hash table is O(n3).

In the worst case, each record insertion results in a hash collision,
causing the tree to grow one level deeper. Thus, all the trees have
the same worst-case tree depth, namely, WST(d) = n. The worst-
case space costs are, however, different. The thin tree, in particular,
has a space cost that is linearly bounded.

Thin Tree: WST(s) = (m + k) × n = O(mn)

Fat Tree: WST(s) = m× n +
kn − 1

k − 1
= O(kn)

Multi-Level HT: WST(s) = m×
kn − 1

k − 1
= O(mkn)

4.4 Optimizations
In this section, we discuss several optimization techniques to fur-

ther reduce the time and space costs.

Linear Probing: A potential shortcoming of hash trees is that, in
the worst case, each tree node might have only a few buckets that
are occupied, resulting in low space utilization. To improve the sit-
uation for thin trees and fat trees, we apply linear probing within
a tree node. When a collision occurs in a tree node, we linearly
search the other buckets within the node before probing the next
level in the tree. Specifically, at each level i, we use the following
series of hash functions: hi(j, key) = (hi(key) + j) mod m ,

where j = 1, 2, ..., m− 1. For the multi-level hash table, we in-
troduce the concept of “virtual node”. The single tree node at each
level is divided into fixed-size virtual nodes and we probe linearly
within the virtual nodes.

As we shall see later in Section 6, with linear probing, empty
buckets appear only in the leaf nodes and space utilization is, there-
fore, improved significantly. Meanwhile, average access time re-
mains logarithmic in the number of records. In practice, linear
probing incurs little overhead because it uses large block I/O, which
effectively leverages the high sequential transfer rate of modern
storage devices. Other hash table optimizations such as double
hashing can also be applied to the hash tree.

Large First-Level Hash Table: In hash trees, the first level hash
table is, by default, the root node. Unless the tree node is huge,
this makes the tree unnecessarily deep, which reduces performance.
One optimization is to decouple the first-level hash table from the
root node to allow the first-level hash table to comprise a number
of tree nodes. In other words, we effectively remove the first few
levels of the basic hash tree.

In section 6, we evaluate the effect of increasing the first-level
hash table size. Ideally, the first-level hash table should be large
enough to allow efficient insertion and retrieval but small enough
to avoid over-provisioning.

Parallel Access: As discussed in Section 4.1, for thin trees, includ-
ing hash tries, the target hash table at a given level depends on the
node at which the collision occurred at the previous level. On the
other hand, for fat trees and multi-level hash tables, the hashing
at each level is independent. Therefore, if we have multiple disks
and we locate each level of a fat tree or multi-level hash table on a
different disk, we can access all the levels in parallel.

5. DISPOSITION OF INDEX ENTRIES

5.1 Problem Statement
As discussed earlier, it is crucial for an organization to prop-

erly dispose of records that are no longer useful to the organization
and have passed any mandated retention periods. Otherwise, the
records are subject to discovery, and typically at great expense to
the organization [22]. Proper disposition of records include delet-
ing the records. In some cases, the records have to be shredded
such that they cannot be recovered or discovered even with the use
of data forensics. Such disposition can be achieved by physical de-
struction of the storage. For disk-based WORM storage (e.g., [8,
12, 16]), an alternative is to overwrite the data multiple times with
specific patterns so as to completely erase remnant magnetic effects
which could otherwise enable the data to be recovered [10].

However, as records are indexed on multiple fields to facilitate
search and retrieval, the records can be reconstructed from the cor-
responding index entries even after the records expire and are dis-
posed of. For example, Figure 6(a) shows an inverted index [20]
consisting of a dictionary (e.g., a GHT) of words occurring in a set
of documents and posting lists, which contain information about
the occurrence of the words such as the record locator (e.g., ID of
documents containing the words, pointer to the documents) and,
in some cases, positional information (e.g., offset within the docu-
ments). By performing a join on the record locator in the posting
lists, we can discover that the document X contains both the words
“Sell” and “IMCL”. If this is a full-text index, the whole document
can be reconstructed from the index even after the document has
been disposed of. Thus, it is imperative to dispose of all the index
entries associated with a record when the record is disposed of.
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Figure 6: Illustration of Logical Disposition

An arbitrary index entry, however, cannot typically be disposed
of together with its record because the unit of disposition tends to
be much larger than the unit of writing. Data stored on a WORM
optical disc, for example, is regularly disposed of by physically de-
stroying the entire disc. In disk-based WORM storage, some meta-
data such as the expiration date must be kept for each unit of dispo-
sition. To reduce the amount of metadata required, the disposition
unit is, therefore, large. In general, an index entry is likely to be
much smaller than a disposition unit, meaning that an index entry
cannot be disposed of until all the other entries within the disposi-
tion unit have expired. Because index entries are organized based
on the index key and are not clustered on the expiration date, there
tends to be a long period during which information about a record
that has already been disposed of can potentially be discovered.

5.2 Scrambled Keys
A straightforward way to prevent a record from being recon-

structed from its index entries is to scramble the keys before in-
serting them into the index. Specifically, to insert a record into the
index, we hash the index key of the record and use the hash value as
the key for inserting the record into the index. With a cryptographic
hash function such as SHA-1 [14], it is computationally infeasible
to recreate a key from its hash value. Thus, we can simply dispose
of an expired record and leave behind its index entries.

This approach is, however, vulnerable to existence testing. For
instance, if one is looking for a document containing a few specific
terms, one can hash the terms and search the index entries for those
specific hash values. Another weakness is that this method does not
work when the key space is small. In this case, one can effectively
create a reverse map for the hash values of all the keys without
having to break the one-way hash. For example, it is not difficult to
find the SHA-1 hash value for all the words in the English language,
which total only about 616,500 words [27].

5.3 Logical Disposition
Therefore, we introduce a more general technique called logi-

cal disposition to allow the index entries associated with expired
records to be effectively disposed of. In this method, records are
classified into disposition groups by, for example, their expiration
date. For each disposition group, we generate encoding and decod-
ing functions. These functions are stored by themselves in one or
more disposition units so that they can be individually disposed of
when the records in the corresponding disposition group expire.

The encoding function is used to transform the record locators,
which are then stored in the index. The decoding function decodes
the stored record locators so that they can be used to locate the
record. When a group of records is disposed of, the functions of
that group are also disposed of.

In the indirect pointer method, the encoding and decoding func-
tions are realized through expiration control blocks (ECBs) which
introduce a level of indirection in the record locators. Instead of
storing the record locator directly in the index, we store an indirect
pointer to an entry in the ECB where the record locator is actually
stored. Each ECB serves as an indirect table for records that are in
the same disposition group. In the above example, the record lo-
cators corresponding to “Sell” and “IMCL” in document X would
each point to a different entry in the same ECB and both of these
entries would point to document X (Figure 6(b)). When the group
of records which include document X is disposed of, the associ-
ated ECB is also disposed of. After the ECB is disposed of, the
only information that could be uncovered is that the words “Sell”
and “IMCL” belong to documents that were disposed of together.
As added security, we can introduce spurious records so that each
disposition group has a minimum number of records. Note that
we only need to store the metadata for the spurious records; the
records themselves do not have to be instantiated. The drawback
of this method is the space needed for the ECBs, which essentially
duplicate the record locators.

In the second method, we use encryption and decryption (e.g.,
AES [15]) to realize the encoding and decoding functions. For each
disposition group, we generate and maintain a secret key. Basically,
each record locator is first encrypted using the secret key corre-
sponding to its disposition group before it is stored in the index. To
avoid having the same cyphertext for each occurrence of a particu-
lar record locator, which would enable an adversary to reconstruct
the record by performing a join on the cyphertext, we encrypt the
combination of the index key and the record locator. When a group
of records is disposed of, the associated secret key is also disposed
of. Figure 6(c) shows such an example. Note that after the secret
key is disposed of, an adversary can still determine that the words
“Sell” and “IMCL” belong to documents in the same disposition
group since the index entries for these words identify the same se-
cret key. As in the indirect pointer method, spurious records can be
introduced so that each disposition group has a minimum number
of records. Furthermore, for the encryption method, it is feasible
to conceal membership in a disposition group by duplicating the
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Figure 7: Sensitivity to m, the Size of a Tree/Root Node (k=8)

Figure 8: Sensitivity to k, the Growth Factor (m=4096)

secret keys and randomly selecting which copy of a key to identify
in an index entry.

6. SIMULATION RESULTS

6.1 Methodology
In order to understand the actual cost of a fossilized index, we

use simulation with real system data to compare the GHT with sev-
eral traditional indexing methods including the k-way tree, rewritable
B-tree and ideal tree. For the GHT, we present results for the thin
tree, fat tree and multi-level hash table. Since the hash trie is a spe-
cial case of the thin tree, we do not explicitly show its results. In
most cases, it behaves exactly like the generic thin tree.

The k-way tree is a tree in which each node contains k − 1 keys
and k pointers to its children. The pointers and keys are arranged in
an alternate fashion such that the subtrees to the left of a key contain
only keys that are smaller while the subtrees to the right of a key
contain only keys that are larger. The B-tree is a balanced variant
of the k-way tree. All the leaves in a B-tree are on the same level
and all the nodes except for the root and the leaves have at least
k/2 children. The rewritable B-tree splits a node that overflows
in place and is, hence, much more space-efficient than its write-
once counterpart. The ideal tree is a k-way tree that is constructed
offline with knowledge of all the keys so that it has perfect balance
and space utilization. Its results represent the lower bound.

The two metrics that we focus on are the average tree depth and
space cost. Since storage has become relatively inexpensive, the
space cost has become less of an issue. Nevertheless, with the large
volume of records typical today, it is still important to ensure that

the space overhead is not excessively high. The average tree depth
is a critical determinant of insertion and access performance. It is
defined as 1/n

Pn

i=1
depth(i), where n is the number of records

and depth(x) denotes the depth of the x-th key in the tree.
We use two sets of real system data. Zeus2 is a snapshot of a

file system used by a group of researchers to do compilation, text
editing and software development. Mainstore is a data set created
by web crawling and includes the URLs of all of the internal web-
sites of a large corporation. In total, Zeus2 contains 975,861 files
while Mainstore includes 5,130,881 URLs. Between them, the data
sets are likely to be illustrative of a variety of applications, includ-
ing those targeted by the GHT. For each file and URL, we create
a unique 64-bit key by using SHA-1. In this paper, we present
only the results for Zeus2 since the results for Mainstore are virtu-
ally identical. The simulations were performed on an IBM xSeries
model 325 server with a 64-bit AMD Opteron processor. We use
eight bytes for the length of both a key and a pointer.

6.2 Sensitivity to Size of Tree Node
In Figure 7, we present how the average tree depth and space

cost of the GHTs are affected as m, the size of the tree node (root
node for the multi-level hash table), is increased. Since a larger
m means that there are more buckets at each level, the space cost
rises with m while the average tree depth decreases. Observe from
Figure 7(a) that, largely independent of changes in m, the average
tree depth of the GHTs is consistently within two of that of the ideal
tree, indicating that the GHTs are very well-balanced.

From Figure 7(b), as m increases, the space cost for the multi-
level hash table increases faster as records are added, but remains
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Figure 9: Sensitivity to First-Level Hash Table Size, L (k=8, m=4096)

Figure 10: Performance with Linear Probing

in a stable state for a longer period of time. The thin and fat trees
exhibit similar behavior, but their increase in space cost happens
more smoothly (Figure 7(c)). The plots for the fat and thin trees
are almost overlapped because, in practice, the pointer array of the
fat tree incurs little overhead due to the small tree depth. In gen-
eral, a large m is preferred since it decreases the average tree depth
without increasing the space cost by very much.

6.3 Sensitivity to Growth Factor
Figure 8 presents the sensitivity of the GHTs to the growth fac-

tor, k. As expected, the space cost increases with the growth factor
while the average tree depth decreases. Notice that compared to the
ideal tree, the GHTs have, on average, only about two more levels.
If space is not a very big constraint, as is likely to be the case, a
large k is preferred. Otherwise, a small k would lead to reason-

able access performance with small space cost. In the next section,
we present the results of linear probing within a tree node (virtual
node for multi-level hash table) and show that it can significantly
improve both space efficiency and access performance.

6.4 Sensitivity to First-Level Hash Table Size
A large first-level hash table effectively means that the first few

upper tree levels are removed. As shown in Figure 9, we can use
a large first-level hash table to significantly reduce the average tree
depth and access time without adversely affecting the space cost.

6.5 Effect of Linear Probing
Figures 10(a) and 10(d) show that for GHTs with linear probing

within a node, the average tree depth is almost the same as that of
the ideal tree, implying that the GHTs are perfectly balanced. Fur-
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Figure 11: Comparison of Average Tree Depth with Linear
Probing for the GHTs

thermore, the space cost is significantly reduced with linear prob-
ing, making hash trees very practical. For example, comparing Fig-
ures 7(b) and 10(b), we find that for k = 8, the space used is less-
ened by 60 times with linear probing. Moreover, linear probing is
well suited to exploit the high sequential transfer rate of modern
storage devices by bringing large chucks of data into memory at a
time.

Figures 10(b) and 10(e) also indicate that, with linear probing,
the thin tree, fat tree and multi-level hash table grow the next level
at almost the same time. This is because, with linear probing, a
child node is generated only when its parent node becomes full.
Therefore, the tree grows in a level-by-level fashion. If the hash
functions are uniform, the records tend to be well distributed so that
the thin and fat trees end up allocating all the nodes in a level within
a short period of time. Notice further that the effect of the parame-
ters are qualitatively similar with or without linear probing, but the
scales are different: with larger m, the space cost increases faster
as records are inserted, but remains in a stable state for longer; trees
grow deeper faster when k is large.

6.6 Comparison Results
In this section, we compare the GHTs with space optimization

(linear probing within a node) to the rewritable B-tree, k-way tree
and ideal tree. In order to establish a common basis for comparison,
we set the size of the tree node, m, to be equal to the growth factor,
k, which is a non-optimal configuration for the GHTs. The results
for the average tree depth are summarized in Figure 11. Note that
the k-way tree is able to prevent logical modification of records,
but it has by far the worst tree depth. Since the k-way tree does
not rebalance itself, its depth is determined solely by the insertion
sequence of records. The B-tree, on the other hand, performs well
but is vulnerable to logical tampering of records. The GHTs are
able to satisfy the requirements of a fossilized index and yet per-
form equal or up to 12.5% better than the B-tree. In all cases, the
GHTs are very close to the ideal tree in terms of the average tree
depth. This indicates that hashing works very well in practice. As
a result, the GHTs are well-balanced, implying good search and
access performance.

Figure 12 presents the comparison of space cost for k = m =
4, 16 and 64. We zoom in on some of the plots in order to provide
a more detailed picture of the behavior. For k = m = 4, the space
cost of the multi-level hash table grows much faster than that of the
other trees. This is because it takes only one collision in the leaf
node to trigger the allocation of a large chunk of space - four times
larger than the current leaf node. In contrast, the space cost of the
thin and fat trees with linear probing is comparable to that of the B-

tree. In fact, the thin tree has an advantage in space efficiency over
the B-tree that exceeds 10%. The small jumps in the curve of the
fat tree are caused by the allocation of space for the pointer array
whenever the tree grows by a level. As k and m are increased, the
thin and fat trees become less space-efficient than the B-tree. This
is because with uniform hashing, the records at the bottom level
tend to be well distributed among all the leaf nodes so that many
leaf nodes are allocated with each containing only a few records.
A small k with a large first-level hash table is generally preferred
for the GHTs. When thus configured, the GHTs incur reasonable
space cost and offers very good performance, thereby showing that
a fossilized index can be achieved in a practical manner.

The GHT has been prototyped and implemented to handle the
file directory of a large SAN (storage area network) file system.
The performance achieved is in line with our expectations.

7. CONCLUSION
Having trustworthy records, i.e., records capable of providing ir-

refutable proof and accurate details of events that have occurred, is
critical to an organization. In this paper, we contend that the current
limited focus of storing electronic records in WORM storage is far
from adequate to ensure that they are trustworthy. In particular, we
demonstrate that the records stored in WORM storage can be logi-
cally modified if the index through which the records are accessed
can be suitably manipulated. With the increasingly large volume of
records and the ever more stringent response time to enquiries, the
index poses a large and looming risk. The rising threat of adverse
discovery further makes it imperative to dispose of records that are
no longer needed. However, unless the corresponding index entries
are also properly disposed of, the disposed of records can in effect
be reconstructed from the index entries.

Therefore, we identify the key requirements for a fossilized in-
dex that prevents the records from being logically modified. We
also analyze how current indexing methods, including those de-
signed for WORM storage, fall short of these requirements. Based
on the insights we gained, we propose the Generalized Hash Tree
(GHT) as an effective approach to achieving a fossilized index. The
GHT represents a family of hash trees, including the thin tree, fat
tree, multi-level hash table and hash trie. We further present a novel
technique called logical disposition that enables the effective dis-
position of index entries corresponding to records that have been
disposed of so as to prevent the records from being reconstructed.

Using both theoretical analysis and simulations with real system
data, we show that the GHT offers high performance at a low stor-
age cost. Specifically, the expected tree depth of the GHT is loga-
rithmic in the number of records indexed and, in practice, the GHT
is very well-balanced. Furthermore, with optimizations such as lin-
ear probing, its space cost is comparable with that of the B-tree. In
short, the GHT enables fossilized index with performance and cost
that are comparable to traditional indexing techniques, indicating
that trustworthy electronic records can be effectively achieved.
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