
Privilege States Based Access Control for Fine-Grained
Intrusion Response

Ashish Kamra1 and Elisa Bertino2

1 School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
akamra@purdue.edu

2 School of Computer Science, Purdue University, West Lafayette, IN, USA
bertino@cs.purdue.edu

Abstract. We propose an access control model specifically developed to support
fine-grained response actions, such as request suspension and request tainting, in
the context of an anomaly detection system for databases. To achieve such re-
sponse semantics, the model introduces the concept of privilege states and orien-
tation modes in the context of a role-based access control system. The central idea
in our model is that privileges, assigned to a user or role, have a state attached to
them, thereby resulting in a privilege states based access control (PSAC) system.
In this paper, we present the design details and a formal model of PSAC tailored
to database management systems (DBMSs). PSAC has been designed to also take
into account role hierarchies that are often present in the access control models of
current DBMSs. We have implemented PSAC in the PostgreSQL DBMS and in
the paper, we discuss relevant implementation issues. We also report experimen-
tal results concerning the overhead of the access control enforcement in PSAC.
Such results confirm that our design and algorithms are very efficient.

1 Motivation

An access control mechanism is typically based on the notion of authorizations.
An authorization is traditionally characterized by a three-element tuple of the form
< A, R, P > where A is the set of permissible actions, R is the set of protected re-
sources, and P is the set of principals. When a principal tries to access a protected
resource, the access control mechanism checks the rights (or privileges) of the principal
against the set of authorizations in order to decide whether to allow or deny the access
request.

The main goal of this work is to extend the decision semantics of an access con-
trol system beyond the all-or-nothing allow or deny decisions. Specifically, we provide
support for more fine-grained decisions of the following two forms: suspend, wherein
further negotiation (such as a second factor of authentication) occurs with the princi-
pal before deciding to allow or deny the request, and taint, that allows one to audit the
request in-progress, thus resulting in further monitoring of the principal, and possibly
in the suspension or dropping of subsequent requests by the same principal. The main
motivation for proposing such fine-grained access check decisions is to provide system

S. Jha, R. Sommer, and C. Kreibich (Eds.): RAID 2010, LNCS 6307, pp. 402–421, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Privilege States Based Access Control for Fine-Grained Intrusion Response 403

Query

User

Features Assessment

Log

T i i

Detection Engine Response EngineFeature Selector

Alert

Drop

No Action, Update
Profiles

Profile CreatorAudit
Log

Training
Queries

TRAINING PHASE

Response
Policy Base

Profiles

Fig. 1. Anomaly Detection and Response System Architecture

support for extending the response action semantics of an application level anomaly
detection (AD) system that detects the anomalous patterns of requests submitted to it.

Consider the architecture of a database specific AD mechanism using fine-grained
response actions as shown in Figure 1 [8,15,14]. The system consists of three main
components: the traditional database server that handles the query execution, the pro-
file creator module for creating user profiles from the training data, and the anomaly
detection and response mechanisms integrated with the core database functionality. The
flow of interactions for the anomaly detection and response process is as follows: Dur-
ing the training phase, the SQL commands submitted to the database (or read from the
audit log) are analyzed by the profile creator module to create the initial profiles of the
database users. In the detection phase, for every SQL command under detection, the
feature selector module extracts the features from the queries in the format expected
by the detection engine. The detection engine then runs the extracted features through
the detection algorithm. If an anomaly detected, the detection mechanism submits its
assessment of the SQL command to the response engine according to a pre-defined in-
terface; otherwise the command information is sent to the profile creator process for
updating the profiles.

The response engine consults a base of response policies to issue a suitable re-
sponse action depending on the assessment of the anomalous query submitted by the
detection engine. The system supports three types of response actions, that we refer
to respectively as conservative actions, fine-grained actions, and aggressive actions.
The conservative actions, such as sending an alert, allow the anomalous request to go
through, whereas the aggressive actions can effectively block the anomalous request.

404 A. Kamra and E. Bertino

Fine-grained response actions, supported by the extended decision semantics of our
access control mechanism, are neither conservative nor aggressive. Such actions may
result in either request suspension (supported by the suspend decision semantics) and
request tainting (supported by the taint decision semantics).

Why do we need to extend the access control mechanism to support such response
actions? Certainly, such responses may also be issued by an AD mechanism working
independently of the underlying access control system. The usefulness of our approach
is evident from the following scenario. Suppose we model a user request as the usage
of a set of privileges in the system where a privilege is defined as an operation on a
resource. For example, the SQL query ‘SELECT * FROM orders, parts’ is modeled
as using the privileges {select,orders} and {select,parts} in the context of a database
management system (DBMS). After detecting such request as anomalous (using any
anomaly detection algorithm), consider that we want to re-authenticate the user and
drop the request in case the re-authentication procedure fails. Suppose that every time
a similar request is detected to be anomalous, we want the same re-authentication pro-
cedure to be repeated. If our response mechanism does not remember the requests,
then the request will always undergo the detection procedure, detected to be anomalous
and then submitted to the response mechanism to trigger the re-authentication proce-
dure. A more generic and flexible approach for achieving such response semantics is
to attach a suspend state to the privileges associated with the anomalous request. Then
for every subsequent similar request (that uses the same set of privileges as the ear-
lier request that was detected to be anomalous), the semantics of the privilege in the
suspend state automatically triggers the re-authentication sequence of actions for the
request under consideration without the request being subjected to the detection mech-
anism. Moreover, if the system is set-up such that the request is always subjected to
the detection mechanism (in case access control enforcement is performed after the in-
trusion detection task), more advanced response logic can be built based on the fact
that a request is detected to be anomalous whose privileges are already in the suspend
state.

In addition to supporting fine-grained intrusion response, manually moving a priv-
ilege to the suspend state (using administrative commands) provides the basis for an
event based continuous authentication mechanism. Similar arguments can be made for
attaching the taint state to a privilege that triggers auditing of the request in progress.
Since we extend the decision semantics of our access control system using privilege
states, we call it a privilege state based access control (PSAC) system. For the com-
pleteness of the access control decisions, a privilege, assigned to a user or role, in PSAC
can exist in the following five states: unassign, grant, taint, suspend, and deny. The priv-
ilege states, the state transition semantics and a formal model of PSAC are described in
detail in Section 2. Note that the PSAC model that we present in Section 2 is flexible
enough to allow more than the above mentioned five states.

We have developed PSAC in the context of a role based access control (RBAC)
system [18]. Extending PSAC with roles presents the main challenge of state conflict
resolution, that is, deciding on the final state of a privilege when a principal receives the
same privilege in different states from other principals. Moreover, additional complexity
is introduced when the roles are arranged in a hierarchy where the roles higher-up in the

Privilege States Based Access Control for Fine-Grained Intrusion Response 405

hierarchy inherit the privileges of the lower level roles. We present precise semantics in
PSAC to deal with such scenarios.

The main contributions of this paper can be summarized as follows:

1. We present the design details, and a formal model of PSAC in the context of a
DBMS.

2. We extend the PSAC semantics to take into account a role hierarchy.
3. We implement PSAC in the PostgreSQL DBMS [5] and discuss relevant design

issues.
4. We conduct an experimental evaluation of the access control enforcement over-

head introduced by the maintenance of privilege states in PSAC, and show that our
implementation design is very efficient.

The rest of the paper is organized as follows. Section 2 presents the details of PSAC
and its formal model; it also discusses how a role hierarchy is supported. Section 3
presents the details of the system implemented in PostgreSQL, and the experimental
results concerning the overhead introduced by the privilege states on the access control
functions. Section 4 discusses the related work in this area. We conclude the paper in
Section 5.

2 PSAC Design and Formal Model

In this section, we introduce the design and the formal model underlying PSAC. We
assume that the authorization model also supports roles, in that RBAC is widely used by
access control systems of current DBMSs [11,4,7]. In what follows, we first introduce
the privilege state semantics and state transitions. We then discuss in detail how those
notions have to be extended when dealing with role hierarchies.

2.1 Privilege States Dominance Relationship

PSAC supports five different privilege states that are listed in Table 1. For each state,
the table describes the semantics in terms of the result of an access check.

A privilege in the unassign state is equivalent to the privilege not being assigned
to a principal; and a privilege in the grant state is equivalent to the privilege being

Table 1. Privilege States

State Access Check Result Semantics
unassign The access to the resource is not granted.
grant The access to the resource is granted.
taint The access to the resource is granted;

the system audits access to the resource.
suspend The access to the resource is not granted until

further negotiation with the principal is satisfied.
deny The access to the resource is not granted.

406 A. Kamra and E. Bertino

granted to a principal. We include the deny state in our model to support the concept of
negative authorizations in which a privilege is specifically denied to a principal [9]. The
suspend and the taint states support the fine-grained decision semantics for the result of
an access check.

In most DBMSs, there are two distinct ways according to which a user/role1 can
obtain a privilege p on a database object o:

1. Role-assignment: the user/role is assigned a role that has been assigned p;
2. Discretionary: the user is the owner of o; or the user/role is assigned p by another

user/role that has been assigned p with the GRANT option2.

Because of the multiple ways by which a privilege can be obtained, conflicts are natural
in cases where the same privilege, obtained from multiple sources, exists in different
states. Therefore, a conflict resolution strategy must be defined to address such cases.
Our strategy is to introduce a privilege states dominance (PSD) relation (see Figure 2).
The PSD relation imposes a total order on the set of privilege states such that any two
states are comparable under the PSD relation. Note the following characteristics of the
semantics of the PSD relation. First, the deny state overrides all the other states to
support the concept of a negative authorization [9]. Second, the suspend, and the taint
states override the grant state as they can be triggered as potential response actions to
an anomalous request. Finally, the unassign state is overridden by all the other states
thereby preserving the traditional semantics of privilege assignment.

The PSD relation is the core mechanism that PSAC provides for resolving conflicts.
For example, consider a user u that derives its privileges by being assigned a role r.
Suppose that a privilege p is assigned to r in the grant state. Now suppose we directly
deny p to u. The question is which is the state of privilege p for u, in that u has received
p with two different states. We resolve such conflicts in PSAC using the PSD relation.
Because in the PSD relation, the deny state overrides the grant state, p is denied to u.

We formally define a PSD relation as follows:

Definition 1. (PSD Relation) Let n be the number of privilege states. Let S =
{s1, s2 . . . sn} be the set of privilege states. The PSD relation is a binary relation (de-
noted by �) on S such that for all si, sj , sk ∈ S:

1. si � sj means si overrides sj

2. if si � sj and sj � si, then si = sj (anti-symmetry)
3. if si � sj and sj � sk, then si � sk (transitivity)
4. si � sj or sj � si (totality) �

2.2 Privilege State Transitions

We now turn our attention to the privilege state transitions in PSAC. Initially, when a
privilege is not assigned to a principal, it is in the unassign state for that principal. Thus,

1 From here on, we use the terms principal and user/role interchangeably.
2 A privilege granted to a principal with the GRANT option allows the principal to grant that

privilege to other principals [2].

Privilege States Based Access Control for Fine-Grained Intrusion Response 407

DENY

SUSPEND

TAINT

UNASSIGN

GRANT

X

means ‘X’ overrides ‘Y’

Y

Fig. 2. Privilege States Dominance Relationship

DENY

SUSPEND

TAINT

UNASSIGN

GRANT

X

means ‘X’ overrides ‘Y’

Y

Fig. 3. Privilege State Transitions

the unassign state is the default (or initial) state of a privilege. The state transitions can
be triggered as internal response actions by an AD system, or as ad-hoc administrative
commands. In what follows, we discuss the various administrative commands available
in PSAC to trigger privilege state transitions.

408 A. Kamra and E. Bertino

The GRANT command is used to assign a privilege to a principal in the grant state
whereas the REVOKE command is used to assign a privilege to a principal in the
unassign state. In this sense, these commands support similar functionality as the SQL-
99 GRANT and REVOKE commands [2]. The DENY command assigns a privilege to
a principal in the deny state. We introduce two new commands in PSAC namely, SUS-
PEND and TAINT, for assigning a privilege to a principal in the suspend and the taint
states, respectively. The privilege state transitions are summarized in Figure 3. Note the
constraint that a privilege assigned to a principal on a DBMS object can only exist in
one state at any given point in time.

2.3 Formal Model

In this section, we formally define the privilege model for PSAC in the context of a
DBMS. The model is based on the following relations and functions:

Relations

1. U , the set of all users in the DBMS.
2. R, the set of all roles in the DBMS.
3. PR = U ∪ R, the set of principals (users/roles) in the DBMS.
4. OT , the set of all DBMS object types such as server, database, schema, table, and

so forth.
5. O, the set of all DBMS objects of all object types.
6. OP , the set of all operations defined on the object types in OT , such as select,

insert, delete, drop, backup, disconnect, and so forth.
7. S = {deny,suspend,taint,grant,unassign}, a totally ordered set of privilege states

under the PSD relation (Definition 2.1).
8. P ⊂ OP × OT , a many-to-many relation on operations and object types represent-

ing the set of all privileges. Note that not all operations are defined for all object
types. For example, tuples of the form (select, server) or (drop, server) are not
elements of P .

9. URA ⊆ U × R, a many-to-many user to role assignment relation.
10. PRUPOSA ⊂ PR × U × P × O × S, a principal to user to privilege to object

to state assignment relation. This relation captures the state of the access control
mechanism in terms of the privileges, and their states, that are directly assigned to
users (assignees) by other principals (assigners) on DBMS objects3.

11. PRRPOSA ⊂ PR × R × P × O × S, a principals to role to privilege to object
to state assignment relation. This relation captures the state of the access control
mechanism in terms of the privileges, and their states, that are directly assigned to
roles (assignees) by principals (assigners).

3 In PSAC, a role can also be an assigner of privileges. Consider a situation when a user u gets
a privilege p (with grant option) through assignment of role r. If u grants p to some other user
u′, PSAC records p as being granted to u′ by r even though the actual GRANT command was
executed by u.

Privilege States Based Access Control for Fine-Grained Intrusion Response 409

These relations capture the state of the access control system in terms of the privilege
and the role assignments. The functions defined below determine the state of a privilege
assigned to a user/role on a DBMS object.

Functions

1. assigned roles(u) : U → 2R, a function mapping a user u to its assigned roles
such that assigned roles(u) = {r ∈ R | (u, r) ∈ URA}. This function returns the
set of roles that are assigned to a user.

2. priv states(pr , r ′, p, o) : PR ×R× P × O → 2S, a function mapping a principal
pr (privilege assigner), a role r′, a privilege p, and an object o to a set of privilege
states such that priv states(pr , r ′, p, o) = {s ∈ S | (pr, r′, p, o, s) ∈ PRRPOSA}.
This function returns the set of states for a privilege p, that is directly assigned to
the role r′ by the principal pr, on an object o.

3. priv states(pr , u ′, p, o) : PR × U × P × O → 2S, a function mapping a prin-
cipal pr (privilege assigner), a user u′, a privilege p, and an object o to a set of
privilege states such that priv states(pr , u ′, p, o) = {s ∈ S | (pr , u ′, p, o, s) ∈
PRUPOSA} ∪r∈assigned roles(u′) priv states(pr , r , p, o). The set of states re-
turned by this function is the union of the privilege state directly assigned to the
user u′ by the principal pr, and the privilege states (also assigned by pr) obtained
through the roles assigned to u′.

4. priv states(r , p, o) : R × P × O → 2S, a function mapping a role r, a privilege p,
and an object o to a set of privilege states such that priv states(r , p, o) = ∪pr∈PR

priv states(pr , r , p, o). This function returns the set of states for a privilege p, that
is directly assigned to the role r by any principal in the DBMS, on an object o.

5. priv states(u ′, p, o) : U × P × O → 2S , a function mapping a user u′, a priv-
ilege p, and an object o to a set of privilege states such that priv states(u ′, p, o)
= ∪pr∈PR priv states(pr , u ′, p, o). This function returns the set of states for a
privilege p, that is directly assigned to the user u′ by any principal in the DBMS,
on an object o.

6. PSD state(2S) : 2S → S, a function mapping a set of states 2S to a state ∈ S such
that PSD state(2S) = s′ ∈ 2S | ∀s∈2S |s�=s′ s′ � s. This function returns the final
state of a privilege using the PSD relation.

2.4 Role Hierarchy

Traditionally, roles can be arranged in a conceptual hierarchy using the role-to-role
assignment relation. For example, if a role r2 is assigned to a role r1, then r1 becomes
a parent of r2 in the conceptual role hierarchy. Such hierarchy signifies that the role
r1 inherits the privileges of the role r2 and thus, is a more privileged role then r2.
However, in PSAC such privilege inheritance semantics may create a problem because
of a deny/suspend/taint state attached to a privilege. The problem is as follows.
Suppose a privilege p is assigned to the role r2 in the deny state. The role r1 will also
have such privilege in the deny state since it inherits it from the role r2. Thus, denying

410 A. Kamra and E. Bertino

a privilege to a lower level role has the affect of denying that privilege to all roles that
inherit from that role. This defeats the purpose of maintaining a role hierarchy in which
roles higher up the hierarchy are supposed to be more privileged than the descendant
roles. To address this issue, we introduce the concept of privilege orientation. We define
three privilege orientation modes namely, up, down, and neutral. A privilege assigned
to a role in the up orientation mode means that the privilege is also assigned to its
parent roles. On the other hand, a privilege assigned to a role in the down orientation
mode means that the privilege is also assigned to its children roles; while the neutral
orientation mode implies that the privilege is neither assigned to the parent roles nor to
the children roles. We put the following two constraints on the assignment of orientation
modes on the privileges.

– A privilege assigned to a role in the grant or in the unassign state is always in
the up orientation mode thereby maintaining the traditional privilege inheritance
semantics in a role hierarchy.

– A privilege assigned to a role in the deny, taint, or suspend state may only be in the
down or in the neutral orientation mode. Assigning such privilege states to a role in
the down or neutral mode ensures that the role still remains more privileged than its
children roles. In addition, the neutral mode is particularly useful when a privilege
needs to be assigned to a role without affecting the rest of the role hierarchy (when
responding to an anomaly, for example).

We formalize the privilege model of PSAC in the presence of a role hierarchy as follows:

1. RRA ⊂ R × R, a many-to-many role to role assignment relation. A tuple of the
form (r1, r2) ∈ R × R means that the role r2 is assigned to the role r1. Thus, role
r1 is a parent of role r2 in the conceptual role hierarchy.

2. OR = {up, down, neutral}, the set of privilege orientation modes.
3. PRRPOSORA ⊂ PR × R × P × O × S × OR, a principal to role to privilege

to object to state to orientation mode assignment relation. This relation captures the
state of the access control system in terms of the privileges, their states, and their
orientation modes that are directly assigned to roles by principals.

4. assigned roles(r ′) : R → 2R, a function mapping a role r′ to its assigned roles
such that assigned roles(r ′) = {r ∈ R | (r′, r) ∈ RRA} ∪ assigned roles(r).
This function returns the set of the roles that are directly and indirectly (through
the role hierarchy) assigned to a role; in other words, the set of descendant roles of
a role in the role hierarchy.

5. assigned roles(u) : U → 2R, a function mapping a user u to its assigned roles
such that assigned roles(u) = {r ∈ R | (u, r) ∈ URA} ∪ assigned roles(r). This
function returns the set of roles that are directly and indirectly (through the role
hierarchy) assigned to a user.

6. assigned to roles(r ′) : R → 2R, a function mapping a role r′ to a set of roles such
that assigned to roles(r ′) = {r ∈ R | (r, r′) ∈ RRA} ∪ assigned to roles(r).
This function returns the set of roles that a role is directly and indirectly (through

Privilege States Based Access Control for Fine-Grained Intrusion Response 411

r_t

r0

r2

r_bot

2

r3

op

r1

2

ttom

2

r4

Fig. 4. A Sample Role Hierarchy

the role hierarchy) assigned to; in other words, the set of ancestor roles of a role in
the role hierarchy.

We redefine the priv states(pr , r ′, p, o) function in the presence of a role hier-
archy taking into account the privilege orientation constraints as follows:

7. priv states(pr , r ′, p, o) : PR × R × P × O → 2S , a function mapping a
principal pr, a role r′, a privilege s, and an object o to a set of privilege states
such that priv states(pr , r ′, p, o) = {s ∈ S | ∀ or ∈ OR, (pr, r′, p, o, s, or)
∈ PRRPOSORA } ∪ {s ∈ {grant, unassign} | ∀ r ∈ assigned roles(r ′),
(pr, r, p, o, s, ‘up′) ∈ PRRPOSORA } ∪ {s ∈ {deny, suspend, taint} | ∀ r
∈ assigned to roles(r ′), (pr, r, p, o, s, ‘down′) ∈ PRRPOSORA }. The set of
privilege states returned by this function is the union of the privilege states directly
assigned to the role r′ by the principal pr, the privilege states in the grant or the
unassign states (also assigned by pr) obtained through the descendant roles of r′,
and the privilege states in the deny, suspend, and taint states (also assigned by pr)
obtained through the roles that are the ancestor roles of r′, and that are in the down
orientation mode.

We now present a comprehensive example of the above introduced relations and func-
tions in PSAC. Consider a sample role hierarchy in Figure 4. Table 2 shows the state of
a sample PRRPOSORA relation.

Table 2. PRRPOSORA relation

PR R P O S OR
SU1 r top select t1 deny neutral

SU1 r0 select t1 taint down

SU1 r bottom select t1 grant up

SU2 r top select t1 suspend down

412 A. Kamra and E. Bertino

Let the role r2 be assigned to the user u1. To determine the final state of the select
privilege on the table t1 for the user u1, we evaluate priv states(u1 , select , t1) as
follows:

priv states(u1, select, t1)
= priv states(SU1, u1, select, t1) ∪

priv states(SU2, u1, select, t1)
= priv states(SU1, r2, select, t1) ∪

priv states(SU2, r2, select, t1)
= {taint} ∪

{grant} ∪ {suspend}
= {taint, grant, suspend}

The final state is determined using the PSD state() function as follows:

PSD state(taint, grant, suspend) = suspend

3 Implementation and Experiments

In this section, we present the details on how to extend a real-world DBMS with PSAC.
We choose to implement PSAC in the PostgreSQL 8.3 open-source object-relational
DBMS [5]. In the rest of the section, we use the term PSAC:PostgreSQL to indi-
cate PostgreSQL extended with PSAC, and BASE:PostgreSQL to indicate the official
PostgreSQL 8.3 release. The implementation of PSAC:PostgreSQL has to meet two
design requirements. The first requirement is to maintain backward compatibility of
PSAC:PostgreSQL with BASE:PostgreSQL. We intend to release PSAC:PostgreSQL
for general public use in the near future; therefore it is important to take into account
the backward compatibility issues in our design. The second requirement is to mini-
mize the overhead for maintaining privilege states in the access control mechanism. In
particular, we show that the time taken for the access control enforcement code in the
presence of privilege states is not much higher than the time required by the access
control mechanism of BASE:PostgreSQL. In what follows, we first present the design
details of PSAC:PostgreSQL, and then we report experimental results showing the effi-
ciency of our design.

3.1 PSAC:PostgreSQL

Access control in BASE:PostgreSQL is enforced using access control lists (ACLs).
Every DBMS object has an ACL associated with it. An ACL in BASE:PostgreSQL is a
one-dimensional array; the elements of such an array have values of the ACLItem data
type. An ACLItem is the basic unit for managing privileges of an object. An ACLItem is
implemented as a structure with the following fields: granter, the user/role granting the
privileges; grantee, the user/role to which the privileges are granted; and privs, a 32 bit
integer (on 32 bit machines) managed as a bit-vector to indicate the privileges granted

Privilege States Based Access Control for Fine-Grained Intrusion Response 413

31 30 . 17 16 15 14 . 1 0

GRANT OPTION BITS PRIVILEGE BITS

Fig. 5. ACLItem privs field

to the grantee. A new ACLItem is created for every unique pair of granter and grantee.
There are 11 pre-defined privileges in BASE:PostgreSQL with a bit-mask associated
with each privilege [6]. As shown in Figure 5, the lower 16 bits of the privs field are
used to represent the granted privileges, while the upper 16 are used to indicate the
grant option4. If the kth bit is set to 1 (0 ≤ k < 15), privilege pk is granted to the
user/role. If the (k + 16)th bit is also set to 1, then the user/role has the grant option
on privilege pk.

Design Details. There are two design options to extend BASE:PostgreSQL to support
privilege states. The first option is to extend the ACLItem structure to accommodate
privilege states. The second option is to maintain the privilege states in a separate data
structure. We chose the latter option. The main reason is that we want to maintain back-
ward compatibility with BASE:PostgreSQL. Extending the existing data structures can
introduce potential bugs at other places in the code base that we want to avoid. In
BASE:PostgreSQL, the pg class system catalog is used to store the metadata informa-
tion for database objects such as tables, views, indexes and sequences. This catalog also
stores the ACL for an object in the acl column that is an array of ACLItems. We extend
the pg class system catalog to maintain privilege states by adding four new columns
namely: the acltaint column to maintain the tainted privileges; the aclsuspend column
to maintain the suspended privileges; the acldeny column to maintain the denied priv-
ileges; and the aclneut column to indicate if the privilege is in the neutral orientation
mode. Those state columns and the aclneut column are of the same data type as the
acl column, that is, an array of ACLItems. The lower 16 bits of the privs field in those
state and aclneut columns are used to indicate the privilege states and the orientation
mode respectively. This strategy allows us to use the existing privilege bit-masks for
retrieving the privilege state and orientation mode from these columns. The upper 16
bits are kept unused. Table 3 is the truth table capturing the semantics of the privs field
bit-vector in PSAC:PostgreSQL.

Authorization Commands. We have modified the BASE:PostgreSQL GRANT and
REVOKE authorization commands to implement the privilege state transitions. In ad-
dition, we have defined and implemented in PSAC:PostgreSQL three new authorization
commands, that is, the DENY, the SUSPEND, and the TAINT commands. As discussed
in the Section 2, the DENY command moves a privilege to the deny state, the SUS-
PEND command moves a privilege to the suspend state, and the TAINT command
moves a privilege to the taint state. The default privilege orientation mode for these

4 Recall that the grant option is used to indicate that the granted privilege may be granted by the
grantee to other users/roles.

414 A. Kamra and E. Bertino

Table 3. Privilege States/Orientation Mode Truth Table for the privs Field in PSAC:PostgreSQL

acl acl acl acl acl pk

taint suspend deny neut state
kth bit kth bit kth bit kth bit kth bit

0 0 0 0 0 unassign/up
1 0 0 0 0 grant/up
0 1 0 0 0 taint/down
0 0 1 0 0 suspend/down
0 0 0 1 0 deny/down
0 1 0 0 1 taint/neutral
0 0 1 0 1 suspend/neutral
0 0 0 1 1 deny/neutral

Rest all other combinations are not allowed by the system.

Table 4. New Authorization Commands in PSAC:PostgreSQL

TAINT {privilege name(s) | ALL} ON {object name(s)}
TO {user/role name(s) | PUBLIC} [NEUT ORNT]

SUSPEND {privilege name(s) | ALL} ON {object name(s)}
TO {user/role name(s) | PUBLIC} [NEUT ORNT]

DENY {privilege name(s) | ALL} ON {object name(s)}
TO {user/role name(s) | PUBLIC} [NEUT ORNT]

commands is the down mode with the option to override that by specifying the neutral
orientation mode. The administrative model for these commands is similar to that of
the SQL-99 GRANT command, that is, a DENY/SUSPEND/TAINT command can be
executed on privilege p for object o by a user u iff u has the grant option set on p for o
or u is the owner of o. The syntax for the commands is reported in Table 4. Note that
in the current version of PSAC:PostgreSQL, the new commands are applicable on the
database objects whose metadata are stored in the pg class system catalog.

Access Control Enforcement. We have instrumented the access control enforcement
code in BASE:PostgreSQL with the logic for maintaining the privilege states and
orientation modes. The core access control function in BASE:PostgreSQL returns a
true/false output depending on whether the privilege under check is granted to the user
or not. In contrast, the core access control function in PSAC:PostgreSQL returns the
final state of the privilege to the calling function. The calling function then executes a
pre-configured action depending upon the state of the privilege. As a proof of concept,
we have implemented a re-authentication procedure in PSAC:PostgreSQL when a
privilege is in the suspend state. The re-authentication procedure is as follows:

Re-authentication Procedure. Recall that when a privilege is in the suspend
state, further negotiation with the end-user must be satisfied before the user-request is
executed by the DBMS. In the current version of PSAC, we implement a procedure that
re-authenticates the user if a privilege, after applying the PSD relationship, is found in

Privilege States Based Access Control for Fine-Grained Intrusion Response 415

the suspend state. The re-authentication scheme is as follows. In BASE:PostgreSQL,
an authentication protocol is carried out with the user whenever a new session is
established between a client program and the PostgreSQL server. In PSAC:Postgresql,
the same authentication protocol is replayed in the middle of a transaction execution
when access control enforcement is in progress, and a privilege is found in the suspend
state. We have modified the client library functions of BASE:PostgreSQL to implement
such protocol in the middle of a transaction execution. If the re-authentication protocol
fails, the user request is dropped. If it succeeds, the request proceeds as usual, and
no changes are made to the state of the privilege. Note that such re-authentication
procedure scheme is implemented as a proof-of-concept in PSAC:Postgresql. More
advanced forms of actions such as a second-factor of authentication can also be
implemented.

Access Control Enforcement Algorithm. The pseudo-code for the access con-
trol enforcement algorithm in PSAC:PostgreSQL is presented in the Listing 1. The
function aclcheck() takes as input a privilege in priv - whose state needs to be
determined, a database object in object - that is the target of a request, and a user
in user - the user exercising the usage of in priv. The output of the algorithm is
the state of the in priv. The algorithm proceeds as follows. Since we define a total
order on the privilege states, it is sufficient to check each state in the order of its
rank in the PSD relation (cfr. Section 2). Thus, we first check for the existence of
in priv in the deny state, followed by the suspend state, the taint state, and then the
grant state. The function for checking the state of in priv (function check priv()) in
an Acl is designed to take into account all the roles that are directly and indirectly
(through a role hierarchy) assigned to the in user. Note that most expensive operation
in the check priv() function is the run-time inheritance check of roles, that is, to check
whether the user role is an ancestor or descendant of the acl role (lines 58 and 62).
We make such check a constant time operation in our implementation by maintaining
a cache of the assigned roles for every user/role in the DBMS. Thus, the running time
of the access control enforcement algorithm is primarily dependent upon the sizes of
various Acls.

If the privilege is not found to be in the above mentioned states, the unassign state is
returned as the output of the access check algorithm.

7 Ou t pu t
8 The p r i v i l e g e s t a t e
9−−

10 f u n c t i o n a c l c h e c k (i n u s e r , i n o b j e c t , i n p r i v) r e t u r n s s t a t e
11 {
12 / / Get t h e n e u t r a l o r i e n t a t i o n ACL f o r i n o b j e c t
13 NeutACL = g e t n e u t o r n t (i n o b j e c t) ;

1−−
2 I n p u t
3 i n u s e r : The u s e r e x e c u t i n g t h e command
4 i n o b j e c t : T a r g e t d a t a b a s e o b j e c t
5 i n p r i v : P r i v i l e g e t o check
6

416 A. Kamra and E. Bertino

14

15 / / Deny i f i n u s e r has i n p r i v i n DENY s t a t e
16 DenyACL = g e t d e n y s t a t e a c l (i n o b j e c t) ;
17 i f (c h e c k p r i v (i n p r i v , DenyACL , i n u s e r , NeutACL ,DENY) == t r u e)
18 re tu rn DENY;
19

20 / / Suspend i f i n u s e r has i n p r i v i n SUSPEND s t a t e
21 SuspendACL = g e t s u s p e n d s t a t e a c l (i n o b j e c t) ;
22 i f (c h e c k p r i v (i n p r i v , SuspendACL , i n u s e r , NeutACL , SUSPEND) ==

t r u e)
23 re tu rn SUSPEND;
24

25 / / T a i n t i f i n u s e r has i n p r i v i n TAINT s t a t e
26 TaintACL = g e t t a i n t s t a t e a c l (i n o b j e c t) ;
27 i f (c h e c k p r i v (i n p r i v , TaintACL , i n u s e r , NeutACL , TAINT) == t r u e

)
28 re tu rn TAINT ;
29

30 / / Grant i f i n u s e r has i n p r i v i n GRANT s t a t e
31 GrantACL = g e t g r a n t s t a t e a c l (i n o b j e c t) ;
32 i f (c h e c k p r i v (i n p r i v , GrantACL , i n u s e r , NeutACL ,GRANT) == t r u e

)
33 re tu rn GRANT;
34

35 / / E l s e r e t u r n UNASSIGN s t a t e
36 re tu rn UNASSIGN;
37 }
38−−
39 f u n c t i o n c h e c k p r i v (i n p r i v , AclToCheck , i n u s e r , NeutACL ,

s t a t e t o c h e c k)
40 r e t u r n s b o o l e a n
41 {
42 / / F i r s t , per form t h e i n e x p e n s i v e s t e p o f c h e c k i n g t h e

p r i v i l e g e s d i r e c t l y a s s i g n e d t o t h e i n u s e r
43 i f (i n u s e r has i n p r i v i n AclToCheck)
44 re tu rn t r u e ;
45

46 / / Get a l l t h e r o l e s d i r e c t l y a s s i g n e d t o i n u s e r
47 u s e r r o l e l i s t = g e t r o l e s (i n u s e r) ;
48

49 / / Do t h e f o l l o w i n g f o r e v e r y r o l e d i r e c t l y a s s i g n e d t o i n u s e r
50 f o r each u s e r r o l e i n u s e r r o l e l i s t
51 {

52 / / Do t h e f o l l o w i n g f o r e v e r y r o l e e n t r y i n AclToCheck
53 f o r each a c l r o l e i n AclToCheck
54 {
55 i f (s t a t e t o c h e c k == GRANT)
56 {

Privilege States Based Access Control for Fine-Grained Intrusion Response 417

57 / / O r i e n t a t i o n o f p r i v i l e g e s i n GRANT s t a t e i s UP
58 i f ((u s e r r o l e == a c l r o l e OR u s e r r o l e i s an ANCESTOR

of a c l r o l e) AND a c l r o l e has i n p r i v)
59

60 re tu rn t r u e ;
61 }
62 e l s e i f ((u s e r r o l e == a c l r o l e OR u s e r r o l e i s a

DESCENDANT of a c l r o l e) AND a c l r o l e has i n p r i v)
63 {
64 i f (a c l r o l e has i n p r i v i n NeutACL)
65 con t i n u e l o o p i n g t h r o u g h AclToCheck ;
66 e l s e
67 re tu rn t r u e ;
68 }
69 }
70 }
71

72 re tu rn f a l s e ;
73 }

Lising 1. Access Control Enforcement Algorithm in PSAC:PostgreSQL

3.2 Experimental Results

In this section, we report the experimental results comparing the performance of the
access control enforcement mechanism in BASE:PostgreSQL and PSAC:PostgreSQL.
Specifically, we measure the time required by the access control enforcement mech-
anism to check the state of a privilege, test priv, for a user, test user, on a
database table, test table. We vary the ACL Size parameter in our experiments. For
BASE:ProstgreSQL, the ACL Size is the number of entries in the acl column of the
pg class catalog. For PSAC:PostgreSQL, the ACL size is the combined number of
entries in the acl, the acldeny, the aclsuspend, and the acltaint columns. Note that
for the purpose of these experiments we do not maintain any privileges in the neutral
orientation mode.

We perform two sets of experiments. The first experiment compares the access con-
trol overhead in the absence of a role hierarchy. The results are reported in Figure 2.
As expected, the access control overhead for both BASE and PSAC PostgreSQL in-
creases with the ACL Size. The key observation is that the access control overhead for
PSAC:PostgreSQL is not much higher than that of BASE:PostgreSQL.

The second experiment compares the access control overhead in the presence of a hy-
pothetically large role hierarchy. We use a role hierarchy of 781 roles with depth equal to
4. The edges and cross-links in the role hierarchy are randomly assigned. The rationale
behind such set-up is that we want to observe a reasonable amount of overhead in the ac-
cess control enforcement code. The role hierarchy is maintained in PSAC:PostgreSQL
in a manner similar to that in BASE:PostgreSQL, that is, a role rp is the parent of a
role rc if rc is assigned to rp using the GRANT ROLE command. A role and its as-
signed roles are stored in the pg auth members catalog [5]. Next, in the experiment,
we randomly assigned 10 roles to the test user. In order to vary the size of the ACL

418 A. Kamra and E. Bertino

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

A
cc

es
s

C
he

ck
 T

im
e

(m
ic

ro
se

co
nd

s)

ACL Size

BASE:PostgreSQL
SAACS:PostgreSQL

Lising 2. Exp 1: Access Control Enforcement Time in BASE and PSAC PostgreSQL in the ab-
sence of a role hierarchy

on the test table, we developed a procedure to assign privileges on the test table to
randomly chosen roles. Figure 3 reports the results of this experiment. First, observe
that the access check time in the presence of a role hierarchy is not much higher than
that in the absence of a role hierarchy. As mentioned before, this is mainly because we
maintain a cache of the roles assigned to a user (directly or indirectly), thus preventing
expensive role inheritance tests at the run-time. Second, the access control enforcement
algorithm of PSAC:PostgreSQL reported in Section 3.1 is very efficient with a maxi-
mum time of approximately 97 microseconds for an ACL of size 512. Also, it is not

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600

A
cc

es
s

C
he

ck
 T

im
e

(m
ic

ro
se

co
nd

s)

ACL Size

BASE:PostgreSQL
SAACS:PostgreSQL

Lising 3. Exp 2: Access Control Enforcement Time in BASE and PSAC PostgreSQL in the pres-
ence of a role hierarchy

Privilege States Based Access Control for Fine-Grained Intrusion Response 419

much higher than the maximum access control enforcement time in BASE:PostgreSQL
which stands at approximately 46 microseconds.

Overall, the two experiments confirm the extremely low overhead associated with
our design in PSAC:PostgreSQL.

4 Related Work

Access control models have been widely researched in the context of DBMSs [10]. To
the best of our knowledge, ours is the first solution formally introducing the concept of
privilege states in an access control model.

The implementation of the access control mechanism in the Windows operating sys-
tem [1], and Network File System protocol V4.1 [3] is similar to the semantics of the
taint privilege state. In such implementation, the security descriptor of a protected re-
source can contain two types of ACLs: a Discretionary Access Control List (DACL),
and a System Access Control List (SACL). A DACL is similar to the traditional ACL
in that it identifies the principals that are allowed or denied some actions on a protected
resource. A SACL, on other hand, identifies the principals and the type of actions that
cause the system to generate a record in the security log. In that sense, a SACL ACL
entry is similar to a PSAC ACL entry with taint privilege state. Our concept of priv-
ilege states, however, is more general as reflected by the semantics of the other states
introduced in our work.

The up,down, and neutral privilege orientations (in terms of privilege inheritance)
have been introduced by Jason Crampton [12]. The main purpose for such privilege
orientation in [12] is to show how such scheme can be used to derive a role-based
model with multi-level secure policies. However, our main purpose for introducing the
privilege orientation modes is to control the propagation of privilege states in a role
hierarchy.

Much research work has been carried out in the area of network and host based
anomaly detection mechanisms [16]. Similarly, much work on intrusion response meth-
ods is also in the context of networks and hosts [19,20]. The fine-grained response ac-
tions that we support in this work are more suitable in the context of application level
anomaly detection systems in which there is an end user interacting with the system.
In that context, an approach to re-authenticate users based on their anomalous mouse
movements has been proposed in [17]. In addition, many web applications may force
a re-authentication (or a second factor of authentication) in cases when the original au-
thenticator has gone stale (for example expired cookies) to prevent cross-site request
forgery (CSRF) attacks.

Foo et. al. [13] have also presented a survey of intrusion response systems. How-
ever, the survey is specific to distributed systems. Since the focus of our work is on
fine-grained response actions in the context of an application level anomaly detection
system, most of the techniques described in [13] are not applicable our scenario.

5 Conclusion

In this paper, we have presented the design, formal model and implementation of a priv-
ilege state based access control (PSAC) system tailored for a DBMS. The fundamental

420 A. Kamra and E. Bertino

design change in PSAC is that a privilege, assigned to a principal on an object, has a
state attached to it. We identify five states in which a privilege can exist namely, unas-
sign, grant, taint, suspend and deny. A privilege state transition to either the taint or
the suspend state acts as a fine-grained response to an anomalous request. We design
PSAC to take into account a role hierarchy. We also introduce the concept of privilege
orientation to control the propagation of privilege states in a role hierarchy. We have
extended the PostgreSQL DBMS with PSAC describing various design issues. The low
access control enforcement overhead in PostgreSQL extended with PSAC confirms that
out design is very efficient.

References

1. Access control lists in win32 (June 7, 2009),
http://msdn.microsoft.com/en-us/library/aa374872VS.85.aspx

2. Incits/iso/iec 9075. sql-99 standard (January 2, 2009), http://webstore.ansi.org/
3. Nfs version 4 minor version 1 (June 7, 2009),

http://www.ietf.org/internet-drafts/
draft-ietf-nfsv4-minorversion1-29.txt

4. Oracle database security guide 11g release 1 (11.1) (January 2, 2009),
http://download.oracle.com/docs/cd/B28359 01/
network.111/b28531/toc.htm

5. The postgresql global development group. postgresql 8.3 (June 7, 2009),
http://www.postgresql.org/

6. Postgresql global development group. postgresql 8.3 documentation (January 2, 2009),
http://www.postgresql.org/docs/8.3/static/sql-grant.html

7. Sql server 2008 books online. identity and access control (database engine) (January 2, 2009),
http://msdn.microsoft.com/en-us/library/bb510418(SQL.100).aspx

8. Bertino, E., Kamra, A., Terzi, E., Vakali, A.: Intrusion detection in rbac-administered
databases. In: ACSAC, pp. 170–182. IEEE Computer Society, Los Alamitos (2005)

9. Bertino, E., Samarati, P., Jajodia, S.: An extended authorization model for relational
databases. IEEE Transactions on Knowledge and Data Engineering 9(1), 85–101 (1997)

10. Bertino, E., Sandhu, R.: Database security-concepts, approaches, and challenges. IEEE
Transactions on Dependable and Secure Computing 2(1), 2–19 (2005)

11. Chandramouli, R., Sandhu, R.: Role based access control features in commercial database
management systems. In: National Information Systems Security Conference, pp. 503–511

12. Crampton, J.: Understanding and developing role-based administrative models. In: ACM
Conference on Computer and Communications Security, pp. 158–167 (2005)

13. Foo, B., Glause, M., Modelo-Howard, G., Wu, Y.-S., Bagchi, S., Spafford, E.H.: Informa-
tion Assurance: Dependability and Security in Networked Systems. Morgan Kaufmann, San
Francisco (2007)

14. Kamra, A., Bertino, E.: Design and implementation of a intrusion response system for rela-
tional database. IEEE Transactions on Knowledge and Data Engineering, TKDE (to appear
2010)

15. Kamra, A., Bertino, E., Terzi, E.: Detecting anomalous access patterns in relational
databases. The International Journal on Very Large Data Bases, VLDB (2008)

16. Patcha, A., Park, J.-M.: An overview of anomaly detection techniques: Existing solutions
and latest technological trends. Computer Networks 51(12), 3448–3470 (2007)

http://msdn.microsoft.com/en-us/library/aa374872VS.85.aspx
http://webstore.ansi.org/
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-minorversion1-29.txt
http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-minorversion1-29.txt
http://download.oracle.com/docs/cd/B28359_01/network.111/b28531/toc.htm
http://download.oracle.com/docs/cd/B28359_01/network.111/b28531/toc.htm
http://www.postgresql.org/
http://www.postgresql.org/docs/8.3/static/sql-grant.html
http://msdn.microsoft.com/en-us/library/bb510418(SQL.100).aspx

Privilege States Based Access Control for Fine-Grained Intrusion Response 421

17. Pusara, M., Brodley, C.E.: User re-authentication via mouse movements. In: ACM Workshop
on Visualization and Data Mining for Computer Security (VizSEC/DMSEC), pp. 1–8. ACM,
New York (2004)

18. Sandhu, R., Ferraiolo, D., Kuhn, R.: The nist model for role-based access control: Towards
a unified standard. In: ACM Workshop on Role-based Access Control, pp. 47–63 (2000)

19. Somayaji, A., Forrest, S.: Automated response using system-call delays. In: Proceedings of
the 9th USENIX Security Symposium, p. 185. USENIX Association, Berkeley (2000)

20. Toth, T., Krügel, C.: Evaluating the impact of automated intrusion response mechanisms, pp.
301–310. IEEE Computer Society, Los Alamitos (2002)

	Privilege States Based Access Control for Fine-Grained Intrusion Response
	Motivation
	PSAC Design and Formal Model
	Privilege States Dominance Relationship
	Privilege State Transitions
	Formal Model
	Role Hierarchy

	Implementation and Experiments
	PSAC:PostgreSQL
	Experimental Results

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

