
IEEE Computer, Volume 29, Number 2, February 1996, pages 38-47.

Role-Based Access Control Models�yz

Ravi S. Sandhu{, Edward J. Coynek, Hal L. Feinsteink and Charles E. Youmank

Revised October 26, 1995

Abstract This article introduces a family of reference models for role-
based access control (RBAC) in which permissions are associated with
roles, and users are made members of appropriate roles. This greatly
simpli�es management of permissions. Roles are closely related to the
concept of user groups in access control. However, a role brings together
a set of users on one side and a set of permissions on the other, whereas
user groups are typically de�ned as a set of users only.

The basic concepts of RBAC originated with early multi-user com-
puter systems. The resurgence of interest in RBAC has been driven by
the need for general-purpose customizable facilities for RBAC and the
need to manage the administration of RBAC itself. As a consequence
RBAC facilities range from simple to complex. This article describes a
novel framework of reference models to systematically address the diverse
components of RBAC, and their interactions.

Keywords: security, access control, roles, models

�This paper has been accepted for publication in IEEE Computer.
yAll correspondence should be addressed to Prof. Ravi Sandhu, ISSE Department MS 4A4,

George Mason University, Fairfax, Va 22030. Phone: 703-993-1659, fax: 703-993-1638, email:

sandhu@isse.gmu.edu.
zThis work is funded in part by contracts 50-DKNA-4-00122 and 50-DKNB-5-00188 from the

National Institute of Standards and Technology. The work of Ravi Sandhu is also supported by

grant CCR-9503560 from the National Science Foundation.
{SETA Corporation and George Mason University
kSETA Corporation



1 INTRODUCTION

The concept of role-based access control (RBAC) began with multi-user and multi-
application on-line systems pioneered in the 1970s. The central notion of RBAC
is that permissions are associated with roles, and users are assigned to appropriate
roles. This greatly simpli�es management of permissions. Roles are created for the
various job functions in an organization and users are assigned roles based on their
responsibilities and quali�cations. Users can be easily reassigned from one role to
another. Roles can be granted new permissions as new applications and systems are
incorporated, and permissions can be revoked from roles as needed.

A role is properly viewed as a semantic construct around which access control pol-
icy is formulated. The particular collection of users and permissions brought together
by a role is transitory. The role is more stable because an organization's activities or
functions usually change less frequently.

Several distinct motivations for constructing a role are discussed below. A role
can represent competency to do speci�c tasks, such as a physician or a pharmacist.
A role can embody authority and responsibility, e.g., project supervisor. Authority
and responsibility are distinct from competency. Jane Doe may be competent to head
several departments, but is assigned to head one of them. Roles can reect speci�c
duty assignments that are rotated through multiple users, e.g., a duty physician or
shift manager. RBAC models and implementations should be able to conveniently
accommodate all of these manifestations of the role concept.

A recent study by NIST [1] demonstrates that RBAC addresses many needs of
the commercial and government sectors. In this study of 28 organizations, access
control requirements were found to be driven by a variety of concerns including cus-
tomer, stockholder and insurer con�dence, privacy of personal information, preventing
unauthorized distribution of �nancial assets, preventing unauthorized usage of long-
distance telephone circuits, and adherence to professional standards. The study found
that many organizations based access control decisions on \the roles that individual
users take on as part of the organization." Many organizations preferred to centrally
control and maintain access rights, not so much at the system administrator's per-
sonal discretion but more in accordance with the organization's protection guidelines.
The study also found that organizations typically viewed their access control needs
as unique and felt that available products lacked adequate exibility.

Other evidence of strong interest in RBAC comes from the standards arena. Roles
are being considered as part of the emerging SQL3 standard for database management
systems, based on their implementation in Oracle 7. Roles have also been incorporated
in the commercial security pro�le of the draft Common Criteria [2]. RBAC is also
well matched to prevailing technology and business trends. A number of products
support some form of RBAC directly, and others support closely related concepts,
such as user groups, that can be utilized to implement roles.

1



Notwithstanding the recognized usefulness of the RBAC concept, there is little
agreement on what RBAC means. As a result RBAC is an amorphous concept inter-
preted in di�erent ways by various researchers and system developers, ranging from
simple to elaborate and sophisticated.

This paper describes a novel framework of four reference models developed by
the authors to provide a systematic approach to understanding RBAC, and to cat-
egorizing its implementation in di�erent systems. Our framework also separates the
administration of RBAC from its use for controlling access to data and other re-
sources.

2 BACKGROUND AND MOTIVATION

A major purpose of RBAC is to facilitate security administration and review. Many
commercially successful access control systems for mainframes implement roles for
security administration. For example, an operator role could access all resources
but not change access permissions, a security-o�cer role could change permissions
but have no access to resources, and an auditor role could access audit trails. This
administrative use of roles is also found in modern network operating systems, e.g.,
Novell's NetWare and Microsoft Windows NT.

Recent resurgence of interest in RBAC has focussed on general support of RBAC
at the application level. In the past, and today, speci�c applications have been built
with RBAC encoded within the application itself. Existing operating systems and
environments provide little support for application-level use of RBAC. Such support is
beginning to emerge in products. The challenge is to identify application-independent
facilities that are su�ciently exible, yet simple to implement and use, to support a
wide range of applications with minimal customization.

Sophisticated variations of RBAC include the capability to establish relations
between roles as well as between permissions and roles and between users and roles.
For example, two roles can be established as mutually exclusive, so the same user
is not allowed to take on both roles. Roles can also take on inheritance relations,
whereby one role inherits permissions assigned to a di�erent role. These role-role
relations can be used to enforce security policies that include separation of duties and
delegation of authority. Heretofore, these relations would have to be encoded into
application software; with RBAC, they can be speci�ed once for a security domain.

With RBAC it is possible to prede�ne role-permission relationships, which makes
it simple to assign users to the prede�ned roles. The NIST study [1] indicates that
permissions assigned to roles tend to change relatively slowly compared to changes
in user membership of roles. The study also found it desirable to allow administra-
tors to confer and revoke membership to users in existing roles without giving these
administrators authority to create new roles or change role-permission assignments.

2



Assignment of users to roles will typically require less technical skill than assignment
of permissions to roles. It can also be di�cult, without RBAC, to determine what
permissions have been authorized to what users.

Access control policy is embodied in various components of RBAC such as role-
permission, user-role and role-role relationships. These components collectively de-
termine whether a particular user will be allowed to access a particular piece of data
in the system. RBAC components may be con�gured directly by the system owner
or indirectly by appropriate roles as delegated by the system owner. The policy en-
forced in a particular system is the net result of the precise con�guration of various
RBAC components as directed by the system owner. Moreover, the access control
policy can evolve incrementally over the system life cycle, and in large systems it is
almost certain to do so. The ability to modify policy to meet the changing needs of
an organization is an important bene�t of RBAC.

Although RBAC is policy neutral, it directly supports three well-known security
principles: least privilege, separation of duties, and data abstraction. Least privilege
is supported because RBAC can be con�gured so only those permissions required
for the tasks conducted by members of the role are assigned to the role. Separation
of duties is achieved by ensuring that mutually exclusive roles must be invoked to
complete a sensitive task, such as requiring an accounting clerk and account manager
to participate in issuing a check. Data abstraction is supported by means of abstract
permissions such as credit and debit for an account object, rather than the read, write,
execute permissions typically provided by the operating system. However, RBAC
cannot enforce application of these principles. The security o�cer could con�gure
RBAC so it violates these principles. Also, the degree to which data abstraction is
supported will be determined by the implementation details.

RBAC is not a panacea for all access control issues. More sophisticated forms of
access control are required to deal with situations where sequences of operations need
to be controlled. For example, a purchase requisition requires various steps before it
can lead to issuance of a purchase order. RBAC does not attempt to directly control
the permissions for such a sequence of events. Other forms of access control can be
layered on top of RBAC for this purpose. Mohammed and Dilts [3] and Thomas
and Sandhu [4] have discussed some of these issues. We view control of sequences of
operations to be outside the scope of RBAC, although RBAC can be a foundation on
which to build such controls.

3 ROLES AND RELATED CONCEPTS

A frequently asked question is, \What is the di�erence between roles and groups?"
Groups of users as the unit of access control are commonly provided in many access
control systems. A major di�erence between most implementations of groups and the

3



concept of roles is that groups are typically treated as a collection of users and not
as a collection of permissions. A role is both a collection of users on one side and a
collection of permissions on the other. The role serves as an intermediary to bring
these two collections together.

Consider the Unix operating system. Group membership in Unix is de�ned in
two �les, /etc/passwd and /etc/group. It is thus easy to determine the groups to
which a particular user belongs or all the members of a speci�c group. Permissions
are granted to groups on basis of permission bits associated with individual �les
and directories. To determine what permissions a particular group has will generally
require a traversal of the entire �lesystem tree. It is thus much easier to determine the
membership of a group than to determine the permissions of the group. Moreover the
assignment of permissions to groups is highly decentralized. Essentially, the owner
of any sub-tree of the Unix �lesystem can assign permissions for that sub-tree to
a group. (The precise degree to which this can be done depends on the particular
variant of Unix in question.) However, Unix groups can be used to implement roles
in certain situations, even though groups are not the same as our concept of roles.

To illustrate the qualitative nature of the group versus role distinction, consider a
hypothetical system in which it takes twice as long to determine group membership
as to determine group permissions. Assume that group permissions and membership
can only be changed by the system security o�cer. In this case, the group mechanism
would be very close to our concept of a role.

The preceding discussion suggests two characteristics of a role, it should be ap-
proximately equally easy to determine role membership and role permissions, and
control of role membership and role permissions should be relatively centralized in a
few users. Many mechanisms that are claimed to be role-based fail one or both of
these requirements.

A question is often asked concerning the relationship of roles to compartments.
Compartments are a part of the security label structure as used in the classi�ed
defense and government sectors [5]. Compartments are based on the notion of need-
to-know, which has a semantic connotation regarding the information available under
a compartment label analogous to the semantic connotation of role. However, the
use of compartments is for the speci�c policy of one-directional information ow in a
lattice of labels. Roles do not presume a particular policy of this kind.

A long-standing distinction exists between discretionary and mandatory access
controls, respectively known as DAC and MAC. This distinction emerged from se-
curity research in the defense sector. MAC enforces access controls on the basis of
security labels attached to users (more precisely, to subjects) and objects [5]. DAC
enforces access control to an object on the basis of permissions or denials or both
con�gured by an individual user, typically the object's owner. RBAC can be viewed
as an independent component of access control, coexisting with MAC and DAC when
appropriate. In such a case access is allowed if and only if permitted by RBAC, MAC,

4



and DAC. We also expect that RBAC in many cases will exist by itself.

As a related issue, is RBAC itself a discretionary or a mandatory mechanism?
The answer depends on the precise de�nition of discretionary and mandatory as
well as on the precise nature and con�guration of permissions, roles, and users in
an RBAC system. We understand mandatory to mean that individual users do not
have any choice regarding which permissions or users are assigned to a role, whereas
discretionary signi�es that individual users make these decisions. As we said earlier,
RBAC is policy-neutral by itself. Particular con�gurations of RBAC can have a
strong mandatory avor, while others can have a strong discretionary avor.

4 A FAMILY OF REFERENCE MODELS

To understand the various dimensions of RBAC we de�ne a family of four conceptual
models. The relationship between these four models is shown in Figure 1(a) and their
essential characteristics portrayed in Figure 1(b). RBAC0, the base model, is at the
bottom, indicating that it is the minimum requirement for any system that professes
to support RBAC. RBAC1 and RBAC2 both include RBAC0, but add independent
features to it. They are called advanced models. RBAC1 adds the concept of role
hierarchies (situations where roles can inherit permissions from other roles). RBAC2

adds constraints (which impose restrictions on acceptable con�gurations of the dif-
ferent components of RBAC). RBAC1 and RBAC2 are incomparable to one another.
The consolidated model, RBAC3, includes RBAC1 and RBAC2 and, by transitivity,
RBAC0.

These models are intended to be reference points for comparison with systems and
models used by other researchers and developers. They can also serve as a guideline
for development of products and their evaluation by prospective customers. For the
moment, we assume there is a single security o�cer who is the only one authorized
to con�gure the various sets and relations of these models. Later we will introduce a
more sophisticated management model.

4.1 BASE MODEL

The base model RBAC0 consists of that part of Figure 1(b) not identi�ed with one
of the three advanced models. There are three sets of entities called users (U), roles
(R), and permissions (P ). The diagram also shows a collection of sessions (S).

A user in this model is a human being. The concept of a user can be generalized
to include intelligent autonomous agents such as robots, immobile computers, or even
networks of computers. For simplicity, we focus on a user as a human being. A role

is a job function or job title within the organization with some associated semantics
regarding the authority and responsibility conferred on a member of the role.

5



A permission is an approval of a particular mode of access to one or more objects
in the system. The terms authorization, access right and privilege are also used in the
literature to denote a permission. Permissions are always positive and confer the abil-
ity to the holder of the permission to perform some action(s) in the system. Objects
are data objects as well as resource objects represented by data within the computer
system. Our conceptual model permits a variety of interpretations for permissions,
from very coarse grain, e.g., where access is permitted to an entire subnetwork, to
very �ne grain, where the unit of access is a particular �eld of a particular record.
Some access control literature talks about \negative permissions" which deny, rather
than confer, access. In our framework denial of access is modeled as a constraint
rather than a negative permission.

The nature of a permission depends greatly on the implementation details of
a system and the kind of system that it is. A general model for access control
must therefore treat permissions as uninterpreted symbols to some extent. Each
system protects objects of the abstraction it implements. Thus an operating system
protects such things as �les, directories, devices, and ports, with operations such
as read, write, and execute. A relational database management system protects
relations, tuples, attributes, and views, with operations such as SELECT, UPDATE,
DELETE, and INSERT. An accounting application protects accounts and ledgers
with operations such as debit, credit, transfer, create-account, and delete-account. It
should be possible to assign the credit operation to a role without being compelled
to also assign the debit operation to that role.

Permissions can apply to single objects or to many. For example, a permission can
be as speci�c as read access to a particular �le or as generic as read access to all �les
belonging to a particular department. The manner in which individual permissions
are joined into a generic permission so they can be assigned as a single unit is highly
implementation dependent.

Figure 1(b) shows user assignment (UA) and permission assignment (PA) rela-
tions. Both are many-to-many relations. A user can be a member of many roles,
and a role can have many users. Similarly, a role can have many permissions, and
the same permission can be assigned to many roles. The key to RBAC lies in these
two relations. Ultimately, it is a user who exercises permissions. The placement of
a role as an intermediary to enable a user to exercise a permission provides much
greater control over access con�guration and review than does directly relating users
to permissions.

Each session is a mapping of one user to possibly many roles, i.e., a user establishes
a session during which the user activates some subset of roles that he or she is a
member of. The double-headed arrow from the session to R in Figure 1(b) indicates
that multiple roles are simultaneously activated. The permissions available to the user
are the union of permissions from all roles activated in that session. Each session is
associated with a single user, as indicated by the single-headed arrow from the session

6



to U in Figure 1(b). This association remains constant for the life of a session.

A user may have multiple sessions open at the same time, each in a di�erent
window on the workstation screen for instance. Each session may have a di�erent
combination of active roles. This feature of RBAC0 supports the principle of least
privilege. A user who is a member of several roles can invoke any subset of these
that is suitable for the tasks to be accomplished in that session. Thus, a user who
is a member of a powerful role can normally keep this role deactivated and explicitly
activate it when needed. We defer consideration of all kinds of constraints, including
constraints on role activation, to RBAC2. So in RBAC0 it is entirely up to the user's
discretion as to which roles are activated in a given session. RBAC0 also permits
roles to be dynamically activated and deactivated during the life of a session. The
concept of a session equates to the traditional notion of a subject in the access control
literature. A subject (or session) is a unit of access control, and a user may have
multiple subjects (or sessions) with di�erent permissions active at the same time.

The following de�nition formalizes the above discussion.

De�nition 1 The RBAC0 model has the following components:

� U , R, P , and S (users, roles, permissions and sessions respectively),

� PA � P �R, a many-to-many permission to role assignment relation,

� UA � U � R, a many-to-many user to role assignment relation,

� user : S ! U , a function mapping each session si to the single user user(si)
(constant for the session's lifetime), and

� roles : S ! 2R, a function mapping each session si to a set of roles roles(si) �
fr j (user(si); r) 2 UAg (which can change with time) and session si has the
permissions [r2roles(si)fp j (p; r) 2 PAg. 2

We expect each role to be assigned at least one permission and each user to be assigned
to at least one role. The model, however, does not require this.

As noted earlier, RBAC0 treats permissions as uninterpreted symbols because
the precise nature of a permission is implementation and system dependent. We do
require that permissions apply to data and resource objects and not to the components
of RBAC itself. Permissions to modify the sets U , R, and P and relations PA

and UA are called administrative permissions. These will be discussed later in the
management model for RBAC. For now we assume that only a single security o�cer
can change these components.

Sessions are under the control of individual users. As far the model is concerned, a
user can create a session and choose to activate some subset of the user's roles. Roles
active in a session can be changed at the user's discretion. The session terminates at

7



the user's initiative. (Some systems will terminate a session if it is inactive for too
long. Strictly speaking, this is a constraint and properly belongs in RBAC2.)

Some authors [6] include duties, in addition to permissions, as an attribute of
roles. A duty is an obligation on a user's part to perform one or more tasks, which are
generally essential for the smooth functioning of an organization. In our view duties
are an advanced concept which do not belong in RBAC0. We have also chosen not
to incorporate duties in our advanced models. We feel that incorporation of concepts
such as duties in access control models requires further research. One approach is to
treat them as similar to permissions. Other approaches could be based on new access
control paradigms such as task-based authorization [4].

4.2 ROLE HIERARCHIES

The model RBAC1 introduces role hierarchies (RH), as indicated in Figure 1. Role
hierarchies are almost inevitably included whenever roles are discussed in the liter-
ature [7, 8, 9, 10]. They are also commonly implemented in systems that provide
roles.

Role hierarchies are a natural means for structuring roles to reect an organiza-
tion's lines of authority and responsibility. Examples of role hierarchies are shown
in Figure 2. By convention more powerful (or senior) roles are shown toward the
top of these diagrams, and less powerful (or junior) roles toward the bottom. In
Figure 2(a) the junior-most role is health-care provider. The physician role is se-
nior to health-care provider and thereby inherits all permissions from health-care
provider. The physician role can have permissions in addition to those inherited from
the health-care provider role. Inheritance of permissions is transitive so, for example,
in Figure 2(a), the primary-care physician role inherits permissions from the physi-
cian and health-care provider roles. Primary-care physician and specialist physician
both inherit permissions from the physician role, but each one of these will have dif-
ferent permissions directly assigned to it. Figure 2(b) illustrates multiple inheritance
of permissions, where the project supervisor role inherits from both test engineer and
programmer roles.

Mathematically, these hierarchies are partial orders. A partial order is a reex-
ive, transitive and anti-symmetric relation. Inheritance is reexive because a role
inherits its own permissions, transitivity is a natural requirement in this context, and
anti-symmetry rules out roles that inherit from one another and would therefore be
redundant.

The formal de�nition of RBAC1 is given below.

De�nition 2 The RBAC1 model has the following components:

� U , R, P , S, PA, UA, and user are unchanged from RBAC0,

8



� RH � R�R is a partial order on R called the role hierarchy or role dominance
relation, also written as �, and

� roles : S ! 2R is modi�ed from RBAC0 to require roles(si) � fr j (9r0 �
r)[(user(si); r

0) 2 UA]g (which can change with time) and session si has the
permissions [r2roles(si)fp j (9r

00 � r)[(p; r00) 2 PA]g. 2

Note that a user is allowed to establish a session with any combination of roles
junior to those the user is a member of. Also, the permissions in a session are those
directly assigned to the roles of the session as well as those assigned to roles junior
to these.

It is sometimes useful in hierarchies to limit the scope of inheritance. Consider
the hierarchy of Figure 2(b) where the project supervisor role is senior to both the
test engineer and programmer roles. Now suppose test engineers wish to keep some
permissions private to their role and prevent their inheritance in the hierarchy to
project supervisors. This situation can exist for legitimate reasons, for example,
access to incomplete work in progress may not be appropriate for the senior role
while RBAC can be useful for enabling such access to test engineers. This situation
can be accommodated by de�ning a new role test engineer0 and relating it to test
engineer as shown in Figure 2(c). The private permissions of test engineers can be
assigned to role test engineer0. Test engineers are assigned to role test engineer0

and inherit permissions from the test engineer role, which are also inherited upward
in the hierarchy by the project supervisor role. Permissions of test engineer0 are,
however, not inherited by the project supervisor role. We call roles such as test
engineer0 as private roles. Figure 2(c) also shows a private role programmer0. In
some systems the e�ect of private roles is achieved by blocking upward inheritance
of certain permissions. In this case the hierarchy does not depict the distribution of
permission accurately. It is preferable to introduce private roles and keep the meaning
of the hierarchical relationship among roles intact.

Figure 3 shows, more generally, how a private subhierarchy of roles can be con-
structed. The hierarchy of Figure 3(a) has four task roles, T1, T2, T3 and T4, all of
which inherit permissions from the common project-wide role P . Role S at the top of
the hierarchy is intended for project supervisors. Tasks T3 and T4 are a subproject
with P3 as the subproject-wide role, and S3 as the subproject supervisory role. Role
T10 in Figure 3(c) is a private role for members of task T1. Suppose the subproject
of Figure 3(a) comprising roles S3, T3, T4, and P3, requires a private subhierarchy
within which private permissions of the project can be shared without inheritance by
S. The entire subhierarchy is replicated in the manner shown in Figure 3(c). The
permissions inheritable by S can be assigned to S3, T3, T4, and P3, as appropriate
whereas the privates ones can be assigned to S30, T30, T40, and P30, allowing their
inheritance within the subproject only. As before members of the subproject team
are directly assigned to S30, T30, T40, or P30. Figure 3(c) makes it clear as to which

9



private roles exist in the system and assists in access review to determine what the
nature of the private permissions is.

4.3 CONSTRAINTS

Model RBAC2 introduces the concept of constraints as shown in Figure 1(b). Al-
though we have called our models RBAC1 and RBAC2, there isn't really an implied
progression. Either constraints or role hierarchies can be introduced �rst. This is
indicated by the incomparable relation between RBAC1 and RBAC2 in Figure 1(a).

Constraints are an important aspect of RBAC and are sometimes argued to be the
principal motivation for RBAC. A common example is that of mutually disjoint roles,
such as purchasing manager and accounts payable manager. In most organizations
(except the very smallest) the same individual will not be permitted to be a member
of both roles, because this creates a possibility for committing fraud. This is a well-
known and time-honored principle called separation of duties.

Constraints are a powerful mechanism for laying out higher-level organizational
policy. Once certain roles are declared to be mutually exclusive, there need not be so
much concern about the assignment of individual users to roles. The latter activity
can then be delegated and decentralized without fear of compromising overall policy
objectives of the organization. So long as the management of RBAC is entirely
centralized in a single security o�cer, constraints are a useful convenience; but the
same e�ect can largely be achieved by judicious care on the part of the security
o�cer. However, if management of RBAC is decentralized (as will be discussed
later), constraints become a mechanism by which senior security o�cers can restrict
the ability of users who can exercise administrative privileges. This enables the chief
security o�cer to lay out the broad scope of what is acceptable and impose this as a
mandatory requirement on other security o�cers and users who participate in RBAC
management.

With respect to RBAC0 constraints can apply to the UA and PA relations and
the user and roles functions for various sessions. Constraints are predicates which,
applied to these relations and functions, return a value of \acceptable" or \not ac-
ceptable." Constraints can also be viewed as sentences in some appropriate formal
language. Intuitively, constraints are better viewed according to their kind and na-
ture. We discuss constraints informally rather than stating them in a formal notation.
Hence, the following de�nition.

De�nition 3 RBAC2 is unchanged from RBAC0 except for requiring that there be
a collection of constraints that determine whether or not values of various components
of RBAC0 are acceptable. Only acceptable values will be permitted. 2

Implementation considerations generally call for simple constraints that can be
e�ciently checked and enforced. Fortunately, in RBAC simple constraints can go a

10



long way. We now discuss some constraints that we feel are reasonable to implement.
Most, if not all, constraints applied to the user assignment relation have a counterpart
that applies to the permission assignment relation. We therefore discuss constraints
on these two components in parallel.

The most frequently mentioned constraint in the context of RBAC is mutually

exclusive roles. The same user can be assigned to at most one role in a mutually ex-
clusive set. This supports separation of duties. Provision of this constraint requires
little motivation. The dual constraint on permission assignment receives hardly any
mention in the literature. Actually, a mutual exclusion constraint on permission
assignment can provide additional assurance for separation of duties. This dual con-
straint requires that the same permission can be assigned to at most one role in a
mutually exclusive set. Consider two mutually exclusive roles, accounts-manager and
purchasing-manager. Mutual exclusion in terms of UA speci�es that one individual
cannot be a member of both roles. Mutual exclusion in terms of PA speci�es that the
same permission cannot be assigned to both roles. For example, the permission to
issue checks should not be assigned to both roles. Normally such a permission would
be assigned to the accounts-manager role. The mutual exclusion constraint on PA

would prevent the permission from being inadvertently, or maliciously, assigned to
the purchasing-manager role. More directly, exclusion constraints on PA are a useful
means of limiting the distribution of powerful permissions. For example, it may not
matter whether role A or role B gets signature authority for a particular account,
but we may require that only one of the two roles gets this permission.

More generally membership by users in various combinations of roles can be
deemed to be acceptable or not. Thus it may be acceptable for a user to be a member
of a programmer role and a tester role in di�erent projects, but unacceptable to take
on both roles within the same project. Similarly for permission assignment.

Another example of a user assignment constraint is that a role can have a max-
imum number of members. For instance, there is only one person in the role of
chairman of a department. Similarly, the number of roles to which an individual user
can belong could also be limited. We call these cardinality constraints. Correspond-
ingly, the number of roles to which a permission can be assigned can have cardinality
constraints to control the distribution of powerful permissions. It should be noted
that minimum cardinality constraints may be di�cult to implement. For example if
there is a minimum number of occupants of a role, what can the system do if one of
them disappears? How will the system know this has happened?

The concept of prerequisite roles is based on competency and appropriateness,
whereby a user can be assigned to role A only if the user is already a member of role
B. For example, only those users who are already members of the project role can be
assigned to the testing task role within that project. In this example the prerequi-
site role is junior to the new role being assumed. Prerequisites between incomparable
roles are less likely to occur in practice. The dual constraint on permission assignment

11



applies more at the role end of the PA relation. It could be useful, for consistency,
to require that permission p can be assigned to a role only if that role already pos-
sesses permission q. For instance, in many systems permission to read a �le requires
permission to read the directory in which the �le is located. Assigning the former
permission without the latter would be incomplete.

User assignment constraints are e�ective only if suitable external discipline is
maintained in assigning user identi�ers to human beings. If the same individual
is assigned two or more user identi�ers, separation and cardinality controls break
down. There must be a one-to-one correspondence between user identi�ers and human
beings. A similar argument applies to permission constraints. If the same operation is
sanctioned by two di�erent permissions, the RBAC system cannot e�ectively enforce
cardinality and separation constraints.

Constraints can also apply to sessions, and the user and roles functions associated
with a session. It may be acceptable for a user to be a member of two roles but the user
cannot be active in both roles at the same time. Other constraints on sessions can limit
the number of sessions that a user can have active at the same time. Correspondingly,
the number of sessions to which a permission is assigned can be limited.

A role hierarchy can be considered as a constraint. The constraint is that a
permission assigned to a junior role must also be assigned to all senior roles. Or
equivalently, the constraint is that a user assigned to a senior role must also be
assigned to all junior roles. So in some sense, RBAC1 is redundant and is subsumed
by RBAC2. However, we feel it is appropriate to recognize the existence of role
hierarchies in their own right. They are reduced to constraints only by introducing
redundancy of permission assignment or user assignment. It is preferable to support
hierarchies directly rather than indirectly by means of redundant assignment.

4.4 CONSOLIDATED MODEL

RBAC3 combines RBAC1 and RBAC2 to provide both role hierarchies and con-
straints. There are several issues that arise by bringing these two concepts together.

Constraints can apply to the role hierarchy itself, as indicated by the dashed
arrow to RH in Figure 1(b). The role hierarchy is required to be a partial order.
This constraint is intrinsic to the model. Additional constraints can limit the number
of senior (or junior) roles that a given role may have. Two or more roles can also be
constrained to have no common senior (or junior) role. These kinds of constraints
are useful in situations where the authority to change the role hierarchy has been
decentralized, but the chief security o�cer desires to restrict the overall manner in
which such changes can be made.

Subtle interactions arise between constraints and hierarchies. Suppose that test
engineer and programmer roles are declared to be mutually exclusive in the context of
Figure 2(b). The project supervisor role violates this mutual exclusion. In some cases

12



such a violation of a mutual exclusion constraint by a senior role may be acceptable,
while in other cases it may not. We feel that the model should not rule out one or the
other possibility. A similar situation arises with cardinality constraints. Suppose that
a user can be assigned to at most one role. Does an assignment to the test engineer
role in Figure 2(b) violate this constraint? In other words, do cardinality constraints
apply only to direct membership, or do they also carry on to inherited membership?

The hierarchy of Figure 2(c) illustrates how constraints are useful in the presence of
private roles. In this case the test engineer0, programmer0, and project supervisor roles
can be declared to be mutually exclusive. Because these have no common senior for
these roles, there is no conict. In general private roles will not have common seniors
with any other roles because they are maximal elements in the hierarchy. So mutual
exclusion of private roles can always be speci�ed without raising any conict. The
shared counterpart of the private roles can be declared to have a maximum cardinality
constraint of zero members. In this way test engineers must be assigned to the test
engineer0 role. The test engineer role serves as a means for sharing permissions with
the project supervisor role.

5 MANAGEMENT MODELS

So far we have assumed that all components of RBAC are under direct control of a
single security o�cer. In large systems the number of roles can be in the hundreds or
thousands. Managing these roles and their interrelationships is a formidable task that
often is highly centralized and delegated to a small team of security administrators.
Because the main advantage of RBAC is to facilitate administration of permissions,
it is natural to ask how RBAC can be used to manage RBAC itself. We believe that
the use of RBAC for managing RBAC will be an important factor in the success of
RBAC. Here we can only touch on some of the major issues.

We mention some approaches to access control management that have been dis-
cussed in the literature. ISO has developed a number of security management related
standards and documents. These can be approached via the top-level System Man-
agement Overview document [11]. The ISO model is object-oriented and includes a
hierarchy based on containment (a directory contains �les and a �le contains records).
Roles could be integrated into the ISO approach.

There is a long tradition of models for propagation of access rights, where the right
to propagate rights is controlled by special control rights. Among the most recent
and most developed of these is Sandhu's typed access matrix model [12]. While it is
often di�cult to analyze the consequences of even fairly simple rules for propagation
of rights, these models indicate that simple primitives can be composed to yield very
exible and expressive systems.

One example of work on managing RBAC is by Mo�et and Sloman [13] who

13



de�ne a fairly elaborate model based on role domains, owners, managers, and security
administrators. In their work authority is not controlled or delegated from a single
central point, but rather is negotiated between independent managers who have only
a limited trust in each other.

Our management model for RBAC is illustrated in Figure 4. The top half of this
�gure is essentially the same as Figure 1(b). The constraints in Figure 4 apply to all
components. The bottom half of Figure 4 is a mirror image of the top half for ad-
ministrative roles and administrative permissions. It is intended that administrative
roles AR and administrative permissions AP be respectively disjoint from the regular
roles R and permissions P . The model shows that permissions can only be assigned
to roles and administrative permissions can only be assigned to administrative roles.
This is a built-in constraint.

The top half of Figure 4 can range in sophistication across RBAC0, RBAC1,
RBAC2, and RBAC3. The bottom half can similarly range in sophistication across
ARBAC0, ARBAC1, ARBAC2, and ARBAC3, where the A denotes administrative.
In general we would expect the administrative model to be simpler than the RBAC
model itself. Thus ARBAC0 can be used to manage RBAC3, but there seems to be
no point in using ARBAC3 to manage RBAC0.

It is also important to recognize that constraints can cut across both top and
bottom halves of Figure 4. We have already asserted a built-in constraint that per-
missions can only be assigned to roles and administrative permissions can only be
assigned to administrative roles. If administrative roles are mutually exclusive with
respect to regular roles, we will have a situation where security administrators can
manage RBAC but not use any of the privileges themselves.

How about management of the administrative hierarchy? In principle one could
construct a second level administrative hierarchy to manage the �rst level one and so
on. We feel that even a second level of administrative hierarchy is unnecessary. Hence
the administration of the administrative hierarchy is left to a single chief security
o�cer. This is reasonable for a single organization or a single administrative unit
within an organization. The issue of how these units interact is not directly addressed
in our model.

Administrative authority in RBAC can be viewed as the ability to modify the
user assignment, permission assignment and role hierarchy relations. In a manage-
ment model the permissions that authorize these administrative operations must be
explicitly de�ned. The precise nature of these permissions is implementation speci�c,
but their general nature is much the same.

One of the main issues in the management model is how to scope the adminis-
trative authority vested in administrative roles. To illustrate this consider the hier-
archies shown in Figure 3(a). The administrative hierarchy of Figure 3(b) shows a
single chief security o�cer role (CSO), which is senior to the three security o�cer
roles SO1, SO2, and SO3. The scoping issue concerns which roles of Figure 3(a) can

14



be managed by which roles of Figure 3(b). Let us say the CSO role can manage all
roles of Figure 3(a). Suppose SO1 manages task T1. In general we do not want SO1
to automatically inherit the ability to manage the junior role P also. So the scope of
SO1 can be limited entirely to T1. Similarly, the scope of SO2 can be limited to T2.
Assume SO3 can manage the entire subproject consisting of S3, T3, T4, and P3. The
scope of SO3 is then bounded by S3 at the top and P3 at the bottom.

In general, each administrative role will be mapped to some subset of the role
hierarchy it is responsible for managing. There are other aspects of management that
need to be scoped. For example, SO1 may only be able to add users to the T1 role
but their removal requires the CSO to act. More generally, we need to scope not only
the roles an administrative role manages, but also the permissions and users that
role manages. It is also important to control changes in the role hierarchy itself. For
example, because SO3 manages the subhierarchy between S3 and P3, SO3 could be
authorized to add additional tasks to that subproject.

6 CONCLUSION

We have presented a family of RBAC models that systematically spans the spectrum
from simple to complex. These models provide a common frame of reference for other
research and development in this area. We have also presented a management model
whereby RBAC can be used to control itself. This supports our position that RBAC
is policy-neutral, rather than a model of a speci�c security policy.

Much remains to be done to realize the promise of RBAC. One of the outstanding
research problems in this area is to develop a systematic approach to the design and
analysis of RBAC con�gurations. Some recent research on the design and analysis
of role hierarchies has been reported [8, 9, 14]. As mentioned earlier, there is little
discussion in the literature about constraints in the context of RBAC. A categorization
and taxonomy of constraints would be useful. A formal notation for stating and
enforcing constraints, along with some measure of di�culty of enforcement, should
be developed. The ability to reason about constraints and analyze the net e�ect of an
RBAC con�guration in terms of higher-level policy objectives is an important open
research area. The management aspects of RBAC need further work. Development of
a systematic methodology that deals with the design and analysis of role hierarchies,
constraints, and RBAC management in a uni�ed framework is a challenging research
goal. Many of these open issues and problems are intertwined and will require an
integrated approach for their resolution.

Acknowledgement The authors are grateful to David Ferraiolo and Janet Cugini of NIST

for useful comments while this work was in progress. The authors also thank the anonymous

reviewers whose comments and suggestions have signi�cantly improved the paper.

15



References

[1] David F. Ferraiolo, Dennis M. Gilbert, and Nickilyn Lynch. An examination
of federal and commercial access control policy needs. In NIST-NCSC National

Computer Security Conference, pages 107{116, Baltimore, MD, September 20-23
1993.

[2] Common Criteria Editorial Board. Common Criteria for Information Technology

Security Evaluation, December 1994. Version 0.9, Preliminary Draft.

[3] Imtiaz Mohammed and David M. Dilts. Design for dynamic user-role-based
security. Computers & Security, 13(8):661{671, 1994.

[4] Roshan Thomas and Ravi S. Sandhu. Conceptual foundations for a model of
task-based authorizations. In IEEE Computer Security Foundations Workshop

7, pages 66{79, Franconia, NH, June 1994.

[5] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9{
19, November 1993.

[6] Dirk Jonscher. Extending access controls with duties|realized by active mecha-
nisms. In B. Thuraisingham and C.E. Landwehr, editors, Database Security VI:

Status and Prospects, pages 91{111. North-Holland, 1993.

[7] David Ferraiolo and Richard Kuhn. Role-based access controls. In 15th NIST-

NCSC National Computer Security Conference, pages 554{563, Baltimore, MD,
October 13-16 1992.

[8] M.-Y. Hu, S.A. Demurjian, and T.C. Ting. User-role based security in the ADAM
object-oriented design and analyses environment. In J. Biskup, M. Morgernstern,
and C. Landwehr, editors, Database Security VIII: Status and Prospects. North-
Holland, 1995.

[9] Matunda Nyanchama and Sylvia Osborn. Access rights administration in role-
based security systems. In J. Biskup, M. Morgernstern, and C. Landwehr, editors,
Database Security VIII: Status and Prospects. North-Holland, 1995.

[10] S. H. von Solms and Isak van der Merwe. The management of computer security
pro�les using a role-oriented approach. Computers & Security, 13(8):673{680,
1994.

[11] ISO/IEC 10040. Information Technology { Open Systems Interconnection { Sys-

tems Management Overview.

[12] Ravi S. Sandhu. The typed access matrix model. In Proceedings IEEE Com-

puter Society Symposium on Research in Security and Privacy, pages 122{136,
Oakland, CA, May 1992.

16



[13] Jonathan D. Mo�ett and Morris S. Sloman. Delegation of authority. In I. Krish-
nan and W. Zimmer, editors, Integrated Network Management II, pages 595{606.
Elsevier Science Publishers B.V. (North-Holland), 1991.

[14] Eduardo B. Fernandez, Jie Wu, and Minjie H. Fernandez. User group struc-
tures in object-oriented database authorization. In J. Biskup, M. Morgernstern,
and C. Landwehr, editors, Database Security VIII: Status and Prospects. North-
Holland, 1995.

17



 RBAC 0

 RBAC 3

 RBAC 1
 RBAC 2

CONSTRAINTS

PERMISS-

IONS

PU

USERS

PERMISSION

ASSIGNMENT

PA

USER

ASSIGNMENT

UA

.

.

.

SESSIONS

S

user roles

ROLES

R

 RBAC 1

 RBAC 2

 RBAC 3

ROLE

HIERARCHY

RH

(b) RBAC models

(a) Relationship among RBAC models

Figure 1: A Family of RBAC Models

18



Primary-care

Physician Physician

Specialist

(a)

Health-care provider

Physician

Project Supervisor

Project Member

Test Engineer Programmer

(b)

(c)

Project Member

Test Engineer Programmer

Project SupervisorTest Engineer’ Programmer’

Figure 2: Examples of Role Hierarchies

19



CSO

SO1 SO2 SO3

(b) Administrative Role Hierarchy

T1 T3 T4

S

S3

P

P3

T2

(a) Role Hierarchy

T1

S

P

T2

T1’

T3 T4

P3

S3

P3’

T3’

S3’

T4’

(c) Private and Scoped Roles

Figure 3: Role Hierarchies for a Project

20



U

USERS

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

UA

PERMISSION

ASSIGNMENT

PA

P

PERMIS-

SIONS

U

USERS

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

UA

PERMISSION

ASSIGNMENT

PA

P

PERMIS-

SIONS

CONSTRAINTS

ADMIN.

AP

PERMIS-

SIONS

ADMIN.

AP

PERMIS-

SIONS

Figure 4: RBAC Administrative Model

21


