
Design and Implementation of an Intrusion
Response System for Relational Databases

Ashish Kamra and Elisa Bertino, Fellow, IEEE

Abstract—The intrusion response component of an overall intrusion detection system is responsible for issuing a suitable response to

an anomalous request. We propose the notion of database response policies to support our intrusion response system tailored for a

DBMS. Our interactive response policy language makes it very easy for the database administrators to specify appropriate response

actions for different circumstances depending upon the nature of the anomalous request. The two main issues that we address in

context of such response policies are that of policy matching, and policy administration. For the policy matching problem, we propose

two algorithms that efficiently search the policy database for policies that match an anomalous request. We also extend the

PostgreSQL DBMS with our policy matching mechanism, and report experimental results. The experimental evaluation shows that our

techniques are very efficient. The other issue that we address is that of administration of response policies to prevent malicious

modifications to policy objects from legitimate users. We propose a novel Joint Threshold Administration Model (JTAM) that is based

on the principle of separation of duty. The key idea in JTAM is that a policy object is jointly administered by at least k database

administrator (DBAs), that is, any modification made to a policy object will be invalid unless it has been authorized by at least k DBAs.

We present design details of JTAM which is based on a cryptographic threshold signature scheme, and show how JTAM prevents

malicious modifications to policy objects from authorized users. We also implement JTAM in the PostgreSQL DBMS, and report

experimental results on the efficiency of our techniques.

Index Terms—Databases, intrusion detection, response, prevention, policies, threshold signatures.

Ç

1 INTRODUCTION

RECENTLY, we have seen an interest in products that
continuously monitor a database system and report any

relevant suspicious activity [1]. Database activity monitor-
ing has been identified by Gartner research as one of the top
five strategies that are crucial for reducing data leaks in
organizations [2], [3]. Such step-up in data vigilance by
organizations is partly driven by various US government
regulations concerning data management such as SOX, PCI,
GLBA, HIPAA, and so forth [4]. Organizations have also
come to realize that current attack techniques are more
sophisticated, organized, and targeted than the broad-based
hacking days of past. Often, it is the sensitive and
proprietary data that is the real target of attackers. Also,
with greater data integration, aggregation and disclosure,
preventing data theft, from both inside and outside
organizations, has become a major challenge. Standard
database security mechanisms, such as access control,
authentication, and encryption, are not of much help when
it comes to preventing data theft from insiders [5]. Such
threats have thus forced organizations to reevaluate security
strategies for their internal databases [4]. Monitoring a

database to detect potential intrusions, intrusion detection
(ID), is a crucial technique that has to be part of any
comprehensive security solution for high-assurance data-
base security. Note that the ID systems that are developed
must be tailored for a Database Management System
(DBMS) since database-related attacks such as SQL injection
and data exfiltration are not malicious for the underlying
operating system or the network.

Our approach to an ID mechanism consists of two main
elements, specifically tailored to a DBMS: an anomaly
detection (AD) system and an anomaly response system.
The first element is based on the construction of database-
access profiles of roles and users, and on the use of such
profiles for the AD task. A user-request that does not conform
to the normal access profiles is characterized as anomalous.
Profiles can record information of different levels of details;
we refer the reader to [6] for additional information and
experimental results. The second element of our ap-
proach—the focus of this paper—is in charge of taking some
actions once an anomaly is detected. There are three main
types of response actions, that we refer to, respectively, as
conservative actions, fine-grained actions, and aggressive
actions. The conservative actions, such as sending an alert,
allow the anomalous request to go through, whereas the
aggressive actions can effectively block the anomalous
request. Fine-grained response actions, on the other hand,
are neither conservative nor aggressive. Such actions may
suspend or taint an anomalous request [7], [8]. A suspended
request is simply put on hold, until some specific actions are
executed by the user, such as the execution of further
authentication steps. A tainted request is marked as a
potential suspicious request resulting in further monitoring
of the user and possibly in the suspension or dropping of
subsequent requests by the same user.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011 875

. A. Kamra is with the School of Electrical and Computer Engineering,
Purdue University, 1085 Tasman Dr Spc 15, Sunnyvale, CA 94089.
E-mail: akamra@purdue.edu.

. E. Bertino is with the Department of Computer Science and the Center for
Education and Research in Information Assurance and Security (CERIAS),
Purdue University, 305 N. University Street, West Lafayette, IN 47907-
2107. E-mail: bertino@cs.purdue.edu.

Manuscript received 19 Feb. 2009; revised 5 July 2009; accepted 30 Oct. 2009;
published online 27 Aug. 2010.
Recommended for acceptance by K.-L. Tan.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2009-02-0078.
Digital Object Identifier no. 10.1109/TKDE.2010.151.

1041-4347/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

With such different response options, the key issue to
address is which response measure to take under a given
situation. Note that it is not trivial to develop a response
mechanism capable of automatically taking actions when
abnormal database behavior is detected. Let us illustrate this
with the following example. Consider a database monitoring
system in place that builds database user profiles based on
SQL queries submitted by the users. Suppose that a user U ,
who has rarely accessed table T , issues a query that accesses
all columns inT . The detection mechanism flags such request
as anomalous for U . The major question is what should the
system do next once a request is marked as anomalous by
the AD mechanism. Since the anomaly is detected based on
the learned profiles, it may well be a false alarm. It is easy to
see then there are no simple intuitive response measures that
can be defined for such security-related events. If T contains
sensitive data, a strong response action is to revoke the
privileges corresponding to actions that are flagged as
anomalous. In our example, such a response would translate
into revoking the select privilege on tableT fromU . However,
if the user action is a one-time action part of a bulk-load
operation, when all objects are expected to be accessed by the
request, no response action may be necessary. The key idea is
to take different response actions depending on the details of
the anomalous request, and the context surrounding the
request (such as time of the day, origin of the request, and so
forth). Therefore, a response policy is required by the database
security administrator to specify appropriate response
actions for different circumstances. In this paper, we propose
a high-level language for the specification of such policies
which makes it very easy to specify and modify them.

The two main issues that we address in the context of
such response policies are that of policy matching and policy
administration. Policy matching is the problem of searching
for policies applicable to an anomalous request. When an
anomaly is detected, the response system must search
through the policy database and find policies that match the
anomaly. Our ID mechanism is a real-time intrusion
detection and response system; thus efficiency of the policy
search procedure is crucial. In Section 4, we present two
efficient algorithms that take as input the anomalous
request details, and search through the policy database to
find the matching policies. We implement our policy
matching scheme in the PostgreSQL DBMS [9], and discuss
relevant implementation issues. We also report experimen-
tal results that show that our techniques are very efficient.

The second issue that we address is that of administration
of response policies. Intuitively, a response policy can be
considered as a regular database object such as a table or a
view. Privileges, such as create policy and drop policy, that are
specific to a policy object type can be defined to administer
policies. However, a response policy object presents a
different set of challenges than other database object types.
Recall that a response policy is created to select a response
action to be executed in the event of an anomalous request.
Consider the case of an anomalous request from a user
assigned to the DBA role. Since a DBA role is assigned all
possible database privileges, it will also possess the
privileges to modify a response policy object. Now consider
a scenario, where organizational policies require auditing

and detection of malicious activities from all database users
including those holding the DBA role. Thus, response
policies must be created to respond to anomalous requests
from all users. But since a DBA role holds privileges to alter
any response policy, it is easy to see that the protection
offered by the response system against a malicious DBA can
trivially be bypassed. The fundamental problem in such
administration model is that of conflict-of-interest. The main
issue is essentially that of insider threats, that is, how to
protect a response policy object from malicious modifications
made by a database user that has legitimate access rights to
the policy object.

To address this issue, we propose an administration
model that is based on the well-known security principle of
separation of duties (SoD). SoD is a principle whereby
multiple users are required in order to complete a given task.
As a security principle, the primary objective of SoD is
prevention of fraud (insider threats), and user generated
errors. Such objective is traditionally achieved by dividing
the task and its associated privileges among multiple users.
However, the approach of using privilege dissemination is
not applicable to our case as we assume the DBAs to possess
all possible privileges in the DBMS. Our approach instead
applies the technique of threshold cryptography signatures to
achieve SoD. A DBA authorizes a policy operation, such as
create or drop, by submitting a signature share on the policy.
At least k signature shares are required to form a valid final
signature on a policy, where k is a threshold parameter
defined for each policy at the time of policy creation. The final
signature is then validated either periodically or upon policy
usage to detect any malicious modifications to the policies.
The key idea in our approach is that a policy operation is
invalid unless it has been authorized by at least k DBAs. We
thus refer to our administration model as the Joint Threshold
Administration Model (JTAM) for managing response
policy objects. To the best of our knowledge, ours is the only
work proposing such administration model in the context of
management of DBMS objects. The three main advantages of
JTAM are as follows: First, it requires no changes to the
existing access control mechanisms of a DBMS for achieving
SoD. Second, the final signature on a policy is nonrepudiable,
thus making the DBAs accountable for authorizing a policy
operation. Third, and probably the most important, JTAM
allows an organization to utilize existing man-power resources
to address the problem of insider threats since it is no longer
required to employ additional users as policy administrators.

The main contributions of this paper can be summarized
as follows:

1. We present a framework for specifying intrusion
response policies in the context of a DBMS.

2. We present a novel administration model called
JTAM for administration of response policies.

3. We present algorithms to efficiently search the
policy database for policies that match an anomalous
request.

4. We extend the PostgreSQL DBMS with our response
policy mechanism, and conduct an experimental
evaluation of our techniques.

The rest of the paper is organized as follows: Section 2
presents the details of the response policy language. Section 3

876 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

presents the design and implementation details of JTAM. We
discuss the policy matching algorithms in Section 4. Section 5
discusses the implementation details of our response
mechanism, and reports the experimental results concerning
the overhead incurred by our techniques. Section 6 discusses
related work. We conclude in Section 7 with directions for
future work.

2 POLICY LANGUAGE

The detection of an anomaly by the detection engine can be
considered as a system event. The attributes of the anomaly,
such as user, role, SQL command, then correspond to the
environment surrounding such an event. Intuitively, a
policy can be specified taking into account the anomaly
attributes to guide the response engine in taking a suitable
action. Keeping this in mind, we propose an Event-
Condition-Action (ECA) language for specifying response
policies. Later in this section, we extend the ECA language
to support novel response semantics. ECA rules have been
widely investigated in the field of active databases [10]. An
ECA rule is typically organized as follows:

ON {Event} IF {Condition} THEN {Action}

As it is well known, its semantics is as follows: if the
event arises and the condition evaluates to true, the specified
action is executed. In our context, an event is the detection of
an anomaly by the detection engine. A condition is specified
on the attributes of the detected anomaly. An action is the
response action executed by the engine. In what follows, we
use the term ECA policy instead of the common terms ECA
rules and triggers to emphasize the fact that our ECA rules
specify policies driving response actions. We next discuss in
detail the various components of our language for ECA
policies.

2.1 Attributes and Conditions

2.1.1 Anomaly Attributes

The anomaly detection mechanism provides its assessment
of the anomaly using the anomaly attributes. We have
identified two main categories for such attributes. The first
category, referred to as contextual category, includes all
attributes describing the context of the anomalous request
such as user, role, source, and time. The second category,
referred to as structural category, includes all attributes
conveying information about the structure of the anomalous
request such as SQL command, and accessed database
objects. Details concerning these attributes are reported in
Table 1. The detection engine submits its characterization of
the anomaly using the anomaly attributes. Therefore, the
anomaly attributes also act as an interface for the response
engine, thereby hiding the internals of the detection
mechanism. Note that the list of anomaly attributes
provided here is not exhaustive. Our implementation of
the response system can be configured to include/exclude
other user-defined anomaly attributes.

2.1.2 Policy Conditions

A response policy condition is a conjunction of predicates
where each predicate is specified against a single anomaly
attribute. Note that to minimize the overhead of the policy

matching procedure (cf. Section 4), we do not support
disjunctions between predicates of different attributes such
as SQLCmd = “Select” OR “IPAddress” = “10.10.21.200.”
However, disjunctions between predicates of the same
attribute are still supported. For example, if an adminis-
trator wants to create a policy with the condition SQLCmd =
“Select” OR SQLCmd = “Insert”; such condition can be
supported by our framework by specifying a single
predicate as SQLCmd IN {“Select”, “Insert”}. More exam-
ples of such predicates are given below:

Role != DBA

Source IP IN 192.168.0.0/16

Objs IN {dbo.*}

We formally define a response policy condition as
follows:

Definition (Policy Condition). Let PA ¼ fA1; A2 . . .Ang be
the set of anomaly attributes where each attribute Ai has
domain Ti of values. Let a predicate Pr be defined as Pr: Ak�c,
where Ak 2 PA, � i s a comparison operator in
f>;<;>¼; <¼;¼; ! ¼; like; IN;BETWEENg, and c is a
constant value in Tk. The condition of a response policy Pol is
defined as PolðCÞ: Prk and Prl and . . . and Prm where
Prk; Prl . . .Prm are predicates of type Pr.

2.2 Response Actions

Once a database request has been flagged off as anomalous,
an action is executed by the response system to address the
anomaly. The response action to be executed is specified as
part of a response policy. Table 2 presents a taxonomy of
response actions supported by our system. The conservative
actions are low severity actions. Such actions may log the
anomaly details or send an alert, but they do not proactively
prevent an intrusion. Aggressive actions, on the other hand,
are high severity responses. Such actions are capable of
preventing an intrusion proactively by either dropping the
request, disconnecting the user or revoking/denying
the necessary privileges. Fine-grained response actions are
neither too conservative nor too aggressive. Such actions
may suspend or taint an anomalous request. A suspended
request is simply put on hold, until some specific actions are
executed by the user, such as the execution of further
authentication steps. A tainted request is simply marked as a
potential suspicious request resulting in further monitoring

KAMRA AND BERTINO: DESIGN AND IMPLEMENTATION OF AN INTRUSION RESPONSE SYSTEM FOR RELATIONAL DATABASES 877

TABLE 1
Anomaly Attributes

of the user and possibly in the suspension or dropping of
subsequent requests by the same user. We refer the reader to
[7] for further details on request suspension and tainting.
Note that a sequence of response actions can also be
specified as a valid response. For example, LOG can be
executed before ALERT in order to log the anomaly details,
as well as send a notification to the security administrator.

Table 3 describes two response policy examples. The
threat scenario addressed by Policy 1 is as follows: In many
cases, the database users and applications have read access
to the system catalogs tables by default. Such access is
sometimes misused during a SQL Injection attack to gather
sensitive information about the DBMS structure. An
anomaly detection engine will be able to catch such
requests, since they will not match the normal profile of
the user. Suppose that we want to protect the DBMS from
anomalous reads to the system catalogs (“dbo” schema)
from unprivileged database users. Policy one aggressively
prevents against such attacks by disconnecting the user.

Policy two prevents the false alarms originating from the
privileged users during usual business hours. The policy is
formulated to take no action on any anomaly that originates
from the internal network of an organization from the
privileged users during normal business hours.

2.3 Interactive ECA Response Policies

An ECA policy is sufficient to trigger simple response
measures such as disconnecting users, dropping an
anomalous request, sending an alert, and so forth. In some
cases, however, we need to engage in interactions with

users. For example, as described in Section 2.2, suppose that
upon detection of an anomaly, we want to execute a fine-
grained response action by suspending the anomalous
request. Then we ask the user to authenticate with a second
authentication factor as the next action. In case the
authentication fails, the user is disconnected. Otherwise,
the request proceeds. As ECA policies are unable to support
such sequence of actions, we extend them with a confirma-
tion action construct. A confirmation action is the second
course of action after the initial response action. Its purpose
is to interact with the user to resolve the effects of the initial
action. If the confirmation action is successful, the resolution
action is executed, otherwise the failure action is executed.1

Thus, a response policy in our framework can be
symbolically represented as follows:2

ON {Event}

IF {Condition}

THEN {Initial Action}

CONFIRM {Confirmation Action}

ON SUCCESS {Resolution Action}

ON FAILURE {Failure Action}

An example of an interactive ECA response policy is
presented in Table 4. The initial action is to suspend the
anomalous user request. As a confirmation action, the user
is prompted for reauthentication. If the confirmation action
fails, the failure action is to abort the request and disconnect
the user. Otherwise, no action is taken and the request is
processed by the DBMS.

3 POLICY ADMINISTRATION

As discussed in Section 1, the main issue in the adminis-
tration of response policies is how to protect a policy from
malicious modifications made by a DBA that has legitimate
access rights to the policy object. To address this issue, we

878 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

TABLE 2
Taxonomy of Response Actions

TABLE 3
Response Policy Examples

1. Note that implementing the confirmation actions such as a
reauthentication or a second factor of authentication require changes to
the communication protocol between the database client and the server. The
scenarios in which such confirmation actions may be useful are when a
malicious subject (user/process) is able to bypass the initial authentication
mechanism of the DBMS due to software vulnerabilities (such as buffer
overflow) or due to social engineering attacks (such as using someone else’s
unlocked unattended terminal).

2. Note that in case where an interactive response with the user is not
required, the confirmation/resolution/failure actions may be omitted from
the policy.

TABLE 4
Interactive ECA Response Policy Example

propose an administration model referred to as the JTAM.
The threat scenario that we assume is that a DBA has all the
privileges in the DBMS, and thus it is able to execute
arbitrary SQL insert, update, and delete commands to
make malicious modifications to the policies. Such actions
are possible even if the policies are stored in the system
catalogs.3 JTAM protects a response policy against mal-
icious modifications by maintaining a digital signature on
the policy definition. The signature is then validated either
periodically or upon policy usage to verify the integrity of
the policy definition.

One of the key assumptions in JTAM is that we do not
assume the DBMS to be in possession of a secret key for
verifying the integrity of policies. If the DBMS had
possessed such key, it could simply create a HMAC
(Hashed Message Authentication Code) of each policy
using its secret key, and later use the same key to verify
the integrity of the policy. However, management of such
secret key is an issue since we cannot assume the key to be
hidden from a malicious DBA. The fundamental premise of
our approach is that we do not trust a single DBA (with the
secret key) to create or manage the response policies, but
the threat is mitigated if the trust (the secret key) is
distributed among multiple DBAs. This is also the funda-
mental problem in threshold cryptography, that is, the
problem of secure sharing of a secret. We thus base JTAM
on a threshold cryptographic signature scheme.

Threshold Signatures. A k out of l threshold signature
scheme is a protocol that allows any subset of k users out of
l users to generate a valid signature, but that disallows the
creation of a valid signature if fewer than k users participate
in the protocol [12]. The basic paradigm of most well-
known threshold signature schemes is as follows [13]: Each
user Ui has a secret key share si corresponding to the
signature key d. Each of the users Ui participating in
the signature generation protocol generates a signature
share that takes as input the message m (or the hash of the
message) that needs to be signed, the secret key share si,
and other public information. Signature shares from
different users are then combined to form the final valid
signature on m.

For a threshold signature scheme to be practical for
JTAM, it scheme must meet the following three key
requirements: First, the signature share generation proce-
dure should be asynchronous, and the signature share
combining operation should be completely non-interactive.
In addition, the signature shares should be such that they
can be made public without compromising the security of
the secret shares. Such requirement eliminates the need for
all k users to be present simultaneously to generate the final
signature on a policy. Second, a single incorrect signature
share should invalidate the final signature on the policy.
Third, the signature verification mechanism should be very
efficient to reduce the overhead on the DBMS’s normal
operations. All such requirements are supported by the
Practical Threshold Signature scheme by Victor Shoup [12],

and thus we employ such scheme in the design of JTAM.
Shoup’s protocol is based on RSA threshold signatures, and
uses the concept of Lagrange interpolating polynomial [14]
to create the final signature from the signature shares. In
what follows, we present the details of Shoup’s protocol in
the context of administration of our response policies.

3.1 JTAM Setup

Before the response policies can be used, some security
parameters are registered with the DBMS as part of a one-
time registration phase. The details of the registration phase
are as follows: The parameter l is set equal to the number of
DBAs registered with the DBMS.4 Such requirement allows
any DBA to generate a valid signature share on a policy
object, thereby making our approach very flexible. Shoup’s
scheme also requires a trusted dealer to generate the security
parameters. This is because it relies on a special property of
the RSA modulus, namely, that it must be the product of
two safe primes. We assume the DBMS to be the trusted
component that generates the security parameters.5 For all
values of k, such that 2 � k � l� 1, the DBMS generates the
following parameters:

. RSA Public-Private Keys. The DBMS chooses p, q as
two large prime numbers such that

p ¼ 2p0 þ 1 and q ¼ 2q0 þ 1;

where p0 and q0 are themselves large primes. Let n ¼
p�q be the RSA modulus. Let m ¼ p0�q0. The DBMS
also chooses e as the RSA public exponent such that
e > l. Thus, the RSA public key is PK ¼ ðn; eÞ. The
server also computes the private key d 2 Z such that
de � 1 mod m.

. Secret Key Shares. The next step is to create the
secret key shares for each of the l DBAs. For this
purpose, the DBMS sets a0 ¼ d and randomly assigns
ai from f0; . . . ;m� 1g for 1 � i � k� 1. The numbers
fa0 . . . ak�1g define the unique polynomial pðxÞ of
degree k� 1, pðxÞ ¼

Pi¼k�1
i¼0 aix

i. For 1 � i � l, the
server computes the secret share, si, of each DBA,
DBAi, as follows:

si ¼ pðiÞ mod m:

The secret shares can be stored in a smartcard or a
token for every DBA, and submitted to the DBMS
when required to sign a policy. The other alternative,
that we implement in JTAM, is to let the DBMS store
the shares in the database encrypted with keys
generated out of the DBA’s passwords.6 Thus,

KAMRA AND BERTINO: DESIGN AND IMPLEMENTATION OF AN INTRUSION RESPONSE SYSTEM FOR RELATIONAL DATABASES 879

3. Although it is strongly discouraged, many popular DBMSs allow
DBAs to make ad-hoc updates to the system catalogs. For example, in
PostgreSQL 8.3, the system catalogs can be updated by a DBA if the
rolcatupdate column is set to “true” in the pg_authid catalog [9]. In Oracle 11g
Database, the system catalogs may be updated by users holding the SYS
account [11].

4. The registration of the DBAs (including assigning initial passwords)
will be typically handled by a DBA itself. The security parameters needed
for JTAM operations are presented as DBMS configuration options that may
also be set by any DBA. The scenario that we assume here is that there are
multiple administrators, each holding the DBA role, and thus having the
same level of privileges. We assume that the DBAs are individually trusted
to perform the administration tasks such as registration of DBAs, databse
configuration, etc since these tasks do not lead to the kind of conflict-of-
interest that we address in the paper.

5. In practice, only a small portion of the DBMS code base that deals with
JTAM operations needs to be trusted.

6. We use the widely used OpenPGP (RFC 4880) standard [15] to
generate high-entropy keys from the passwords, then use such keys to
encrypt the secret shares.

during the registration phase, each DBA must
submit its password to the DBMS for encrypting its
secret key shares. Using this strategy, whenever a
DBA needs to sign a policy for authorization, it
submits its password which is used by the DBMS to
decrypt the DBA’s secret share, and use that to
generate the correct signature share.

The three key observations regarding the registration
phase of JTAM are as follows: First, the security parameters,
that is, the public-private key pairs, and the secret shares,
need to be generated for every k value (2 � k � l� 1), and
not for every policy. This means that any policy that uses
the same value of k will have the same security parameters.
Second, the private key d is only used temporarily to
generate the secret key shares and is not stored by the
DBMS. Third, the registration phase needs to be performed
as an ACID database transaction.

3.2 Lifecycle of a Response Policy Object

In this section, we describe the signature share generation,
the signature share combining, and the final signature
verification operations, in the context of the administrative
lifecycle of a response policy object. The steps in the lifecycle
of a policy object are policy creation, activation, suspension,
alteration, and deletion. The lifecycle is shown in Fig. 1 using
a policy state transition diagram. The initial state of a policy
object after policy creation is CREATED. After the policy has
been authorized by k� 1 administrators, the policy state is
changed to ACTIVATED. A policy in an ACTIVATED state
is operational, that is, it is considered by the policy matching
procedure in its search for matching policies. If a policy
needs to be altered, dropped or made nonoperational, it
must be moved to the SUSPENDED state. The transition
from the ACTIVATED state to the SUSPENDED state must
also be authorized by k� 1 administrators, before which the
policy is in the SUSPEND IN-PROGRESS state. Note that a

policy in the SUSPEND IN-PROGRESS state is also
considered to be operational. From the SUSPENDED state,
a policy can be either moved back to the CREATED state or
it can be moved to the DROPPED state. A single adminis-
trator can move a policy to the CREATED state from the
SUSPENDED state, while a policy drop operation must be
authorized by k� 1 administrators (before which the policy
is in the DROP IN-PROGRESS state). We begin our detailed
discussion of a policy object’s lifecycle with the policy
creation procedure.

3.2.1 Policy Creation

The policy creation command has the following format:

Create Response Policy ½Policy Data� Jointly

Administered By k Users;

Policy Data refers to the interactive ECA response policy
conditions and actions that were described in Section 2.
Suppose that DBA1 issues such command and that k ¼ 3,
and l ¼ 5. DBA1 becomes the owner of the newly created
policy object. The newly created policy will be administered
by three users (including the owner). We define an
administrator of a policy as a user that has owner-like
privileges on the policy object. Owner-like privileges means
that the user has all privileges on the object along with the
ability to grant these privileges to other users.7 Note that the
DBAs are assumed to possess the owner-like privileges on
all database objects by default.

After the Create Response Policy command is issued, the
DBMS performs the following operations in a sequence:

1. It prompts DBA1 for its password.
2. It uses the password received at step 1 to decrypt the

encrypted secret share of DBA1 corresponding to the
value of k ¼ 3 to get s1.

3. It generates a cryptographic hash (such as SHA1) of
the policy. The hash is taken on all the policy
attributes (cf. Section 2) that need to be protected
from malicious modifications. Thus,

HðPolÞ ¼ SHA1ðPolicyID;Conditions;
InitialActionðsÞ; OptionalActionðsÞ;
k; StateÞ:

ð1Þ

Policy ID is a unique identifier generated by the
DBMS for every policy. The hash is taken on
the ACTIVATED policy state since that is the state
of the policy after the policy has been authorized for
activation by k� 1 administrators.

4. It creates a signature share onHðPolÞ using the secret
share s1 of DBA1. Let x ¼ HðPolÞ. The signature
share of DBA1, is WðDBA1Þ ¼ x2�s1 2 Qn, where
� ¼ l!, and Qn is the subgroup of squares in Z�n.
WðDBA1Þ does not leak any information about the
secret share s1 because of the intractability of the
generalized discrete logarithm problem [16].

The policy data along with the signature share and
HðPolÞ is stored in the sys_response_policy system catalog as

880 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

Fig. 1. Policy state transition diagram.

7. For example, SQL Server 2005 defines a CONTROL privilege for every
database object that confers owner-like privileges.

shown in Table 5. The column r stores the number of users
that have yet to authorize the policy. The initial value of r
after completion of the policy creation step is k� 1 ¼ 2.

3.2.2 Policy Activation

Once the policy has been created, it must be authorized for
activation by at least k� 1 administrators after which the
DBMS changes the state of the policy to ACTIVATED. The

policy activation command has the following format:

Authorize Response Policy ½Policy ID� Create;

Suppose that DBA3 issues such command. After the
command is issued, the DBMS performs the following
operations in a sequence:

1. It prompts DBA3 for its password.
2. It uses the password received in step 2 to decrypt the

encrypted secret share of DBA3 corresponding to
k ¼ 3 to get s3.

3. It creates a signature share on HðPolÞ using the
secret share s3 in a manner similar to the Create
Response Policy command. Let WðDBA3Þ denote the
signature share. WðDBA3Þ is also stored in sys_
response_policy system catalog as shown in Table 6.

4. It decrements the value in column r by 1.

A similar procedure is adopted when another adminis-
trator, DBA4, issues the Authorize Response Policy ½PolicyID�
Create command. When k� 1 administrators have author-
ized the policy for activation, the signature combining and
verification algorithms are executed (Section 3.2.3). If the
final signature, Wfinal, obtained after the signature combin-
ing procedure is valid, the DBMS changes the state of the
policy to ACTIVATED. The updated policy signature and
state are shown in Table 7.

3.2.3 Signature Combining and Verification

Let S be the set of DBAs that have submitted the
signatures shares on a policy; S ¼ fi1; . . . ; ikg � f1; . . . ; lg.8
Let x ¼ HðPolÞ 2 Z�n, and x2

ij
¼WðUijÞ

2 ¼ x4�sij . To com-
bine the signature shares, we compute w such that

w ¼ x
2�S

0;i1
i1

. . .x
2�S0;ik
ik

¼ x4�ð
P

j2S �
S
0;j
sij Þ;

where the �s are the integers defined as follows:

�Si;j ¼ �

Q
j02Snfjgði� jÞQ
j02Snfjgðj� j0Þ

2 Z; i 2 f0; . . . ; lgnS; j 2 S:

These values of � are derived from the standard

Lagrange polynomial interpolation formula [14]. Using the

Lagrange interpolation formula, we have

�:fðiÞ �
X

j2S
�Si;jfðjÞ mod m:

Thus,

we ¼ x4�ð
P

j2S �
S
0;jsij Þe

¼ x4�ð
P

j2S �
S
0;j
fðjÞ mod mÞe

¼ x4�ð�fð0Þe mod mÞ

¼ x4�2ðde mod mÞ

¼ xe0 ;

where, e0 ¼ 4�2 since de mod m � 1 (RSA property). Since

Shoup’s scheme is based on RSA threshold signatures, the

final signature is the classical RSA signature [16]. To

compute the final signature Wfinal ¼ y such that ye ¼ x,

we set y ¼ waxb where a and b are integers such that

e0aþ eb ¼ 1. This is possible since gcdðe; e0Þ ¼ 1. The values

of a and b are obtained from the standard euclidean

algorithm on e and e0 [16].
The final signature,Wfinal, is verified using the public key

ðn; eÞ corresponding to the value of k. We recreate the hash of

the policy, HðPolÞ, according to (1). If ðWfinalÞe ¼ HðPolÞ,
the signature is valid otherwise not.

3.2.4 Policy Suspension

To alter/drop a policy or to make it nonoperational, the

policy state must be changed to SUSPENDED. To change

the policy state to SUSPENDED, an administrator issues the

Suspend Response Policy [Policy ID] command. Suppose that

DBA2 issues this command. The sequence of steps followed

by the DBMS upon receiving this command is as follows:

1. It prompts DBA2 for its password.
2. It uses the password received in step 2 to decrypt the

encrypted secret share of DBA2 corresponding to
k ¼ 3 to get s2.

3. It creates a signature share, W ðDBA2Þ, on HðPolÞ
using the secret share s2 in a manner similar to the

KAMRA AND BERTINO: DESIGN AND IMPLEMENTATION OF AN INTRUSION RESPONSE SYSTEM FOR RELATIONAL DATABASES 881

TABLE 5
Sys_Response_Policy Catalog after Policy Creation

TABLE 6
Sys_Response_Policy Catalog after Policy Activation—I

TABLE 7
Sys_Response_Policy Catalog after Final Policy Activation

8. For example, S ¼ f1; 3; 4g since DBA1, DBA3, and DBA4 submitted
the signature shares on the policy.

Create Response Policy command; the difference in
this case is that the hash, HðPolÞ, is taken on the
SUSPENDED policy state.

4. It resets the value of r to k� 1 ¼ 2.
5. It changes the state of the policy to SUSPEND IN-

PROGRESS.

Note that a policy in the SUSPEND IN-PROGRESS state
is also considered to be operational. Thus, to allow for
verification of the policy integrity, the final signature,
Wfinal, that was obtained after the policy activation phase
is left unchanged in the sys_response_policy catalog.

A policy in the SUSPEND IN-PROGRESS state must be

authorized for suspension by at least k� 1 administrators

by executing the Authorize Response Policy [Policy ID]

Suspend command. The signature share generation, and

the signature combining operations for such command are

similar to that in the Authorize Response Policy [Policy ID]

Create command. When k� 1 administrators have sub-

mitted their signature shares, the shares are combined to get

the final signature, W 0
final. The sys_response_policy catalog is

then updated with the new final signature as shown in

Table 8.

3.2.5 Policy Alteration

An administrator can alter a policy in the SUSPENDED
state by executing the Alter Response Policy [Policy ID] [Policy
Data] command. Upon receiving such command, the DBMS,
creates a new hash, HðPolÞ, on the policy according to (1)
(with state set as ACTIVATED), generates a signature share
on HðPolÞ (for the administrator who has issued the
command), clears the existing final signature from the
sys_response_policy catalog, and changes the policy state to
CREATED. The policy activation procedure must now be
repeated for activating the policy.

3.2.6 Policy Drop

A response policy is dropped by executing the Drop

Response Policy [Policy ID] command. The sequence of steps

performed to drop a policy is similar to the steps performed

for policy suspension; the difference in this case is that the

hash, HðPolÞ, in (1) is taken on the DROPPED policy state.

Also, the final signature, W 0
final, obtained after the policy

suspension phase is left unchanged when the policy state is

DROP-IN PROGRESS. After the policy drop has been

authorized by k� 1 administrators, a new final signature,

W 00
final, is obtained and stored in the sys_response_policy

catalog. The DROPPED state is the final state in the lifecycle

of a policy, that is, a policy can not be reactivated after it has

been dropped.

3.3 Attacks and Protection

In this section, we describe possible attacks on JTAM and
strategies to protect from them. Recall that the threat
scenario that we address is that a DBA has all the privileges
in the DBMS, and thus it is able to execute arbitrary SQL
commands on the sys_response_policy catalog.

3.3.1 Signature Share Verification

It is possible for a malicious administrator to replace a valid
signature share with some other signature share that is
generated on a different policy definition. However, such
attack will fail as the final signature that is produced by the
signature share combining algorithm will not be valid. Note
that by submitting an invalid signature share, a malicious
administrator can block the creation of a valid policy. We do
not see this as a major problem since the threat scenario that
we address is malicious modifications to existing policies,
and not generation of policies themselves.

3.3.2 Final Signature Verification

A final signature on a policy is present in all the policy states
except the CREATED state. As described earlier, the final
signature is verified using the public key ðn; eÞ correspond-
ing to the value of k. The public key is assumed to be signed
using a trusted third party certificate that can not be forged.
Thus, if a malicious DBA replaces the server generated
public key, the final signature will be invalidated. Apart
from verifying the final signature immediately after policy
activation, suspension, and drop, the signature must also be
verified before a policy may be considered in the policy
matching procedure. Such strategy ensures that only the set
of response policies, that have not been tampered, are
considered for responding to an anomaly. Note that RSA
signature verification requires modular exponentiation of
the exponent e [17]. The overhead to carry out such modular
exponentiation increases with the number of bits set to one
in the exponent e. As we show later in our experiments, an
appropriate choice of e, such as 3, 17, or 65,537 can lead to a
very low signature verification overhead. However, the
cumulative overhead of verifying signatures on every policy
during the policy matching procedure may be high. An
alternative strategy is to create a dedicated DBMS process
that periodically polls the sys_response_policy table, and
verifies the signature on all policies.

3.3.3 Malicious Policy Update

A policy may be modified by a malicious DBA using the
SQL update statement. However, all policy definition
attributes that need to be protected (see Equation (1)) are
hashed and signed; therefore any modification to such
attributes through the SQL update command will invalidate
the final signature on the policy.

3.3.4 Malicious Policy Deletion

An authorized policy may be deleted by a malicious DBA
using the SQL delete command. However in JTAM, a policy
tuple is never physically deleted; only its state is changed to
DELETED. Thus, a signature on the policy-count can be
used to detect malicious deletion of policy tuples. The
detailed approach is as follows: When the Create Response
Policy command is executed, the DBMS counts the number

882 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

TABLE 8
Sys_Response_Policy Catalog after Final Authorization of

Policy Suspension

of policy tuples present in the database. It increments such
policy-count by one to account for the new policy being
created. A hash is taken on the new policy-count and state =
VALID, and a signature share is generated on such hash.
The signature share, policy id of the policy being created,
the k value of the policy being created, and the initial state =
INVALID are all stored in the sys_response_policy_count
catalog as shown in Table 9. These values replace the tuple
that is already present in the table. Note that the policy id
that is inserted in the sys_response_policy_count table
represents the latest policy that has been created. During
policy activation, the DBMS first checks if the policy id
present in sys_response_policy_count matches the id of the
policy currently being activated. If the check succeeds, it
counts the number of policy tuples in the database, and
generates a signature share on the hash of the policy-count,
and state = VALID. If the check fails, no signature share is
generated. Such strategy ensures that always the correct
policy-count is signed as multiple policies may be in
CREATED stage at the same time. The final signature on
the policy-count is generated when the ðk� 1Þth adminis-
trator activates the policy. The state of the policy-count
signature is then changed to VALID. The dedicated DBMS
process that verifies the individual policy signatures also
verifies the signature on the policy-count. If a policy tuple is
deleted, the signature on the policy-count is invalidated.

3.3.5 Signature Replay Attacks

A malicious DBA can create a copy of the final signature on
a policy. It can then replay the copied signature, that is, it
can replace the existing signature on the policy with the
copied signature and change the policy state to the state
corresponding to the copied signature. This attack is
possible since we allow alterations to an existing policy
object. To address this attack, we duplicate the policy state
to a system column of the sys_response_policy catalog. A
system column of a table is a column that is managed solely
by the DBMS and its contents can not be modified by any
user. In case the policy state in the system column does not
match the policy state in the column visible to the user, a
policy integrity violation is detected.

3.3.6 Policy Replay Attacks

A malicious DBA may insert a previously authorized policy
tuple, whose state has been changed to DROPPED, into the
sys_response_policy catalog. Such attack can be prevented as
follows: There is a unique policy id associated with each
policy tuple that is generated by the DBMS. If a malicious
DBA tries to insert a previously authorized policy tuple, the
DBMS will generate a fresh policy id for the new tuple.
Since the hash of the policy, HðPolÞ, takes into account the
policy id, the final signature on such maliciously inserted
policy tuple will be invalidated. In addition, since policy
tuples are not physically deleted, the policy id generated by
the DBMS is guaranteed to be unique.

4 POLICY MATCHING

In this section, we present our algorithms for finding the set
of policies matching an anomaly. Such search is executed by
matching the attributes of the anomaly assessment with the
conditions in the policies. We first state the policy matching
problem formally:

Policy matching problem. Let AA ¼ fA1; A2; . . . ; Ang be
the set of anomaly attributes. Let POL ¼ fPol1; Pol2; . . . ;
Polkg be the set of response policies. Let PR ¼
fPr1; Pr2; . . . ; Prmg be the set of all distinct policy predicates.
Let PoliðCÞ be the policy condition for a policy Poli (cf.
Definition 2.1). Let AAS : A1 ¼ a1; A2 ¼ a2; . . . ; An ¼ an be
the assessment of an anomaly submitted by the detection
mechanism to the response system. A policy Poli is said to
matchAAS ifPoliðCÞ ¼ true evaluated overAAS. The policy
matching problem is to find the set of all policies in POL that
match a given anomaly assessment AAS.

We first present details of our approach toward policy
storage in the DBMS. The policies are stored in the system
catalog tables; the main reason is that the PostgreSQL
DBMS maintains a cache of the catalog tables in its
bufferpool. Assume a policy database consisting of four
anomaly attributes, six policy predicates and four policies
as shown in Table 10. The graph shown in Fig. 2
conceptually describes how the policy cache is maintained.
The graph contains three types of nodes: attribute nodes,
predicate nodes, and policy nodes. A special start node is also

KAMRA AND BERTINO: DESIGN AND IMPLEMENTATION OF AN INTRUSION RESPONSE SYSTEM FOR RELATIONAL DATABASES 883

TABLE 9
Sys_Response_Policy_Count Catalog after Policy Creation

Fig. 2. Policy predicate graph example.

TABLE 10
Example Policy Database

added (denoted by s in Fig. 2) to the graph which is
connected to all the attribute nodes. There is an edge from
attribute node Ai to a predicate node Prj if Prj is a
predicate defined on Ai in the policy database. In addition,
there is an edge from a predicate node Prj to a policy node
Polk if Prj appears in the policy condition PolkðCÞ of policy
Polk in the policy database. This graph is used by the policy
matching algorithms to get a list of all the predicates
defined on an attribute, all the predicates belonging to a
policy, and all the policies that a predicate belongs to.

We now present details of our approach toward policy
matching. There are two variations of our policy matching
algorithm. The first algorithm, called the Base Policy
Matching algorithm, is described next.

4.1 Base Policy Matching

The policy matching algorithm is invoked when the
response engine receives an anomaly detection assessment.
For every attribute A in the anomaly assessment, the
algorithm evaluates the predicates defined on A. After
evaluating a predicate, the algorithm visits all the policy
nodes connected to the evaluated predicate node. If the
predicate evaluates to true, the algorithm increments the
predicate-match-count of the connected policy nodes by one.
A policy is matched when its predicate-match-count becomes
equal to the number of predicates in the policy condition.
On the other hand, if the predicate evaluates to false, the
algorithm marks the connected policy nodes as invalidated.
For every invalidated policy, the algorithm decrements the
policy-match-count9 of the connected predicates; the rationale
is that a predicate need not be evaluated if its policy-match-
count reaches zero.

4.2 Ordered Policy Matching

The search procedure in the base policy matching algorithm
does not go through the predicates according to a fixed
order. We introduce a heuristic by which the predicates are
evaluated in descending order of their policy-count; the
policy-count of a predicate being the number of policies that
the predicate belongs to. We refer to such heuristic as the
Ordered Policy Matching algorithm. The rational behind the
ordered policy matching algorithm is that choosing
the correct order of predicates is important as it may lead
to an early termination of the policy search procedure either
by invalidating all the policies or by exhausting all the
predicates. Note that the sorting of the predicates in
decreasing order of their policy-count is a pre-computation
step which is not performed during the runtime of the
policy matching procedure.

4.3 Response Action Selection

In the event of multiple policies matching an anomaly, we
must provide for a resolution scheme to determine the
response to be issued. We propose the following two rank-
based selection options that are based on the severity level
of the response actions:

1. Most Severe Policy (MSP). The severity level of a
response policy is determined by the highest
severity level of its response action. This strategy

selects the most severe policy from the set of
matching policies. Note that the response actions
described in Section 2.2 are categorized according to
their severity levels. Also, in the case of interactive
ECA response policies, the severity of the policy is
taken as the severity level of the Failure Action.

2. Least Severe Policy (LSP). This strategy, unlike the
MSP strategy, selects the least severe policy.

In our implementation, we provide the DBA with an
option to switch between the two choices.

5 IMPLEMENTATION AND EXPERIMENTS

We have extended the PostgreSQL 8.3 open source DBMS
[9] with our intrusion response mechanism. We have
introduced new commands in PostgreSQL for creation,
activation, suspension, and dropping of response policies.
We have also added six new system catalog tables that store
the response policy data. The catalogs and their purposes
are described in Table 11. We have instrumented the query
processing subsystem of PostgreSQL with our anomaly
detection and response mechanism. A user request, after
being parsed, passes through the detection mechanism. The
policy matching procedure is invoked for every request that
is detected as anomalous. We then apply the MSP or the
LSP option to choose a single policy out of the set of policies
returned by the policy matching algorithm.

5.1 Experimental Evaluation

The goal of the experimental evaluation is to measure the
overhead incurred by the base policy matching, and the
ordered policy matching algorithms. We also report experi-
mental results on the overhead of the signature verification
scheme in JTAM. In what follows, we first describe the
experimental setup, and then report the evaluation results.

5.1.1 Setup

We use the following six anomaly attributes for our
experimental evaluation: User, Client App, Source IP,
Database, Objs, and SQLCmd (see Table 1). The predicate
generation code randomly assigns set-valued data to these
anomaly attributes to create the policy predicates. The
policy generation code randomly assigns such predicates to
policy conditions to create the policies.

The experiments were conducted on a Intel(R) Cor-
e(TM)2 Duo CPU @ 2.33Ghz machine with 4GB of RAM.
The operating system was OpenSuse 10.3.

884 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

9. The policy-match-count of a predicate is the number of noninvalidated
policies that the predicate belongs to.

TABLE 11
Response Policy System Catalogs

5.1.2 Results

We perform three sets of experiments. The first two
experiments report and compare the overhead of the
policy matching algorithms. The third experiment reports
results on the overhead of the signature verification
mechanism in JTAM.

In the first experiment, the anomaly assessment is set
such that the number of matching policies for an anomaly is
kept constant at four. The number of predicates, and
correspondingly the number of policies, are varied in order
to assess the policy matching overhead time. Fig. 3 shows
the policy matching overhead for the two algorithms as a
function of the number of predicates. Fig. 4 reports the
number of predicates skipped as a function of the number
of predicates. As expected, the policy matching overhead
time increases linearly with the increase in the number of
predicates in the policy database. Interestingly, the number
of predicates skipped in both the algorithms is almost same.
Thus, counter-intuitively, the ordered policy matching
algorithm does not lead to a decrease in the number of
predicate evaluations. In fact, for larger number of pre-
dicates, the policy matching overhead of the ordered
predicate algorithm is higher than that of the base policy
matching algorithm. Such increase in matching overhead
may be explained by the fact that the predicates evaluated
by the ordered policy matching are more computationally
expensive than the ones evaluated by the base policy

matching algorithm. The key observation from this experi-
ment, however, is that predicate ordering based on the
policy-count parameter has no benefits in terms of decreas-
ing the overhead of the policy matching procedure.

In the second experiment, we keep the number of
predicates in the policy database constant at 60. The
number of policies is also kept constant at 20. The number
of matching policies is varied in order to assess the policy
matching overhead. Fig. 5 shows the policy matching
overhead for the two algorithms as a function of the
number of matching policies. As expected, the policy
matching overhead increases with the increase in the
number of matching policies. Moreover, in this experiment
as well, the overhead of the ordered policy matching
algorithm is higher than that of the base policy matching
algorithm. Fig. 6 reports the variation in the number of
predicates skipped by varying the number of matching
policies. For both the algorithms, the number of predicates
skipped by the search procedure decreases for increasing
numbers of matching policies. Such result is expected since
an increase in the number of matching policies leads to an
increasing number of predicate evaluations.

Overall, the fist two experiments confirm the low
overhead associated with our policy matching algorithms.
They also show that predicate ordering based on the
descending policy-count parameter has no significant impact
on reducing the overhead of the policy matching procedure.

KAMRA AND BERTINO: DESIGN AND IMPLEMENTATION OF AN INTRUSION RESPONSE SYSTEM FOR RELATIONAL DATABASES 885

Fig. 3. Experiment 1: Number of predicates versus policy matching
overhead.

Fig. 4. Experiment 1: Number of predicates versus number of predicates
skipped.

Fig. 5. Experiment 2: Number of matching policies versus policy

matching overhead.

Fig. 6. Experiment 2: Number of matching policies versus number of

predicates skipped.

We now report results on the overhead of the signature
verification scheme in JTAM. For this experiment, we set
k ¼ 2, l ¼ 5, and e ¼ 17. The size of the RSA modulus, n, is
set to 1,024 bits. For such setup, the signature verification
overhead for a single policy is approximately 0.17 ms. Such
overhead value confirms the low computational complexity
associated with the RSA signature verification scheme.
However, as mentioned in Section 3.3, the cumulative
overhead of verifying the signatures on every policy during
policy matching may be high. One approach to reduce the
signature verification overhead is by decreasing the size of
n (see Fig. 7). Such strategy, however, is not recommended
since 1,024 bits is the recommended size of n to ensure
sufficient security of the RSA algorithm. Therefore, a better
strategy is to create a dedicated DBMS process that
periodically polls the policy tables, and verifies the
signature on all the policies.

6 RELATED WORK

The concept of database response policies was first
introduced by us [7]. The current paper is a major extension
of our previous work. The policy matching algorithms in
the current paper take into account arbitrary predicates
while the scheme in [7] only considers equality predicates.
Also, the JTAM policy administration model presented in
this paper is a novel contribution.

The concept of fine-grained response actions such as
suspend, and taint has been introduced by us [8]. However,
the work in [8] presents the design and implementation of
an access control model that is capable of supporting such
fine-grained response actions.

Another approach toward addressing the problem of
insider threats from malicious DBAs is to apply the principle
of least privilege. The principle dictates that a user must be
assigned only those privileges that are necessary to serve its
legitimate purpose. This effectively means to restrict the
privileges of the DBAs, and to create new roles for
administration of response policy objects. Such approach
is followed by Oracle Database using the concept of a
protected schema for the administration of the database vault
policies [18]. Database vault is a mechanism introduced by
Oracle Database to reduce the risk of insider threats by
using policies that prevent the DBAs from accessing
application data. The database vault policy objects are

themselves stored in the DVSYS protected schema. A
protected schema guards the schema against improper use
of system privileges such as SELECT ANY TABLE, DROP
ANY, and so forth. Only the DVDSYS user and other
database vault roles can have the privileges to modify objects
in the DVSYS schema. The powerful ANY system privileges
for database definition language and data manipulation
language commands are also restricted in the DVSYS
protected schema. For further details on the administration
model of Oracle Database Vault, we refer the reader to [18].
Note that the Oracle Database Vault and the anomaly
response system presented in this paper are both policy-
driven mechanisms. Thus, an approach similar to Oracle
Database Vault may be followed to administer response
policies as well. However, there are some disadvantages in
following such an approach. First, since the approach is
preventive, it requires fundamental changes to the existing
access control mechanism of a DBMS. For example, the
semantics of the ANY system privilege in the Oracle
Database is required to be changed to ANY except the
protected schema objects. Second, even though the principle of
least privilege is a recommended security best practice, it is
often not complied with by many organizations. The reason
is that such practice requires an organization to invest in
additional manpower to assign users to the new roles that
can administer the objects in the protected schema. Such
strategy is not financially feasible for many organizations,
thereby leaving them exposed to the risk of insider threats
from malicious DBAs.

A discussion of the related work on threshold signature
schemes can be found in [12]. To the best of our knowledge,
ours is the first work that applies the technique of threshold
signatures for the administration of DBMS objects.

The policy matching problem is similar to the event
matching problem in content based publish-subscribe (pub-
sub) systems [19]. A subscription in a pub-sub system is
similar to a response policy, and an event is the anomaly
detection event in our system. Many algorithms have been
proposed to date for efficient matching of events to
subscriptions in pub-sub systems [19], [20], [21], [22], [23],
[24]. In what follows, we briefly discuss the applicability of
such algorithms to the policy matching problem.

An algorithm for event-matching based on the concept of
subscription trees is described in context of the GRYPHON
project [20]. The algorithm preprocesses the set of subscrip-
tions to build a subscription tree such that each node of the
tree is an elementary test on an event attribute. The leaves of
the subscription tree are the actual subscriptions. The
matching algorithm walks through the subscription tree to
find the set of matching subscriptions. Since no analysis of the
preprocessing algorithm is provided, it is not clear if the
order according to which subscriptions are chosen affects the
size of the subscription tree. Also, the scheme is formulated
only for elementary predicates, and it has been optimized
only for the equality predicates. However, for the policy
matching problem, we need to consider arbitrary predicates.

Many algorithms for content-based event matching are
described by Pereira et al. [21]. The focus of their main
algorithm is to improve the cache hit ratio of main memory
access, which is not our main concern since we store the
policies in the system catalogs, the contents of which are
cached by the DBMS in its main memory.

886 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

Fig. 7. Size of n (bits) versus signature verification overhead for a single

policy.

Our base policy matching algorithm is similar to the
counting algorithm proposed by Yan et al. [22]. However,
we provide an extension to the counting algorithm by
proactively eliminating predicates that no longer need to be
evaluated.

An algorithm for matching predicates in database rule
systems using a interval binary tree is proposed by Hanson
et al. [24]. The focus of the algorithm is on equality and
inequality predicates on totally ordered domains, whereas
our policy matching problem need to support arbitrary
predicates.

Event matching using Binary Decision Diagrams (BDD)
is proposed by Campailla et al. [23]. The scheme considers
arbitrary predicates, and also supports disjunctions in the
subscription language. We do not need to support disjunc-
tions; thus employing a BDD-based scheme will introduce
unnecessary complexity to our response system.

Event matching is also related to the problem of
continuous query processing in streaming databases [25].
In continuous query processing, the problem that is
addressed is matching multiple streaming tuples, belonging
to different relations, to the stored queries. This is different
(and much harder) from the policy matching problem in
which we only need to match a single tuple (anomaly
assessment) to the stored queries (policy conditions).

7 CONCLUSION AND FUTURE WORK

In this paper, we have described the response component of
our intrusion detection system for a DBMS. The response
component is responsible for issuing a suitable response to an
anomalous user request. We proposed the notion of database
response policies for specifying appropriate response ac-
tions. We presented an interactive Event-Condition-Action
type response policy language that makes it very easy for the
database security administrator to specify appropriate
response actions for different circumstances depending upon
the nature of the anomalous request. The two main issues
that we addressed in the context of such response policies are
policy matching, and policy administration. For the policy
matching procedure, we described algorithms to efficiently
search the policy database for policies matching an anom-
alous request assessment. We extended the PostgreSQL
open-source DBMS to implement our methods. Specifically,
we added support for new system catalogs to hold policy
related data, implemented new SQL commands for the
policy administration tasks, and integrated the policy
matching code with the query processing subsystem of
PostgreSQL. The experimental evaluation of our policy
matching algorithms showed that our techniques are
efficient. The other issue that we addressed is the adminis-
tration of response policies to prevent malicious modifica-
tions to policy objects from legitimate users. We proposed a
JTAM, a novel administration model, based on Shoup’s
threshold cryptographic signature scheme. We presented the
design and the implementation details of JTAM, and
reported experimental results on the efficiency of the policy
signature verification mechanism.

We plan to extend our work on the following lines. An
interactive response policy that requires a second factor of
authentication will provide a second layer of defense when

certain anomalous actions are executed against critical
system resources such as anomalous access to system catalog
tables. This opens the way to new research on how to
organize applications to handle such interactions for the case
of legacy applications and new applications. In the security
area there is a lot work dealing with retrofitting legacy
applications for authorization policy enforcement [26]; we
believe that such approaches can be extended to support such
an interactive approach. For new applications, one can devise
methodologies to organize applications that support such
interactions. Notice that, however, because our approach is
policy-based, the DBAs have the flexibility of designing
policies that best fit the way applications are organized.

We are currently in the process of implementing the
intrusion detection algorithms in the PostgreSQL DBMS as
part of our overall intrusion detection and response system
in a DBMS. As part of the future work, we intend to report
results on the overhead of the entire system on the
transaction processing capabilities of the DBMS.

ACKNOWLEDGMENTS

The authors would like to thank Abhilasha Bhargav-
Spantzel, Rahim Sewani, and Sarvjeet Singh for sharing
the threshold cryptography library.

REFERENCES

[1] A. Conry-Murray, “The Threat from within. Network Computing
(Aug. 2005),” http://www.networkcomputing.com/showArticle.
jhtml?articleID=166400792, July 2009.

[2] R. Mogull, “Top Five Steps to Prevent Data Loss and Information
Leaks. Gartner Research (July 2006),” http://www.gartner.com,
2010.

[3] M. Nicolett and J. Wheatman, “Dam Technology Provides
Monitoring and Analytics with Less Overhead. Gartner Research
(Nov. 2007),” http://www.gartner.com, 2010.

[4] R.B. Natan, Implementing Database Security and Auditing. Digital
Press, 2005.

[5] D. Brackney, T. Goan, A. Ott, and L. Martin, “The Cyber Enemy
within ... Countering the Threat from Malicious Insiders,” Proc.
Ann. Computer Security Applications Conf. (ACSAC). pp. 346-347,
2004.

[6] A. Kamra, E. Terzi, and E. Bertino, “Detecting Anomalous Access
Patterns in Relational Databases,” J. Very Large DataBases (VLDB),
vol. 17, no. 5, pp. 1063-1077, 2008.

[7] A. Kamra, E. Bertino, and R.V. Nehme, “Responding to
Anomalous Database Requests,” Secure Data Management, pp. 50-
66, Springer, 2008.

[8] A. Kamra and E. Bertino, “Design and Implementation of SAACS:
A State-Aware Access Control System,” Proc. Ann. Computer
Security Applications Conf. (ACSAC), 2009.

[9] “Postgresql 8.3. The Postgresql Global Development Group,”
http://www.postgresql.org/, July 2008.

[10] J. Widom and S. Ceri, Active Database Systems: Triggers and Rules for
Advanced Database Processing. Morgan Kaufmann, 1995.

[11] “Oracle Database Concepts 11g Release 1 (11.1),” http://
download.oracle.com/docs/cd/B28359_01/server.111/b28318/
datadict.htm, July 2009.

[12] V. Shoup, “Practical Threshold Signatures,” Proc. Int’l Conf. Theory
and Application of Cryptographic Techniques (EUROCRYPT), pp. 207-
220, 2000.

[13] R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk, “Robust and
Efficient Sharing of RSA Functions,” J. Cryptology, vol. 20, no. 3,
pp. 393-400, 2007.

[14] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of
Scientific Computing. Brooks Cole, 2001.

[15] “Openpgp Message Format. rfc 4800,” http://www.ietf.org/rfc/
rfc4880.txt, July 2009.

[16] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 2001.

KAMRA AND BERTINO: DESIGN AND IMPLEMENTATION OF AN INTRUSION RESPONSE SYSTEM FOR RELATIONAL DATABASES 887

[17] C.K. Koc, “High-Speed RSA Implementation,” Technical Report
tr-201, Version 2.0, RSA Laboratories, 1994.

[18] “Oracle Database Vault Administrator’s Guide 11g Release 1
(11.1),” http://download.oracle.com/docs/cd/B28359_01/
server.111/b31222/toc.htm, Jan. 2009.

[19] F. Fabret, F. Llirbat, J.A. Pereira, I. Rocquencourt, and D. Shasha,
“Efficient Matching for Content-Based Publish/Subscribe Sys-
tems,” technical report, INRIA, 2000.

[20] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, and T.D.
Chandra, “Matching Events in a Content-Based Subscription
System,” Proc. Symp. Principles of Distributed Computing (PODC),
pp. 53-61, 1999.

[21] J.A. Pereira, F. Fabret, F. Llirbat, and D. Shasha, “Efficient
Matching for Web-Based Publish/Subscribe Systems,” Proc. Int’l
Conf. Cooperative Information Systems (CooplS), pp. 162-173, 2000.

[22] T.W. Yan and H. Garcı́a-Molina, “Index Structures for Selective
Dissemination of Information under the Boolean Model,” ACM
Trans. Database Systems, vol. 19, no. 2, pp. 332-364, 1994.

[23] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient
Filtering in Publish-Subscribe Systems Using Binary Decision
Diagrams,” Proc. Int’l Conf. Software Eng. (ICSE), pp. 443-452, 2001.

[24] E.N. Hanson, M. Chaabouni, C.-H. Kim, and Y.-W. Wang, “A
Predicate Matching Algorithm for Database Rule Systems,” Proc.
ACM SIGMOD, vol. 19, no. 2, pp. 271-280, 1990.

[25] H.-S. Lim, J.-G. Lee, M.-J. Lee, K.-Y. Whang, and I.-Y. Song,
“Continuous Query Processing in Data Streams Using Duality of
Data and Queries,” Proc. ACM SIGMOD, pp. 313-324, 2006.

[26] V. Ganapathy, T. Jaeger, and S. Jha, “Retrofitting Legacy Code for
Authorization Policy Enforcement,” Proc. IEEE Symp. Security and
Privacy, pp. 214-229, 2006.

Ashish Kamra received the BE degree in
electronics from VNIT, India, in 2001. He is
currently working toward the PhD degree in the
School of Electrical and Computer Engineering
at Purdue University and is a member of the
Center for Education and Research in Informa-
tion Assurance and Security (CERIAS). His
research interests include database security,
intrusion detection and response, and protection
of computer systems from insider threats.

Elisa Bertino is professor of Computer Science
at Purdue University and serves as research
director of the Center for Education and Re-
search in Information Assurance and Security
(CERIAS). Previously, she was a faculty mem-
ber in the Department of Computer Science and
Communication of the University of Milan, where
she was the department head and director of the
DB&SEC laboratory. She has been a visiting
researcher at the IBM Research Laboratory

(now Almaden) in San Jose, at the Microelectronics and Computer
Technology Corporation, at Rutgers University, and at Telcordia
Technologies. Her main research interests include security, privacy,
digital identity management systems, database systems, distributed
systems, and multimedia systems. In those areas, she has published
more than 400 papers in all major refereed journals, and in proceedings
of international conferences and symposia. She is a coauthor of the
books Object-Oriented Database Systems—Concepts and Architec-
tures (Addison-Wesley International Publ., 1993), Indexing Techniques
for Advanced Database Systems (Kluwer Academic Publishers, 1997),
Intelligent Database Systems (Addison-Wesley International Publ.,
2001), and Security for Web Services and Service Oriented Architec-
tures (Springer, 2009). She has been a co-editor-in-chief of the Very
Large Database Systems (VLDB) Journal from 2001 to 2007. She
serves, or has served, on the editorial boards of several scientific
journals, incuding the IEEE Internet Computing, the IEEE Security and
Privacy, the IEEE Transactions on Knowledge and Data Engineering,
the ACM Transactions on Information and System Security, the ACM
Transactions on Web, Acta Informatica, and the Parallel and Distributed
Database Journal. She is a fellow of the IEEE and a fellow of the ACM
and has been been named a Golden Core member for her service to the
IEEE Computer Society. She received the 2002 IEEE Computer Society
Technical Achievement Award “for outstanding contributions to data-
base systems and database security and advanced data management
systems” and the 2005 IEEE Computer Society Tsutomu Kanai Award
“for pioneering and innovative research contributions to secure
distributed systems.” She is currently serving on the Board of Governors
of the IEEE Computer Science Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

888 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

