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Steganographic Schemes
for File System and B-Tree

HweeHwa Pang, Kian-Lee Tan, Member, IEEE Computer Society, and Xuan Zhou

Abstract—While user access control and encryption can protect valuable data from passive observers, these techniques leave visible
ciphertexts that are likely to alert an active adversary to the existence of the data. This paper introduces StegFD, a steganographic file
driver that securely hides user-selected files in a file system so that, without the corresponding access keys, an attacker would not be
able to deduce their existence. Unlike other steganographic schemes proposed previously, our construction satisfies the prerequisites
of a practical file system in ensuring the integrity of the files and maintaining efficient space utilization. We also propose two schemes
for implementing steganographic B-trees within a StegFD volume. We have completed an implementation on Linux, and results of the
experiment confirm that StegFD achieves an order of magnitude improvements in performance and/or space utilization over the

existing schemes.

Index Terms—Steganography, plausible deniability, security, access control, StegFD, StegBtree.

1 INTRODUCTION

USER access control and encryption are standard data
protection mechanisms in current file system products,
such as the Encrypting File System (EFS) in Microsoft
Windows 2000 and XP. These mechanisms enable an
administrator to limit user access to a given file or directory,
as well as the specific types of actions allowed. However,
access control and encryption can be inadequate where
highly valuable data is concerned. Specifically, an en-
crypted file in a directory listing or an encrypted disk
volume is itself evidence of the existence of valuable data;
this evidence could prompt an attacker to attempt to
circumvent the protection or, worse, coerce an authorized
user into unlocking it. An administrator may also inten-
tionally or inadvertently grant access permission to other
users in contradiction to the wishes of the owner, for
example, by simply adding users to a protected file’s access
control list or to the group that the owner gives access
permission to.

In order to protect data against such security threats, we
would like to have a file system that grants access to a
protected directory/file only if the correct password or
access key is supplied. Without it, an adversary could get
no information about whether the protected directory/file
ever exists, even if the adversary understands the hardware
and software of the file system completely, and is able to
scour through its data structures and the content on the raw
disks. Thus, a user acting under compulsion would be able
to plausibly deny the existence of hidden information; he
can disclose only less sensitive files, e.g., his address book,
but remain silent on valuable content like budget data, and
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the adversary would not know that the user has withheld
information. Unauthorized users and even the adminis-
trators would also be unable to gain access to the data.
Steganography, the art of hiding information in ways that
prevent its detection, offers a way to achieve the desired
protection. It is a better defense than cryptography
alone—while cryptography scrambles a message so it
cannot be understood, steganography goes a step further
in making the ciphertext invisible to unauthorized users.

There have been a number of proposals for stegano-
graphic file systems in recent years [7], [13]. To support the
steganographic property, these proposals have had to make
a number of design decisions that compromise the practi-
cality of the file systems, resulting in large increases in I/
O operations, low effective storage space utilizations, and
even risk of data loss as the file system itself could write
over hidden files. With such compromises, it is unlikely that
the proposed schemes could move beyond niche applica-
tions into mass-market commercial file systems that are
expected to manage large volumes of data reliably and
efficiently.

In this paper, we introduce StegFD, a scheme to
implement a steganographic file system that enables users
to selectively hide their directories and files so that an
adversary would not be able to deduce their existence. To
ensure its practicality, StegFD is designed to meet three key
requirements—it should not lose data or corrupt files, it
should offer plausible deniability to owners of protected
directories/files, and it should minimize any processing
and space overheads. StegFD excludes hidden directories
and files from the central directory of the file system.
Instead, the metadata of a hidden directory/file object is
stored in a header within the object itself. The entire object,
including header and data, is encrypted to make it
indistinguishable from unused blocks to an observer. Only
an authorized user with the correct access key can compute
the location of the header and access the directory/file
through the header. We have implemented StegFD on the
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Linux operating system, and extensive experiments confirm
that StegFD indeed produces an order of magnitude
improvements in performance and/or space utilization
over the existing schemes.

A preliminary version of this paper appears in [15]. (We
have renamed our steganographic file system to StegFD to
avoid confusion with the StegFS in [13].) There, we
presented only StegFD. We have extended the paper to
address how B-trees can be supported within a StegFD
volume. We introduce two schemes for implementing
steganographic B-trees and also report a performance study
to evaluate the proposed B-tree schemes.

The remainder of this paper is organized as follows:
Section 2 summarizes related work, including classical
approaches to steganography, in general, and proposals for
a steganographic file system, in particular. Our StegFD file
system is introduced in Section 3, together with a discussion
on some potential limitations of StegFD and ways to work
around them. Section 4 presents our StegFD implementa-
tion on the Linux operating system, and profiles StegFD’s
performance characteristics. In Section 5, we present
extensions to StegFD to support B-trees. Finally, Section 6
concludes the paper and discusses future work.

2 REeLATED WORK

Current operating systems allow users to specify access
policies for their directories and files. For example, a Unix
user can set read, write, and execute permissions for the
owner, users in the same group, and other users, while
Windows 2000 allows a directory owner to specify read or
modify permissions for a list of users. These access control
mechanisms can be extended by or complemented with file
encryption. Encrypted file system products include the
Encrypting File System (EFS) in Windows 2000/XP [3] that
encrypts selected files within a folder using password or
public key-based techniques, and E4M [2] and PGPDisk [4]
that maintain separate encrypted disk volumes, among
others. While access control and encryption can safeguard
the content of protected folders, an unauthorized observer
can still establish their existence and coerce the owner(s)
into unlocking them.

Steganography provides a countermeasure against this
vulnerability, by preventing an attacker from verifying
whether a user acting under compulsion actually discloses
all of the data. Derived from a Greek word that literally
means “covered writing,” steganography is about conceal-
ing the existence of messages and encompasses a wide range
of methods like invisible ink, microdots, covert channels,
and character arrangement. This contrasts with cryptogra-
phy, which is about concealing the content of messages.
While the practice of steganography dates back many
centuries, the modern scientific formulation was first given
in [18]. Since then, many studies have investigated ways of
embedding a secret message, be it an electronic watermark,
a covert communication, or a serial number, within still
images [12], text [9], audio [19], and video [11].

The classical approaches to steganography are concerned
with embedding relatively small messages within large
cover texts, e.g., using the least significant bit of the pixels in
an image to hide copyright information. While some

products apply these approaches directly to secure data
files, e.g., DriveCrypt [1] is capable of hiding entire disk
volumes in music files, the resulting overhead in storage
space is unacceptable for a general-purpose file system that
needs to hold large volumes of data with high space usage
efficiency.

In [7], Anderson et al. proposed two schemes for
implementing steganographic file systems. Both schemes
allow a user to associate a password with a file or directory
object, such that requests for the object will be granted only
if accompanied by the correct password. An attacker who
does not have the matching object name and password, and
lacks the computational power to guess them, cannot
deduce from the raw disk data whether the named object
even exists in the file system. The first scheme initializes the
file system with a number of randomly generated cover
files. When a new object is deposited, it is embedded as the
exclusive-or of a subset of the cover files, where the subset
is a function of the associated password. Compared to the
classical steganography techniques, this scheme entails a
lower space overhead. Since each cover file can be used
repeatedly by various hidden objects, the system can
actually accommodate as many objects as there are cover
files. However, the performance penalty is very high as
every file read or write translates into I/O operations on
multiple cover files.

In contrast, the second scheme in [7] writes the blocks of
a hidden file to absolute disk addresses given by some
pseudorandom process. An implementation based on the
second scheme was reported in [13]. The problem with this
scheme is that different files could map to the same disk
addresses, thus causing data loss. While the risk can be
controlled by replicating the hidden files and by limiting
the loading factor, it cannot be eliminated completely. In
[10], Hand and Roscoe extended the scheme to provide
better resilience on a peer-to-peer platform, by replacing
simple replication with the information dispersal algorithm
(IDA) [16]. Using IDA, a file owner chooses two numbers
m > n and encodes the hidden file into m cipher-files such
that any n of them suffice to reconstruct the hidden file.
However, this is achieved at the expense of higher storage
and read /write overheads, and there is still the possibility
of data loss when more than (m —n) cipher-files get
corrupted.

3 STEGFD: STEGANOGRAPHIC FILE DRIVER

In this section, we present StegFD, a practical scheme for
implementing a general-purpose steganographic file sys-
tem. Our scheme is designed to satisfy three key objectives:

1. StegFD should not lose data or corrupt files.

2. StegFD should hide the existence of protected
directories and files from users who do not possess
the corresponding access keys, even if the users are
thoroughly familiar with the implementation of the
file system.

3. StegFD should minimize any processing and space
overheads.

To hide the existence of a directory/file, it should be

excluded from the central directory of the file system.
Instead, StegFD maintains the hidden directory/file object’s
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Fig. 1. Overview of the StegFD file system.

structure, e.g., its inode table, in a header within the object
itself. Similarly, all records pertaining to the object, for
example, usage statistics, should also be isolated within the
object instead of being written to common log files. The
entire object, including header and data, is encrypted to
make it indistinguishable from unused blocks in the file
system to an unauthorized observer. Only a user with the
access key is able to locate the file header and, from there,
the hidden directory/file. To simplify the description, we
will henceforth focus on hidden files, with the under-
standing that the discussion applies equally to hidden
directories.

3.1 File System Construction

Fig. 1 gives an overview of the StegFD file system. The
storage space is partitioned into standard-size blocks, and a
bitmap tracks whether each block is free or has been
allocated—a 0 bit indicates that the corresponding block is
free, while a 1 bit signifies a used block. All the plain files
are accessed through the central directory, which is
modeled after the inode table in Unix. Hidden files are
not registered with the central directory, though the blocks
occupied by them are marked off in the bitmap to prevent
the space from being reallocated.

When the file system is created, randomly generated
patterns are written into all the blocks so that used blocks
do not stand out from the free blocks. Furthermore, some
randomly selected blocks are abandoned by turning on
their corresponding bits in the bitmap. These abandoned
blocks are intended to foil any attempt to locate hidden data
by looking for blocks that are marked in the bitmap as
having been assigned, yet are not listed in the central
directory. The higher the number of abandoned blocks, the
harder it is to succeed with such a brute-force examination
for hidden data. However, this has to be balanced with
space utilization considerations. In practice, the number of
abandoned blocks may be determined by an administrator,
or set randomly by StegFD.

StegFD additionally maintains one or more dummy
hidden files that it updates periodically. This serves to
prevent an observer from deducing that blocks allocated
between successive snapshots of the bitmap that do not
belong to any plain files must hold hidden data. The
number of dummy hidden files can also be set manually or
automatically. Note that dummy files do not eliminate the
need for abandoned blocks—whereas dummy files are
maintained by StegFD and could be vulnerable to an
attacker with administrator privileges, abandoned blocks
offer extra protection because they cannot be traced.

--DHF: Dummy HF ~ --AB: Abandoned Block

In the example in Fig. 1, the file system contains two
hidden user files, a dummy hidden file and three plain files,
each of which is comprised of one or more disk blocks.
There are also abandoned blocks scattered across the disk.

The structure of a hidden file is shown in Fig. 2. Each
hidden file is accessed through its own header, which
contains three data structures:

1. a link to an inode table that indexes all the data

blocks in the file,

2. a signature that uniquely identifies the file, and

3. alinked list of pointers to free blocks held by the file.

All the components of the file, including header and
data, are encrypted with an access key to make them
indistinguishable from the abandoned blocks and dummy
hidden files to unauthorized observers.

Since the hidden file is not recorded in the central
directory, StegFD must be able to locate the file header
using only the (physical) file name and access key. During
file creation, StegFD supplies a hash value computed from
the file name and access key as seed to a pseudorandom
block number generator, and checks each successive
generated block number against the bitmap until the file
system finds a free block to store the header. Once the
header is allocated, subsequent blocks for the file can be
assigned randomly from any free space by consulting the
bitmap, and linked into the file’s inode table. To prevent
overwriting due to different users issuing the same file
name and access key, the physical file name is derived by
concatenating the user id with the complete path name of
the file.

To retrieve the hidden file, StegFD once again inputs the
hash value computed from the file name and access key as
seed to the pseudorandom block number generator and
looks for the first block number that is marked as assigned
in the bitmap and contains a matching file signature. The

Header

Free Blocks List

Inode Table

Signature

Free Block

Fig. 2. Structure of a hidden file.
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Fig. 3. Directory structure of StegFD.

initial block numbers given by the generator may not hold
the correct file header because they were unavailable when
the file was created. Thus, the signature, created by hashing
the file name with the access key, is crucial for confirming
that the correct file header has been located. To avoid false
matches, the file signature has to be a long string. A one-
way hash function is used to generate the signature so that
an attacker cannot infer the access key from the file name
and the signature. Examples of such hash functions include
SHA [6] and MD?5 [17].

Another characteristic of a hidden file is that it may hold
on to free blocks. Here, the intention is to deter any intruder
who starts to monitor the file system right after it is created
and, hence, is able to eliminate the abandoned blocks from
consideration, then continues to take snapshots frequently
enough to track block allocations in between updates to the
dummy hidden files. Such an intruder would probably be
able to isolate some of the blocks that are assigned to hidden
files. By maintaining an internal pool of free blocks within a
hidden file, StegFD prevents the intruder from distinguish-
ing blocks that contain useful data from the free blocks.
When a hidden file is created, StegFD straightaway
allocates several blocks to the file. These blocks, tracked
through a linked list of pointers in the file header, are
selected randomly from the free space in the file system so
as to increase the difficulty in identifying the blocks
belonging to the file and the order between them. As the
file is extended, blocks are taken off the linked list randomly
for storing data or inodes until the number of free blocks
falls below a preset lower bound, at which time the internal
pool is topped up. Conversely, when the file is truncated,
the freed blocks are added to the internal pool until it
exceeds an upper bound, wherein some of the free blocks
are returned to the file system.

3.2 Directory Support for File Sharing

While StegFD incorporates several features to safeguard
files that are hidden by a user, it is most effective in a
multiuser environment. This is because, when many blocks
are allocated for hidden files, an attacker may be able to
estimate the amount of useful data in these files, but there is
no way to ascertain just how much of that belongs to any
particular user. Hence, a user acting under coercion is likely
to have a lot of leeway in denying the existence of valuable
data that is accessible by him.

One of the natural requirements of a multiuser system is
the sharing of hidden files among users. As a user may
want to share only selected files, StegFD secures each
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Fig. 4. File sharing in StegFD.

hidden file with a randomly generated file access key (FAK)
rather than the user’s access key, so that the file name and
FAK pair can be shared among multiple users.

Fig. 3 depicts the directory structure that StegFD
implements to help users track their hidden files. StegFD
allows a user to own several user access keys (UAK). For
each UAK, StegFD maintains a directory of file name and
FAK pairs for all the hidden files that are accessed with that
UAK. The entire directory is encrypted with the UAK and
stored as a hidden file on the file system. The UAKs could
be managed independently, for example, stored in separate
smart cards for maximum security. Alternatively, to make
the file system more user-friendly, UAKs belonging to a
user could be organized into a linear access hierarchy such
that, when the user signs on at a given access level, all the
hidden files associated with UAKs at that access level or
lower are visible. Thus, under compulsion, the user could
selectively disclose only a subset of his UAKs. Without
knowing how many UAKSs the user owns, the attacker
would not be able to deduce that the user is holding back
some UAKs.

To share a hidden file with another user, the owner has
to release its file name and FAK pair to the recipient. Since
neither the owner nor StegFD has the UAK of the recipient,
the sharing cannot be effected automatically. Instead, the
file information is encrypted with the recipient’s public key,
and the resulting ciphertext is sent to the recipient, for
example, via email. Using a StegFD utility, the recipient
then decrypts the ciphertext with his private key and
associates the hidden file with his own UAK, at which time
the file information is added to the UAK’s directory and the
ciphertext is destroyed. The practice of transmitting the file
information is a relatively weak point in StegFD, as the
ciphertext could alert an attacker to the existence of the
hidden file. However, as each hidden file has its own FAK,
a compromised ciphertext does not expose other hidden
files in StegFD. The file sharing mechanism is summarized
in Fig. 4.

Finally, when the owner of a hidden file decides to
revoke the sharing arrangement, StegFD first makes a new
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copy with a fresh FAK and possibly a different file name,
then removes the original file to invalidate the old FAK. The
outdated FAK will be deleted from the directories of other
users the next time they log in with their UAKSs.

3.3 File System Backup and Recovery

Since the hidden files in StegFD are shielded from even the
system administrator, the usual method of backing up a file
by copying its content no longer works for them. Yet, a
brute force approach of saving the image of the entire file
system would be too time-consuming, in view of the ever-
growing capacity of modern storage devices.

StegFD saves the image of only those blocks that are
allocated in the bitmap but do not belong to any plain file in
the central directory. Plain files are still backed up by
copying their content. This limits the overhead of StegFD to
the space that is occupied by abandoned blocks, dummy
hidden files, and free blocks held within the user hidden
files.

To recover a damaged file system, StegFD first restores
the image of the abandoned and hidden blocks to their
original addresses. This is necessary because the hidden
files contain their own inode tables that cannot be adjusted
by the recovery process to reflect new block assignments.
The plain files are reconstructed last, possibly at new block
addresses.

Many existing file systems provide data recovery tools to
fix accidental errors. For example, if the file header is lost or
corrupted, a regular file system can always track the lost
chains and recover the lost file. StegFD can also support
recovery by introducing some redundancy: The header of a
hidden file can be replicated and placed in pseudorandom
locations derived from its FAK. Thus, if the file header is
corrupted, the replica can be retrieved to recover the hidden
file. Additionally, a signature can be inserted in each data
block, so that, if necessary, a hidden file can be recovered by
scanning the disk volume for blocks with matching
signatures.

3.4 Potential Limitations of StegFD

While StegFD offers an extra feature over a “vanilla” file
system in hiding the existence of protected files, this is
achieved at the expense of introducing a number of
limitations:

2

e All the hidden files must be restored together; it is
not possible to roll back hidden files selectively. A
workaround is to restore all the hidden files to a
temporary volume, from where the user can copy
the required files over to the permanent StegFD
volume.

o The file system is unable to defragment hidden files
to improve their retrieval efficiency, without coop-
eration from the users who possess the file access
keys. This is a common problem among secure file
system products. A solution is to employ a key
recovery mechanism (e.g., [21]) that allows a user to
deposit a copy of his UAK with several managers
through a secret sharing scheme. To reconstruct the
UAK subsequently, concurrence of some minimum

+ User space

| System Call Interface |

VES

| Minix ‘ |Ext2FS| |StegFD| Kernel

Buffer cache

E | Disk iverI | | Disk Ver H‘

: Hardware

____________________________________________

Fig. 5. StegFD implementation.

number of those managers is needed, thus ensuring
the security of the UAK.

e The file system cannot remove hidden files belong-
ing to expired user accounts without cooperation
from the users who possess the file access keys.
Again, this limitation is common for secure file
system products and can be addressed by a key
recovery mechanism.

4 SYSTEM IMPLEMENTATION AND PERFORMANCE
EVALUATION

This section begins with a description of an implementation
of StegFD, then proceeds to present results from some of the
more interesting experiments.

4.1 System Implementation

We have implemented StegFD on the Linux kernel 2.4; the
code is available for public download at the StegFD Web
site (http://xenal.ddns.comp.nus.edu.sg/SecureDBMS/).
We have used SHA256 [6] as the pseudorandom number
generator for locating the hidden object (the seed is
recursively hashed to generate the pseudorandom num-
bers), and the block cipher for encrypting data blocks is
based on AES [5]. Fig. 5, adapted from [13], shows the
system architecture. It is implemented as a file system
driver between the virtual file system (VES) and the buffer
cache in the Linux kernel, alongside other file system
drivers like Ext2fs [8] and Minix [20]. StegFD implements
all the standard file system APIs, such as open() and read(),
so it is able to support existing applications that operate
only on plain files. In addition, StegFD introduces several
steganographic file system APIs for creating hidden
directories/files, converting between hidden and plain
directories/files, revealing hidden directories/files, and
sharing hidden directories/files. Details of the API can also
be found at the StegFD Web site.
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TABLE 1
Physical Resource Parameters
| Parameter | Value |
Model of the CPU Intel Pentium 4
Clock speed of the CPU 1.6 GHz
Type of the hard disk IBM ATA/IDE
Capacity of the hard disk 60 GB

4.2 Experiment Set-Up

To evaluate the performance of StegFD, we ran a series of
experiments with various workloads on an Intel PC. The
key parameters of the hardware are listed in Table 1, while
Table 2 summarizes the workload parameters. Note, in
particular, that we expect many file servers to use a block
size of 1 KBytes—the allocation unit is 1 KBytes in NTFS
and 512 Bytes or 1 KBytes in Unix—hence, we set that as the
default. However, we will also experiment with larger block
sizes to study how StegFD would perform with other file
systems (the allocation units in FAT16 and FAT32 are
32 KBytes and 8 KBytes, respectively).

For comparison purposes, we shall benchmark against
the native file system in Linux and the two schemes
proposed in [7]—StegCover hides each file among 16 cover
files as recommended by the authors, and StegRand that
writes a hidden file to absolute disk addresses given by a
pseudorandom process and replicates the file to reduce data
loss from overwritten blocks (see Section 2). As for the
native Linux file system, its performance provides an upper
bound to what any file protection scheme can achieve at
best; we shall examine two separate cases—CleanDisk and
FragDisk. With CleanDisk, files are loaded onto a freshly
formatted disk volume and occupy contiguous blocks; this
is intended to highlight the best possible performance limit.
In contrast, FragDisk reflects a well-used disk volume
where files are fragmented, and is simulated by breaking
each file into fragments of eight blocks.

The primary performance metrics for the experiments
are:

1. the effective space utilization, i.e., the aggregate size
of the unique data files divided by the capacity of the
disk volume;

2. the file access time, defined as the time taken to read
or write a file, averaged over 1,000 observations (the
normalized file access time is the file access time
divided by the file size);

3. the CPU consumption, defined as the CPU’s nonidle
time; and

4. the CPU utilization, defined as the CPU consump-
tion divided by the total elapsed time.

4.3 Effective Space Utilization

We begin our investigation with an experiment to profile
the space utilization of the steganographic file systems.
Here, the size of the disk volume is set to 25 GBytes, while
the file sizes vary uniformly between 1 and 2 MBytes.

Let us first examine the StegCover scheme. Since the cover
files must be big enough to accommodate the largest data file,
the most efficient space utilization is achieved by setting the
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TABLE 2

Workload Parameters
Parameter Default
Size of each disk block 1 KBytes
Size of each file (1, 2] MBytes
Capacity of the disk volume 25 GBytes
Number of files in the file system 2000
File access pattern Interleaved
Number of concurrent users 1

cover files to 2 MBytes. With file sizes in the range of (1, 2]
MBytes, each set of cover files can be 50 to 100 percent
utilized, thus giving an average space utilization of 75 per-
cent. While we can probably improve upon the original
StegCover scheme by packing several files into each set of
cover files, and by letting large files span multiple sets of
cover files, that would introduce indexing complexities and
performance penalties, and is beyond the scope of our work.

Turning our attention to StegRand, we note that its
resilience against data corruption can be improved by file
replication. Its effective space utilization is the space
utilization when the first data block is irrecoverably
corrupted—that is when StegRand has just passed the limit
where it can safely recover all its hidden files and beyond
which more files will be corrupted and lost permanently. As
reported in [7], with a replication factor of 4, the space
utilization can only reach seven percent for a disk with
1,000,000 blocks. Experiments on our disk volume compris-
ing 25,000,000 blocks show that the average space utilization
cannot exceed four percent even with a replication factor of
16. It is reasonable that larger storage space produces lower
space utilizations since block corruptions occur more
frequently in a disk volume made up of more blocks than
one with fewer blocks.

Finally, we consider the StegFD scheme. Here, the only
storage overheads are incurred by the abandoned blocks,
the dummy hidden files, the inode structures, and the free
blocks held within the hidden files. Since there is no danger
of data blocks being overwritten, all of the remaining space
can be used for useful data. Assuming that the percentage
of abandoned blocks in the disk volume is one percent, the
dummy hidden files occupy another 1 percent of disk space,
and each hidden file contains a maximum of 10 free blocks,
StegFD is able to consistently achieve more than 80 percent
space utilization.

To summarize, we have arrived at a couple of observa-
tions. First, the StegCover scheme cannot achieve full space
utilization without extending it to perform file packing and
spanning. Second, StegRand works reliably only when the
disk volume is very sparsely populated; file servers that are
typically formatted with a 1 KByte block size can achieve
only four percent space utilization for a 25 GByte volume,
and less for larger disks, before data corruption sets in.
Third, the proposed StegFD is capable of achieving higher
space utilizations than StegCover and is at least 20 times
more space efficient than StegRand.
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4.4 Performance Analysis

Having demonstrated StegFD’s superior space utilization,
we now focus on its performance characteristics. This
experiment is intended to study how well it works, relative
to the native file system and the other steganographic
schemes, on file servers where I/O operations from several
users or applications are interleaved. For StegCover, the
number of cover files is 16, while a replication factor of 4 is
used for StegRand, both according to the authors’ recom-
mendation in [7]. The disk volume size and the block size
are set to 25 GBytes and 1 KBytes, respectively, while the
file sizes vary uniformly between 1 and 2 MBytes.

Figs. 6a and 6b give the read and write access times,
respectively, for the various file systems. Since StegCover
spreads each hidden file among multiple cover files, every
file operation translates to several disk I/Os; hence, its read
and write access times are very much worse than the rest.
As for StegRand, its read performance is no better than
StegFD’s due to the need to hunt for an intact replica when
the primary copy of a file is found to be corrupted, whereas
the write access times are much worse because all the
replicas must be updated.

As for StegFD, its access times are slower than those of
CleanDisk and FragDisk under very light load conditions as
they produce sequential I/Os on contiguous data blocks,
particularly for read operations that benefit from the read-
ahead feature of the disk. However, the differentiation
diminishes with increased workload, as file operations
become increasingly interleaved. In fact, StegFD matches
both CleanDisk and FragDisk from 16 concurrent users
onwards for read operations. For write operations, the
performance of StegFD also converges toward those of
CleanDisk and FragDisk with more concurrent users.
Finally, the relative trade offs between the various schemes
are independent of the file size, as shown in Figs. 7a and 7b
(for single user context).

In summary, this experiment shows that both of the
previous steganographic schemes introduce very high read
and/or write penalties and are not suitable for file servers

'

400 |- B
€leanDisk /
/ FragDisk ------
i i StegCover -+
300 / /' StegRand -

I

access time (S)

number of users

(b)

that must handle heavy loads. In contrast, StegFD is a
practical steganographic file system that delivers similar
performance to the native Linux file system in a multiuser
environment.

4.5 Sensitivity to File Access Patterns

The next experiment is aimed at discovering the sensitivity
of the various file systems” performance to the file access
pattern. Specifically, we are looking at a situation where
each file is retrieved in its entirety before the next file is
opened, as may happen in a very lightly loaded file server.
We fix the number of concurrent users at 1, while
maintaining the other workload parameters at their settings
in the previous experiment.

Figs. 8a and 8b show the read and write access times for
the various file systems, with the file size fixed at 1 MBytes.
Here, CleanDisk delivers the best performance as expected
since all its files occupy contiguous blocks. FragDisk, which
breaks each file into fragments of eight blocks, is slower due
to the overhead in seeking to each fragment. This indicates
that, as the file system gets more fragmented, its perfor-
mance would gradually degrade to that of StegFD even in
single-user environments where file operations are not
interleaved. The difference in performance is more pro-
nounced with small block sizes where FragDisk has to
perform more fragment seeks, and StegFD and StegRand
incur more block seeks.

This experiment demonstrates that, while StegFD
achieves similar performance to the Linux file system in a
multiuser environment, the penalty that StegFD incurs in
hiding data files is noticeable when the load is so light that
file I/Os are not interleaved. Even then, StegFD still delivers
acceptable access times and outperforms the previous
steganographic schemes significantly.

4.6 CPU Usage

The last set of experiments aims to evaluate the CPU usage
of the various file systems. We vary the number of
concurrent users and measure the CPU consumption and
utilization for retrieving 1-MByte data files.
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Fig. 8. Serial file operations. (a) Read and (b) write.

As shown in Fig. 9a, StegCover has the highest CPU
consumption since it needs to retrieve 16 times more data
than the other schemes. As StegRand and StegFD need to
execute some cryptographic functions in each data retrieval
or update, they incur more CPU overhead than CleanDisk
and FragDisk. However, at low concurrency, StegRand and
StegFD have lower CPU utilizations because their I/O costs
are higher than those of CleanDisk and FragDisk. Never-
theless, with the exception of StegCover, the CPU utiliza-
tions of the tested file systems are no more than 10 percent
as shown in Fig. 9b. This confirms that I/O cost is still the
dominant performance determinant.

5 STEGANOGRAPHIC B-TREE

Having devised a steganographic file system and demon-
strated that it incurs only marginal access time and space
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utilization penalties over conventional file systems, we are
keen to investigate its efficacy in supporting specialized
applications; in particular, relational DBMSs that must be
highly optimized. In this section, we study how efficiently
operations can be carried out on B-trees, one of the key
index structures in relational DBMSs, within a StegFD
volume.

5.1 Construction of Steganographic B-Tree

A straightforward way to hide the existence of a database is
to install a conventional DBMS on a StegFD volume. This
causes the DBMS to store the database, including its B-tree
indices, as one or more hidden files that are managed by
StegFD. The advantage is that this entails no modification to
the DBMS. However, if there is a mismatch in the block
sizes of the DBMS and StegFD, StegFD would either need
multiple I/O operations to satisfy each node access, or it
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would fetch more data than necessary each time. Even {P = HASH(NodeAddress, level#f, FAK) ,
when the DBMS is configured with the same block size as Py = HASH(K;, level##, FAK) for all i > 0,

StegFD, the node boundaries in the DBMS may not align
with the block boundaries in StegFD. Hence, there is an
expected performance degradation. In an attempt to over-
come this penalty, we propose two schemes for implement-
ing B-trees directly in a steganographic disk volume.

In the first scheme, each B-tree begins with a header as
illustrated in Fig. 10a. The first two structures in the header,
signature and free blocks list, work the same way as with
hidden files (see Section 3.1). Unlike a hidden file that links
its data blocks in a linear chain, here the index nodes are
linked into a B-tree structure. Having located the B-tree
through its header, operations like insertion, search, and
deletion can be carried out according to the usual
algorithms. We denote this scheme as StegBtree.

The second scheme for implementing a steganographic
B-tree is similar to StegBtree, except that the child pointers
in the nonleaf nodes are not stored explicitly. Instead, the
address of a node P; is calculated on-the-fly, by applying a
hash function on the corresponding index entry Kj, the
node’s level number and the file access key, i.e.,

where NodeAddress is the physical address of Fy’s father
node. The address of the root node is calculated by applying
the hash function to the root id, which is recorded in the file
header. Address collisions that may be encountered by the
B-tree nodes are handled the same way as with file headers
in StegFD. This pointer-less scheme, StegBtree-, is shown in
Fig. 10b. The space saving from omitting the child pointers
allows each nonleaf node to hold more keys, leading to a
higher fan-out and fewer nodes, which can potentially
speed up operations on the B-tree.

Algorithms for node allocation, search, and insertion on
StegBtree are given in Fig. 11. Function allocate() allocates a
new node to StegBtree-. It repeatedly applies a hash function
on the input arguments until a free page is found and returns
this page as the new node. Function locate() makes use of the
same hash function and the same procedure as allocate() to
locate an existing node from the storage space. The procedure
search() for StegBtree- is similar to that of a regular B*-tree,
except that it does not use pointers to locate tree nodes, but
uses the function locate() to calculate the node addresses
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func allocate (K, level#, FAK) returns address
P = HASH (K, level#, FAK);
loop

if Block *P is a free block, then

proc insert (nodeaddress, entry, newchildentry)

// insert ’entry’ into subtree with root ’*nodeaddress’;
// degree is d; ’newchildentry’ is null initially, and

// null upon return unless child is split;

// level# is the current level number,

if *nodeaddress is a non leaf node, say N,

return P;
else,
P = HASH (P);
end loop;
endfunc

Junc locate (K, level#, FAK) returns address
P = HASH (K, level#, FAK);
loop
if Block *P’s signature is correct, then
return P;
else,
P = HASH (P);
end loop;
endfunc

func search (nodeaddress, K) returns address
// level# is the current level number;
N K, is the last entry in this node;

if *nodeaddress is a leaf, return nodeaddress;
else,
if K< K then
P = locate (nodeaddress, level#-1, FAK);
else if K > K,, then
P = locate (K,,, level#-1, FAK);
else,
find i such that K; < K < K;1;
P = locate (K;, level#-1, FAK),
return search (P, K);
endfunc

proc range_search (K1, Ko, (out) results)

Py, = search (root, K1),

begin from Pi, and follow the leaf link list until get
Py, which contains the 1st entry greater than Ko,
add all the leaf nodes between Py and Ps to results;
endproc

else if *nodeaddress is leaf node, say L,

endproc

if K< K then
P = locate (nodeaddress, level#-1, FAK);
else if K > K,, then
P = locate (K,,, level#-1, FAK);
else,
find i such that K; < K < K;y1;
P = locate (K;, level#-1, FAK);
insert(P, entry, newchildentry);
if newchildentry is null, return;
else,
if N has space,
put newchildentry on it,
set newchildentry to null, return;
else, // split N:
first d key values stay,
N2 = allocate (K441, level#, FAK),
last d keys move to new node N2;
newchildentry = < Kg41 >;
if N is the root,
Ag= allocate (New Root ID, level#+1, FAK),
insert < Kgyq > into *Ay;
replace Root ID with New Root ID;
// relocate the st node of each level:
B = nodeaddress;
for i = level# to 0, loop
Ay = allocate (Ay, i, FAK);
copy *B to *Aj, release *B ;
B = locate (B, i-1, FAK), Ag=A;;
end loop;
return;

if L has space,
put entry on it and return;

else,
split L: first d entries stay,
L2 = allocate (K441, 0, FAK),
rest move to brand new node L2;
newchildentry = < K41 >;
return;

Fig. 11. StegBTree- algorithms.

instead. The procedure insert() employs a similar insertion
algorithm as BT -tree, except that it calls the allocate() function
to create new nodes for the B-tree. As Fig. 11 shows, when a
node is split during insertion, the middle entry is passed to
the allocate() function to create a new node and, thereafter, all
the index entries in the original node with larger key values
than the middle entry are shifted to the new node. As all the
existing nodes of StegBtree- remain unchanged during
insertion, it does not incur extra overhead. Only when the
root node is split and the tree grows up a level, it takes a bit
more effort to reorganize the StegBtree-. In that case, a new
root node is allocated by passing a new root id to the allocate()
function. The update of root id requires the first node of each

level of the StegBtree- to be reallocated accordingly, as its
address is directly or indirectly determined by the root id
through the hash function.

To provide native support for B-tree indices in StegFD, we
have added two new sets of APIs, one for StegBtree and the
other for StegBtree-. The APIs can be found at the StegFD Web
site (http:/ /xenal.ddns.comp.nus.edu.sg/SecureDBMS/).

5.2 Experiments

To investigate the efficacy of StegBtree and StegBtree-, we
compare them with the alternatives of a) constructing the
B-trees directly on a raw disk (Btree) and b) storing the
B-trees in hidden files on a StegFD volume (Btree on
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TABLE 3
B-Tree Parameters
[ Parameter Default

Table size 35,000 Tuples
Tuple size 256 Bytes
Node size 4 KBytes
Key size 16 Bytes
Pointer size 4 Bytes

StegFD). Table 3 summarizes the experiment parameters.
The physical resource and workload parameters remain the
same as in Tables 1 and 2.

5.2.1 Sensitivity to Space Utilization

We begin the profiling of the steganographic B-tree schemes
by evaluating their sensitivity to the utilization level of the
StegFD volume. Fig. 12 shows the average access time of
400 exact-match queries for the various B-tree schemes.

As expected, Btree on StegFD is much slower than the
other schemes because it has a different node size from
StegFD’s block size, and the node boundaries are not
aligned with StegFD’s block boundaries, thus incurring
multiple I/O operations for each node access. For StegBtree,
there is some overhead in processing the header block to
locate the B-tree, but the resulting penalty over Btree is well
within 20 percent. In contrast, StegBtree- performs just as
well as Btree initially because the former’s larger fan-out
and, hence, shorter height compensate for the I/Os on the
header block. However, higher space utilizations lead to
more frequent address collisions, and the extra I/Os in
tracking down index nodes cause performance to degrade
rapidly beyond 40 percent utilization.

This experiment confirms that native support for B-tree
should be built into StegFD. Among the two steganographic
B-tree schemes, StegBtree- is ideal for sparsely populated
volumes, whereas StegBtree consistently achieves perfor-
mance that is just marginally slower than Btree.
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5.2.2 Sensitivity to Query Selectivity

The second set of experiments is intended to study the
behavior of StegBtree and StegBtree- with range queries.
Here, we vary the query selectivity from 1,000 tuples to
10,000 tuples. Figs. 13a and 13b give the results for clustered
and unclustered indices, respectively.

For clustered indices, Btree is clearly the fastest,
especially at high selectivity factors where data access time
dominates index access time. This is because Btree benefits
from sequential I/Os as data pages are stored at contiguous
addresses, whereas the other three schemes incur random
I/0 operations. However, for unclustered indices, Btree has
no advantage over StegBtree and StegBtree-. Finally, we
observe that Btree on StegFD is still the worst performer.

5.2.3 Sensitivity to Concurrency

Having discovered that Btree can be superior to the
steganographic B-tree schemes, we are interested to find
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out whether this relative performance still holds in a
multiuser environment. Instead of issuing queries one after
another as in the earlier experiments, we now generate
multiple range queries (for 2,000 tuples each) concurrently
on a clustered index. Fig. 14 plots the access time against the
number of concurrent queries.

As shown in the figure, increased concurrency slows
down all of the schemes. Moreover, the access time of Btree
gradually approaches those of StegBtree and StegBtree-. This
is due to the larger amount of random I/O operations when
queries are interleaved. Hence, in practice, StegBtree and
StegBtree- are likely to fare favorably relative to Btree, and
even clustered B-trees.

6 CONCLUSION

In this paper, we have introduced StegFD, a practical scheme
to implement a steganographic file system that offers
plausible deniability to owners of protected files. StegFD
securely hides user-selected files in a file system so that,
without the corresponding access keys, an attacker would
not be able to deduce their existence, even if the attacker
understands the hardware and software of the file system
completely, and is able to scour through its data structures
and the content on the raw disks. Thus, a user acting under
compulsion would be able to plausibly deny the existence of
hidden information. StegFD achieves this steganographic
property, while ensuring the integrity of the files and
maintaining efficient space utilization at the same time.

We have also proposed two schemes for implementing
Steganographic B-trees in a StegFD volume.

We have implemented StegFD as a file system driver in
the Linux kernel 2.4. Extensive experiments on the system
confirm that StegFD is capable of achieving an order of
magnitude improvements in performance and/or space
utilization over the existing steganographic schemes. In fact,
StegFD is just as fast in a multiuser environment as the
native Linux file system, which is the best that any file
protection scheme can aim for.

For future work, we are extending the techniques in
StegFD to DBMS. Specifically, we are investigating how

database tables, hash indices, and B-trees can be hidden
effectively, while preserving the DBMS’ ability to control
concurrency and recover data. We are also looking for
better ways to overcome the limitations discussed in
Section 3.4. Building a P2P-based StegFD as an application
on top of BestPeer [14] is also on our agenda.
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