
S i i O dSecurity in Outsourced
DatabasesDatabases

(Query Answer Assurance)(Q y)

1

Traditional Client-Server Arch
DB Client

Traditional Client Server Arch.

Query

Results

Owner

Results

• Client queries are satisfied by a trusted server
• Secure the server
• Secure the communication channel, e.g. use SSL

2

Data Publishing

DB Client

(Database-as-a-Service)

Owner

Database

Third Party
S

3

Server

Data Publishing
DB Client

Data Publishing

Owner
QueryQ y

Results

Third Party
S

4

Server

Data PublishingData Publishing
• Pushes business logic and data processing from corporate data centers to third

party servers at the “edge” of the networkparty servers at the edge of the network
– Distribution of (part of) the database to edge servers
– Edge servers perform query processing

• Why?
Most organizations need DBMSs– Most organizations need DBMSs

– DBMSs extremely complex to deploy, setup, maintain
– Require skilled DBAs (at very high cost!)

• Advantages
C t d t k l t d d f t– Cuts down network latency and produces faster responses

– Cheaper way to achieve scalability
– Lowers dependency on corporate data center (removes single point of failure)
– Reduced cost to client

• Get what you need pay for what you use and not for: hardware software infrastructure or• Get what you need, pay for what you use and not for: hardware, software infrastructure or
personnel to deploy, maintain, upgrade…

– Reduced overall cost
• cost amortization across users

– Better service

5

• leveraging experts

The Challenge
DB Client

The Challenge

Owner
QueryQ y

Results
The Truth?
The Whole Truth?
Nothing But The Truth?

Third Party
S

Nothing But The Truth?

6

Server
Untrusted!

The Challenge
DB Client Owner

The Challenge
Sel * FROM Emp
WHERE Sal < 5000WHERE Sal < 5000

ID Name Sal Dept
5 A 2000 1
2 C 3500 2
1 D 8010 11 D 8010 1
4 B 2200 3
3 E 7000 2

Server

7

The Challenge
DB Client OwnerSel * FROM Emp

WHERE Sal < 5000

The Challenge

WHERE Sal < 5000

5 A 2000 1

ID Name Sal Dept
5 A 2000 1
2 C 3500 2
1 D 8010 1

Result = 2 C 3500 2
4 B 2200 3

1 D 8010 1
4 B 2200 3
3 E 7000 2

Server

8

Security Concerns
DB Client

Security Concerns
5 A 2000 1

Result = 2 C 3500 2Result = 2 C 3500 2
4 B 2200 3

Query

ID Name Sal Dept

Result’

Server

5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3

9

Server 3 E 7000 2

Security Concerns
DB Client

Security Concerns
5 A 2000 1

Result = 2 C 3500 2Result = 2 C 3500 2
4 B 2200 3

Query

ID Name Sal Dept

Result’
5 A 2000 1
2 C 3500 2

Server

5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3

4 B 2200 3

Server is trustworthy!

10

Server 3 E 7000 2

Security Concerns
DB Client

Security Concerns
5 A 2000 1

Result = 2 C 3500 2Result = 2 C 3500 2
4 B 2200 3

Query

ID Name Sal Dept

Result’
5 A 3500 1
2 D 3500 2

Server

5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3

4 B 2200 1

Server is malicious!

11

Server 3 E 7000 2Records are tampered

Security Concerns
DB Client

Security Concerns
5 A 2000 1

Result = 2 C 3500 2Result = 2 C 3500 2
4 B 2200 3

Query

ID Name Sal Dept

Result’
5 A 2000 1
2 C 3500 2

Server

5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3Server is malicious!

12

Server 3 E 7000 2Answers are dropped
(Incompleteness)

Security Concerns
DB Client

Security Concerns
5 A 2000 1

Result = 2 C 3500 2Result = 2 C 3500 2
4 B 2200 3

Query

ID Name Sal Dept

Result’
5 A 2000 1
2 C 3500 2

Server

5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3

4 B 2200 3
1 D 1500 2
6 E 3400 1

13

Server 3 E 7000 2Server is malicious!
Spurious answers are added

Data Security Challenge:Data Security Challenge:

i bj iDesign Objectives:
• Authenticity: Every entry originated from the owner
• Completeness: No result entry is omitted from the answerp y
• Precision: Minimum information leakage
• Security: Computationally infeasible to cheat
• Efficiency: Polynomial proof• Efficiency: Polynomial proof

14

Collision-resistant (one-way)
h h f ihash functions

• Given x, easy to compute h(x); given h(x),
difficult to determine x

• i.e., it is computationally hard to find x1 and x2 s.t.
h(x1)=h(x2)

• Computational hard? Based on well established
assumptions such as discrete logarithms

• E.g., SHA, MD5

15

Public key digital signature schemes
Cryptographic tool for authenticating the signed message as
well as its origin, e.g., RSA, DSA

Sender
m

Recipient

m

Insecure Channel

KeyGen (SK, PK)


Ver(m PK )  valid?m 
SK

Ver(m, PK, )  valid?

By checking:

h(m) =? Sign-1(PK, )

m 

Sign(h(m), SK)  

16

() S g (, )

Authentic Publication SchemeAuthentic Publication Scheme
TrustedTrusted
DB Client

Result +
Correction proofQ

…

Unsecured
Edge Server

Correction proofQuery

Does not certify data
(a) UntrustedEdge Server

DB +Certification
(Verification Objects)P bli k

()
(b) Disclaim liability

Trusted
Central DBMS

(Verification Objects)Public key
Certify data
(a) Ownership
(b) Liability

17

() y

Naï e SchemeNaïve Scheme
Each attribute has a signed digest

Relation R

g g
Each tuple has a signed digest

DT (A1, D1) (Ai, Di)

Relation R

… …

DT – Signed tuple digest
DAi – attribute digest

18

Naï e SchemeNaïve Scheme
Query: SELECT A3, A4, … FROM R

Result tuples
Filtered attributes

Q y 3, 4,

DT A3 A4 D1 D2 D5

Result tuples

… …

DT – Signed tuple digest
Di – attribute digest of Ai

19

Naïve Scheme (Example)Naïve Scheme (Example)
A1 B1 C1 a1 b1 c1 T1

A2 B2 C2 a2 b2 c2 T2

A3 B3 C3 a3 b3 c3 T3

T = sign(g(h(A)|h(B)|h(C))
g and h are collision-resistant hash functions

ai = h(Ai)
Retrieve whole of first tuple:

Server returns A1, B1, C1, T1; Client can compute h(A1), h(B1) and
h(C1) and verify T1 from A1 B1 and C1

ai h(Ai)

h(C1), and verify T1 from A1, B1 and C1

Retrieve only attributes A1 and B1 of first tuple:
Server returns A1, B1, c1 and T1; Client has no access to C1, so
1 h b id d 20c1 has to be provided

Issues??

Using Merke Hash Tree (MHT)Using Merke Hash Tree (MHT)
• For each tuple t, a tuple hash h(t) is computed

h(t) = h(h(t.A1) | h(t.A2) | … | h(t.An))
• Assume a total order on attribute A of a relation R

with |R| tuples (e.g., based on the primary key)with |R| tuples (e.g., based on the primary key)
– MHT(R,A) is a binary tree with |R| leaf nodes and hash values h(i)

associated with node i
– If i is a leaf node, then h(i) = h(ti), ti is the ith tuple in the order
– If i is an internal node, then h(i) = h(h(l), h(r)) where l and r are the

left and right children of node i.
– The root hash is the digest of all values in the Merkle-hash tree

MHT(R A)MHT(R,A).

21

Merkle Hash Tree

N1234 = h(N12 | N34) Sign(h1234,SK)

N12 = h(N1 | N2) N34 = h(N3 | N4)

N1 = h(d1) N2 = h(d2) N3 = h(d3) N4 = h(d4)

k1, d1 k2, d2 k3, d3
k4, d4

22

Ordering attribute: k1 < k2 < k3 < k4; di are tuples
Owner needs to sign root node (N1234)

MHT: Point Search

N1234 = h(N12 | N34) Sign(h1234,SK)

N12 = h(N1 | N2) N34 = h(N3 | N4)

N1 = h(d1) N2 = h(d2) N3 = h(d3) N4 = h(d4)1 (1) 2 (2) 3 (3) 4 (4)

Query: Retrieve tuple d2

23

Query: Retrieve tuple d2

MHT: Point Search

N1234 = h(N12 | N34) Sign(h1234,SK)

N12 = h(N1 | N2) N34 = h(N3 | N4)

N1 = h(d1) N2 = h(d2) N3 = h(d3) N4 = h(d4)

Edge server returns d2, N1, N34 and signed N1234

24

Client computes N1234 = h(h(h(d2)|N1), N34) and verify
that the signed value is correct

MHT: Point Search

N1234 = h(N12 | N34) Sign(h1234,SK)

N12 = h(N1 | N2) N34 = h(N3 | N4)

N1 = h(d1) N2 = h(d2) N3 = h(d3) N4 = h(d4)

Edge server returns d2, N1, N34 and signed N1234 (and the structure)

25

Client computes N1234 = h(h(h(d2)|N1), N34) and verify that the
signed value is correct

Range Queries

Path l

LCA(q)

GLB(q) LUB(q)
q

26

Example: Range queriesp g q

Query
answer

27
What are returned?

Example: Range queriesp g q

Query
answerdigest

28
What are returned?

Example: Range queriesExample: Range queries

digest

29

What are returned?

Proving Authenticity is Easy
s(hd)

hc
Certified
Hash Tree

h(2) h(4) h(6) h(8) h(10) h(12)

ha = h(h(2)|h(4)) hb hc
Hash Tree

Data: 2 4 6 8 10 12

h(2) h(4) h(6) h(8) h(10) h(12)

Query: 5 ≤ r ≤ 7

Data: 2 4 6 8 10 12

30

Proving Authenticity is Easy
s(hd)

hc
Certified
Hash Tree

h(2) h(4) h(6) h(8) h(10) h(12)

ha hb hc
Hash Tree

Data: 2 4 6 8 10 12

h(2) h(4) h(6) h(8) h(10) h(12)

Query: 5 ≤ r ≤ 7

Data: 2 4 6 8 10 12

31

Proving Completeness is Easy But …g p y
s(hd)

hc
Certified
Hash Tree

h(2) h(4) h(6) h(8) h(10) h(12)

ha hb hc
Hash Tree

Data: 2 4 6 8 10 12

h(2) h(4) h(6) h(8) h(10) h(12)

Query: 5 ≤ r ≤ 7

Data: 2 4 6 8 10 12

32

Precision may be compromised!
s(hd)

hc
Certified
Hash Tree

h(2) h(4) h(6) h(8) h(10) h(12)

ha hb hc
Hash Tree

Data: 2 4 6 8 10 12

h(2) h(4) h(6) h(8) h(10) h(12)

Query: 5 ≤ r ≤ 7

Data: 2 4 6 8 10 12

33

• Compromise precision: Disclose left and right neighbors
• May violate access control policy

Examplep
• Access control: U can only see

records with salary < 8000
ID Name Sal Dept
5 A 2000 1records with salary < 8000

• Results are records 2, 3, and 5.
• If system does not return record 1, U

2 C 3500 2
1 D 8010 1
4 B 2200 3
3 E 7000 2y

will not know that the answer is
complete since it is possible that
there is a record with Sal > 7000 but
< 8000 that is not returned.

• If system returns record 1, then it
violates the access control policy!violates the access control policy!

• Need an authentication mechanism
that verifies completeness without

i i l l
34

compromising access control rules

What’s the problem?p
• A Merkle hash tree is needed for every sort-order

on a tableon a table
• VO (Verification Object – the data used for

verification) needs to contain links all the way toverification) needs to contain links all the way to
the root,
– VO grows linearly to query result and logarithmic to

b t bl ibase table size
• Projections may have to be performed by clients
• No provision for dynamic updates on the database• No provision for dynamic updates on the database
• Weak in terms of access control

– Attributes that are supposed to be filtered out must also

35

Attributes that are supposed to be filtered out must also
be returned for verification

A signature-chain-based scheme:
Let’s start simpleLet s start simple …

• Consider a sorted list of distinct integers, R = {r1 …, ri-1, ri, ri+1, … g { 1 i 1 i i+1
rn}

• Retrieve record whose value is greater than or equal to α
α ≤ r (i e  (R))– α ≤ r (i.e.,  α ≤ r (R))

• Result Q = {ra, ra+1, … rb }, i.e., ra-1 < α ≤ ra < ra+1 < … rb = rn
• Result is complete iff:

– Contiguity: Each pair of successive entries ri, ri+1 in Q also appears in R
(based on Signature Chain)

– Terminal: Last element of Q is also last element of R, i.e., rb = rn (based on
Signature Chain)

– Origin: ra is the first element in R that satisfies the query condition, i.e.,ra-1 < α
 ra (based on Private Boundary Proof)

36

Signature Chain
• For each data value, there is an associated signature

– Computed from its own value, and that of its left and right
neighbors

– sig(ri) = s(h(g(ri-1) | g(ri) | g(ri+1)))

• Owner stores the (r sig(r)) pair in the server

ri ri+1ri-1 …… ri+2

• Owner stores the (ri, sig(ri)) pair in the server
• During querying, server returns (answer, signature)

pairs and more (verification objects)pairs and more …(verification objects) …

hi (r) = h i-1 (h (r)) h0 (r) = h (r) g(r) = h U-r-1 (r)

37

() (()) () () g() ()
U = max value outside of domain (known to all users)
s is a signature function using owner’s private key

Signature Chain Ensures Contiguityg g y

Result Q
Server returns (ri , sig(ri))-pairs

ri ri+1ri-1 …
Q

Server: … ri+2

()() () ()

User:

g(ri)g(ri-1) g(ri+1) g(ri+2) ……

Client: ver(Hi, sig(ri), PK)? ver(Hi+1, sig(ri+1), PK)?

H = h(g(r) | g(r) | g(r))
38

Signature chain: sig(ri) = s(h(g(ri-1) | g(ri) | g(ri+1)))
Hi h(g(ri-1) | g(ri) | g(ri+1))

Signature Chain Ensures Contiguityg g y

Result QQuery: 55 ≤ r

70 8060 …
Q

Server: … 90

(70)(60) (80) (90)

User:

g(70)g(60) g(80) g(90) ……

ver(H70, sig(70), PK)? ver(H80, sig(80), PK)?

39

Signature Chain Ensures Contiguityg g y

Result QQuery: 55 ≤ r

75 8060 …
Q

Server: … 90

(75)(60) (80) (90)

User:

g(75)g(60) g(80) g(90) ……

ver(H75, sig(70), PK)? ver(H80~75, sig(80), PK)?
INCORRECT! Data has been tampered!

40

Data has been tampered!

Signature Chain Ensures Contiguityg g y

Result QQuery: 55 ≤ r

70 8060 …
Q

Server: … 90

(60) (80) (90)

User:

g(60) g(80) g(90) ……

ver(H80, sig(80), PK)?
H60~80 will be computed (without 70) -

ill t t h i (80) INCORRECT!!!!
41

will not match sig(80). INCORRECT!!!!

How To Ensure rn Is The Last Record?

Result Q

ra ra+1 rn….
Result Q

Server:

User:

g(ra) g(ra+1) g(rn)….

C t fi titi d th t iCreate a fictitious record rn+1 that is
larger than the largest value but smaller
than U

42

• sig(rn+1) = s(h(g(rn)|g(rn+1)|h(U)))

Signature Chain Ensures Terminal

Result Q

g

ra ra+1 rn g(rn+1)….
Result Q

Server:

User:
U

g(ra) g(ra+1) g(rn)….

C t fi titi d th t i

U

Create a fictitious record rn+1 that is
larger than the largest value but smaller
than U

ver(Hn+1, sig(rn+1), PK)?

43

• sig(rn+1) = s(h(g(rn)|g(rn+1)|h(U)))
• server returns g(rn+1) instead of rn+1

How to prove Origin (without revealing
th b d i t)??the boundary point)??

40 50 60 70 80 ….

44

How to prove Origin??p g

40 50 60 70 80 ….

Q 55 ≤Query: 55 ≤ r

A naïve solution is to return 50. By proving that 50 is chained
to 60, we know that no answer has been dropped. But, thisto 60, we know that no answer has been dropped. But, this
reveals the value of 50.

45

How about this …

g(ra-1) ra ra+1Server:

() ()

User:

g(ra) g(ra+1)

ver(Ha, sig(ra), PK)?

46
Query: α ≤ r

The basic idea fails …
Cheat!

g(70) 80 90Server: 6050

() ()

User:

g(ra) g(ra+1)

User can’t detect!ver(Ha, sig(ra), PK)?

47
Query: 55 ≤ r

Private Boundary Proof Ensures Originy g

1
ra ra+1Server: h (ra-1)

α-ra-1-1

??

g(ra)g(ra 1) g(ra+1)

User: ??

g(a)g(a-1) g(a+1)

(H i () PK)?
hi (r) = h i-1 (h (r))
g(r) = h U-r-1 (r)

ver(Ha, sig(ra), PK)?

48
Query: α ≤ r

g() ()

Private Boundary Proof Ensures Originy g

11
ra ra+1

hash

Server: h (ra-1)
α-ra-1-1h (ra-1)
α-ra-1-1

A collaborative
scheme to compute

g(ra)g(ra 1) g(ra+1)

U - α
times

User:
p

the hash value

g(a)g(a-1) g(a+1)

(H i () PK)?
hi (r) = h i-1 (h (r))
g(r) = h U-r-1 (r)

ver(Ha, sig(ra), PK)?

49
Query: α ≤ r

g() ()
= h U-α (h α-r-1 (r))

Back to our examplep
Cheat! Require that the

inverse of hi for

80 90Server: h (70)
α-70-1

inverse of hi for
i < 0 be undefined

() ()

User: hash
U - 55
times

g(ra) g(ra+1)Undefined!Wrong!

User detects cheatingver(Ha, sig(ra), PK)?

50
Query: 55 ≤ r

Back to our examplep

60 70 ….Server: h (50)
55-50-1

(60) (70)

User: hash
U - 55
times

g(60) g(70)g(50)

ver(H60, sig(60), PK)?

51
Query: 55 ≤ r

Putting the Pieces Togetherg g

R lt Q

ra ra+1 rn g(rn+1)h (ra-1)
α-ra-1-1 …

Result Q

Distributor:
hash
U - α
times

User:

g(ra)g(ra-1) g(ra+1) g(rn)…

ver(Ha, sig(ra), PK)? ver(Ha+1, sig(ra+1), PK)?

52
Query: α ≤ r

Other casesOther cases
• α ≤ r• α ≤ r
• β  r (Result = {ra, ra+1, … rb }, i.e., ra, … rb ≤ β < rb+1

Need to verify that r > β– Need to verify that rb+1 > β
– Define g(r) = h r- L-1 (r) = h β - L (h r- β -1 (r)) where L is a

value outside of the minimum value of the domain

• So, we have α ≤ r ≤ β
• r = α ≡ α ≤ r ≤ α
• α < r < β ≡ α+1 ≤ r ≤ β-1
• α  r ≡ (L < r < α)  (α < r < R)

53

α (α) (α)

NULL Answers??
• Consider Q: α ≤ r.

Q b <• Q = because rn < α.
– Server returns h α-rn-1 (r), g(rn+1), sig(rn+1)

1– User computes h U - α (h α-rn-1 (r)) and verifies
ver(Hn+1, sig(rn+1), PK)?

• How about ri < α ≤ β < ri+1 ?

54

One More Vulnerability

• User can discover ra-1 through brute force
enumeration of numbers below raa

• Solution:
Record [K A A] K = ordering attribute– Record [K, A1, .., Am], K = ordering attribute

– g(ri.K | ri.A1 | … | ri.Am)
Brute force attack is no longer feasible– Brute-force attack is no longer feasible

55

Completeness Verification for Range Queries

Verify α < ra-1.K ver(Ha, sig(ra), PK)?

g(ra-1) g(ra) g(ra+1)

Merkle
h(ra-1.A)h (ra-1.K)

U-ra-1.K-1 h (r.K)ra-1.K-L-1

hash
h (ra-1.K)

U-ra-1.K-1

Tree

h(ra-1.A1) h(ra-1.AR)

.:
…

h (r 1.K)
α-ra-1.K-1

U - α
times

Record ra-1: [K A1 A2 … AR]

h (ra-1.K)

56
Query: α ≤ K ≤ β. Result: { ra, ra+1, …, rb }

Other queries
• SP Query

– Based on MHT(r.A)
– Ordering attribute has to be returned (even if it is not part of the target

attributes). Why?
– For attributes that are filtered out, digests may need to be returned , g y

• SPJ Query
– R.Ai = S.Aj (Ai is foreign-key in R, Aj is primary key in S)

• Referential integrity constraint mandates that every instance of R.Ai
must have a matching entry in S.Aj

• So, only need to deal with selection conditions on R.Ai or S.Aj
• Create a signature chain for R.Ai

57

What else?What else?
– What about data freshness?
– More efficient scheme
– Ad-hoc joinsd oc jo s
– Aggregates
– Multi-dimensional dataMulti dimensional data
– Computation
– Complete (complex) queries– Complete (complex) queries

58

Summary

• Malicious service provider may cheat
• Users need assurance on their queryUsers need assurance on their query

answers
• Merkle hash tree offers a good solution but• Merkle hash tree offers a good solution but

…
Si h i l• Signature chain guarantee completeness
without violating access control policy

59

