
1

Security in OutsourcedSecurity in Outsourced
Databases

(Query Answer Assurance)

1

DB Client
Query

Traditional Client-Server Arch.

Owner

Results

Cli i i fi d b d

2

• Client queries are satisfied by a trusted server

• Secure the server

• Secure the communication channel, e.g. use SSL

2

DB Client

Data Publishing
(Database-as-a-Service)

Owner

Database

3

Third Party
Server

DB Client

Data Publishing

Owner

Query

Results

4

Third Party
Server

3

Data Publishing
• Pushes business logic and data processing from corporate data centers to third

party servers at the “edge” of the network
– Distribution of (part of) the database to edge servers(p) g
– Edge servers perform query processing

• Why?
– Most organizations need DBMSs
– DBMSs extremely complex to deploy, setup, maintain
– Require skilled DBAs (at very high cost!)

• Advantages
– Cuts down network latency and produces faster responses
– Cheaper way to achieve scalability
– Lowers dependency on corporate data center (removes single point of failure)

5

– Reduced cost to client
• Get what you need, pay for what you use and not for: hardware, software infrastructure or

personnel to deploy, maintain, upgrade…
– Reduced overall cost

• cost amortization across users
– Better service

• leveraging experts

DB Client

The Challenge

Owner

Query

Results
The Truth?
The Whole Truth?

6

Third Party
Server

The Whole Truth?
Nothing But The Truth?

Untrusted!

4

DB Client Owner

The Challenge
Sel * FROM Emp
WHERE Sal < 5000

ID Name Sal Dept
5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3
3 E 7000 2

7

Server

DB Client OwnerSel * FROM Emp
WHERE Sal < 5000

The Challenge

ID Name Sal Dept
5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3
3 E 7000 2

5 A 2000 1

Result = 2 C 3500 2
4 B 2200 3

8

Server

5

DB Client

Security Concerns
5 A 2000 1

Result = 2 C 3500 2
4 B 2200 3

Query

4 B 2200 3

Result’

9

Server

ID Name Sal Dept
5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3
3 E 7000 2

DB Client

Security Concerns
5 A 2000 1

Result = 2 C 3500 2
4 B 2200 3

Query

4 B 2200 3

Result’

5 A 2000 1

10

Server

ID Name Sal Dept
5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3
3 E 7000 2

5 A 2000 1
2 C 3500 2
4 B 2200 3

Server is trustworthy!

6

DB Client

Security Concerns
5 A 2000 1

Result = 2 C 3500 2
4 B 2200 3

Query

4 B 2200 3

Result’

5 A 3500 1

11

Server

ID Name Sal Dept
5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3
3 E 7000 2

5 A 3500 1
2 D 3500 2
4 B 2200 1

Server is malicious!
Records are tampered

DB Client

Security Concerns
5 A 2000 1

Result = 2 C 3500 2
4 B 2200 3

Query

4 B 2200 3

Result’

5 A 2000 1

12

Server

ID Name Sal Dept
5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3
3 E 7000 2

5 A 2000 1
2 C 3500 2

Server is malicious!
Answers are dropped
(Incompleteness)

7

DB Client

Security Concerns
5 A 2000 1

Result = 2 C 3500 2
4 B 2200 3

Query

4 B 2200 3

Result’

5 A 2000 1

13

Server

ID Name Sal Dept
5 A 2000 1
2 C 3500 2
1 D 8010 1
4 B 2200 3
3 E 7000 2

5 A 2000 1
2 C 3500 2
4 B 2200 3
1 D 1500 2
6 E 3400 1

Server is malicious!
Spurious answers are added

Data Security Challenge:

Design Objectives:
• Authenticity: Every entry originated from the owner
• Completeness: No result entry is omitted from the answer
• Precision: Minimum information leakage
• Security: Computationally infeasible to cheat
• Efficiency: Polynomial proof

14

8

Collision-resistant (one-way)
hash functions

• Given x easy to compute h(x); given h(x)• Given x, easy to compute h(x); given h(x),
difficult to determine x

• i.e., it is computationally hard to find x1 and x2 s.t.
h(x1)=h(x2)

• Computational hard? Based on well established
assumptions such as discrete logarithms

15

assumptions such as discrete logarithms

• E.g., SHA, MD5

Public key digital signature schemes
Cryptographic tool for authenticating the signed message as
well as its origin, e.g., RSA, DSA

Sender

Recipient
KeyGen (SK, PK)

m

SK

Insecure Channel

16

Ver(m, PK,) valid?

By checking:

h(m) =? Sign-1(PK,)

m
SK

Sign(h(m), SK)

9

Authentic Publication Scheme

Trusted
DB Client

Unsecured
Edge Server

Result +
Correction proofQuery

DB +Certification

…

Does not certify data
(a) Untrusted
(b) Disclaim liability

17

Trusted
Central DBMS

DB +Certification
(Verification Objects)Public key

Certify data
(a) Ownership
(b) Liability

Naïve Scheme
Each attribute has a signed digest
Each tuple has a signed digest

DT (A1, D1) (Ai, Di)

Relation R

… …

Each tuple has a signed digest

18

DT – Signed tuple digest
DAi – attribute digest

10

Naïve Scheme
Query: SELECT A3, A4, … FROM R

DT A3 A4 D1 D2 D5

Result tuples

… …

Filtered attributes

19

DT – Signed tuple digest
Di – attribute digest of Ai

Naïve Scheme (Example)

A1 B1 C1 a1 b1 c1 T1

A2 B2 C2 a2 b2 c2 T2

A3 B3 C3 a3 b3 c3 T3

Retrieve whole of first tuple:
Server returns A1 B1 C1 T1; Client can compute h(A1) h(B1) and

T = sign(g(h(A)|h(B)|h(C))
g and h are collision-resistant hash functions

ai = h(Ai)

20

Server returns A1, B1, C1, T1; Client can compute h(A1), h(B1) and
h(C1), and verify T1 from A1, B1 and C1

Retrieve only attributes A1 and B1 of first tuple:
Server returns A1, B1, c1 and T1; Client has no access to C1, so
c1 has to be provided

Issues??

11

Using Merke Hash Tree (MHT)
• For each tuple t, a tuple hash h(t) is computed

h(t) = h(h(t.A1) | h(t.A2) | … | h(t.An))
• Assume a total order on attribute A of a relation R

with |R| tuples (e.g., based on the primary key)
– MHT(R,A) is a binary tree with |R| leaf nodes and hash values h(i)

associated with node i
– If i is a leaf node, then h(i) = h(ti), ti is the ith tuple in the order
– If i is an internal node, then h(i) = h(h(l), h(r)) where l and r are the

left and right children of node i.
Th t h h i th di t f ll l i th M kl h h t

21

– The root hash is the digest of all values in the Merkle-hash tree
MHT(R,A).

Merkle Hash Tree

N1234 = h(N12 | N34) Sign(h1234,SK)

N12 = h(N1 | N2) N34 = h(N3 | N4)

N h(d) N h(d) N h(d) N h(d)

22

k1, d1 k2, d2 k3, d3
k4, d4

N1 = h(d1) N2 = h(d2) N3 = h(d3) N4 = h(d4)

Ordering attribute: k1 < k2 < k3 < k4; di are tuples
Owner needs to sign root node (N1234)

12

MHT: Point Search

N1234 = h(N12 | N34) Sign(h1234,SK)

N12 = h(N1 | N2) N34 = h(N3 | N4)

23

N1 = h(d1) N2 = h(d2) N3 = h(d3) N4 = h(d4)

Query: Retrieve tuple d2

N1234 = h(N12 | N34)

MHT: Point Search

Sign(h1234,SK)

N12 = h(N1 | N2) N34 = h(N3 | N4)

24

N1 = h(d1) N2 = h(d2) N3 = h(d3) N4 = h(d4)

Edge server returns d2, N1, N34 and signed N1234

Client computes N1234 = h(h(h(d2)|N1), N34) and verify
that the signed value is correct

13

N1234 = h(N12 | N34)

MHT: Point Search

Sign(h1234,SK)

N12 = h(N1 | N2) N34 = h(N3 | N4)

25

N1 = h(d1) N2 = h(d2) N3 = h(d3) N4 = h(d4)

Edge server returns d2, N1, N34 and signed N1234 (and the structure)
Client computes N1234 = h(h(h(d2)|N1), N34) and verify that the
signed value is correct

Range Queries

LCA(q)

Path l

26

GLB(q) LUB(q)
q

14

Example: Range queries

27

Query
answer

What are returned?

Example: Range queries

28

Query
answer

What are returned?

digest

15

Example: Range queries

29

What are returned?

digest

Proving Authenticity is Easy

h

s(hd)

h(2) h(4) h(6) h(8) h(10) h(12)

ha = h(h(2)|h(4)) hb hc

hc
Certified
Hash Tree

30

Query: 5 ≤ r ≤ 7

Data: 2 4 6 8 10 12

16

Proving Authenticity is Easy

h

s(hd)

h(2) h(4) h(6) h(8) h(10) h(12)

ha hb hc

hc
Certified
Hash Tree

31

Query: 5 ≤ r ≤ 7

Data: 2 4 6 8 10 12

Proving Completeness is Easy But …

h

s(hd)

h(2) h(4) h(6) h(8) h(10) h(12)

ha hb hc

hc
Certified
Hash Tree

32

Query: 5 ≤ r ≤ 7

Data: 2 4 6 8 10 12

17

Precision may be compromised!

h

s(hd)

h(2) h(4) h(6) h(8) h(10) h(12)

ha hb hc

hc
Certified
Hash Tree

33

Query: 5 ≤ r ≤ 7

Data: 2 4 6 8 10 12

• Compromise precision: Disclose left and right neighbors
• May violate access control policy

Example
• Access control: U can only see

records with salary < 8000
• Results are records 2 3 and 5

ID Name Sal Dept
5 A 2000 1
2 C 3500 2
1 D 8010 1• Results are records 2, 3, and 5.

• If system does not return record 1, U
will not know that the answer is
complete since it is possible that
there is a record with Sal > 7000 but
< 8000 that is not returned.

• If system returns record 1 then it

1 D 8010 1
4 B 2200 3
3 E 7000 2

34

• If system returns record 1, then it
violates the access control policy!

• Need an authentication mechanism
that verifies completeness without
compromising access control rules

18

What’s the problem?

• A Merkle hash tree is needed for every sort-order
on a table

• VO (Verification Object – the data used for
verification) needs to contain links all the way to
the root,
– VO grows linearly to query result and logarithmic to

base table size

• Projections may have to be performed by clients

35

j y p y
• No provision for dynamic updates on the database
• Weak in terms of access control

– Attributes that are supposed to be filtered out must also
be returned for verification

A signature-chain-based scheme:
Let’s start simple …

• Consider a sorted list of distinct integers, R = {r1 …, ri-1, ri, ri+1, …
rn}n}

• Retrieve record whose value is greater than or equal to α
– α ≤ r (i.e., α ≤ r (R))

• Result Q = {ra, ra+1, … rb }, i.e., ra-1 < α ≤ ra < ra+1 < … rb = rn

• Result is complete iff:
– Contiguity: Each pair of successive entries ri, ri+1 in Q also appears in R

(based on Signature Chain)

36

– Terminal: Last element of Q is also last element of R, i.e., rb = rn (based on
Signature Chain)

– Origin: ra is the first element in R that satisfies the query condition, i.e.,ra-1 < α
 ra (based on Private Boundary Proof)

19

Signature Chain
• For each data value, there is an associated signature

– Computed from its own value, and that of its left and right
neighbors

– sig(ri) = s(h(g(ri-1) | g(ri) | g(ri+1)))

• Owner stores the (ri, sig(ri)) pair in the server

• During querying, server returns (answer, signature)

ri ri+1ri-1
…… ri+2

37

g q y g, (, g)
pairs and more …(verification objects) …

hi (r) = h i-1 (h (r)) h0 (r) = h (r) g(r) = h U-r-1 (r)
U = max value outside of domain (known to all users)
s is a signature function using owner’s private key

Signature Chain Ensures Contiguity

Result Q
Server returns (ri , sig(ri))-pairs

g(ri)g(ri-1) g(ri+1) g(ri+2)

ri ri+1ri-1
…

…

Server:

User:

… ri+2

…

38

Client: ver(Hi, sig(ri), PK)? ver(Hi+1, sig(ri+1), PK)?

Signature chain: sig(ri) = s(h(g(ri-1) | g(ri) | g(ri+1)))
Hi = h(g(ri-1) | g(ri) | g(ri+1))

20

Signature Chain Ensures Contiguity

Result QQuery: 55 ≤ r

g(70)g(60) g(80) g(90)

70 8060 …

…

Server:

User:

… 90

…

39

ver(H70, sig(70), PK)? ver(H80, sig(80), PK)?

Signature Chain Ensures Contiguity

Result QQuery: 55 ≤ r

g(75)g(60) g(80) g(90)

75 8060 …

…

Server:

User:

… 90

…

40

ver(H75, sig(70), PK)? ver(H80~75, sig(80), PK)?

INCORRECT! Data has been tampered!

21

Signature Chain Ensures Contiguity

Result QQuery: 55 ≤ r

g(60) g(80) g(90)

70 8060 …

…

Server:

User:

… 90

…

41

ver(H80, sig(80), PK)?
H60~80 will be computed (without 70) -
will not match sig(80). INCORRECT!!!!

Result Q

How To Ensure rn Is The Last Record?

g(ra) g(ra+1) g(rn)

ra ra+1 rn….

….

Server:

User:

42

Create a fictitious record rn+1 that is
larger than the largest value but smaller
than U
• sig(rn+1) = s(h(g(rn)|g(rn+1)|h(U)))

22

Result Q

Signature Chain Ensures Terminal

g(ra) g(ra+1) g(rn)

ra ra+1 rn g(rn+1)….

….

Server:

User:
U

43

Create a fictitious record rn+1 that is
larger than the largest value but smaller
than U
• sig(rn+1) = s(h(g(rn)|g(rn+1)|h(U)))
• server returns g(rn+1) instead of rn+1

ver(Hn+1, sig(rn+1), PK)?

How to prove Origin (without revealing
the boundary point)??

40 50 60 70 80 ….

44

23

How to prove Origin??

40 50 60 70 80 ….

Query: 55 ≤ r

A naïve solution is to return 50. By proving that 50 is chained

45

y p g
to 60, we know that no answer has been dropped. But, this
reveals the value of 50.

How about this …

g(ra)

g(ra-1)

g(ra+1)

ra ra+1Server:

User:

46
Query: α ≤ r

ver(Ha, sig(ra), PK)?

24

The basic idea fails …

Cheat!

g(ra)

g(70)

g(ra+1)

80 90Server:

User:

6050

47
Query: 55 ≤ r

User can’t detect!ver(Ha, sig(ra), PK)?

Private Boundary Proof Ensures Origin

r r 1Server: h (r 1)
α-ra-1-1

g(ra)g(ra-1) g(ra+1)

ra ra+1Server:

User:

h (ra-1)

??

48
Query: α ≤ r

hi (r) = h i-1 (h (r))
g(r) = h U-r-1 (r)

ver(Ha, sig(ra), PK)?

25

Private Boundary Proof Ensures Origin

r r 1Server: h (r 1)
α-ra-1-1h (r 1)
α-ra-1-1

g(ra)g(ra-1) g(ra+1)

ra ra+1

hash
U - α
times

Server:

User:

h (ra-1)h (ra-1) A collaborative
scheme to compute
the hash value

49
Query: α ≤ r

hi (r) = h i-1 (h (r))
g(r) = h U-r-1 (r)

= h U-α (h α-r-1 (r))

ver(Ha, sig(ra), PK)?

Back to our example

α-70-1

Cheat! Require that the
inverse of hi for
i < 0 b d fi d80 90

g(ra) g(ra+1)

Server:

User:

h (70)
α 70 1

Undefined!Wrong!

hash
U - 55
times

i < 0 be undefined

50
Query: 55 ≤ r

User detects cheatingver(Ha, sig(ra), PK)?

26

Back to our example

55-50-1

g(60) g(70)

60 70 ….Server:

User:

h (50)
55 50 1

g(50)

hash
U - 55
times

51
Query: 55 ≤ r

ver(H60, sig(60), PK)?

Putting the Pieces Together

Result Q

g(ra)g(ra-1) g(ra+1) g(rn)

ra ra+1 rn g(rn+1)h (ra-1)
α-ra-1-1 …

…

hash
U - α
times

Distributor:

User:

52
Query: α ≤ r

ver(Ha, sig(ra), PK)? ver(Ha+1, sig(ra+1), PK)?

27

Other cases

• α ≤ r

• β r (Result = {ra, ra+1, … rb }, i.e., ra, … rb ≤ β < rb+1

– Need to verify that rb+1 > β

– Define g(r) = h r- L-1 (r) = h β - L (h r- β -1 (r)) where L is a
value outside of the minimum value of the domain

• So, we have α ≤ r ≤ β

53

• r = α ≡ α ≤ r ≤ α

• α < r < β ≡ α+1 ≤ r ≤ β-1

• α r ≡ (L < r < α) (α < r < R)

NULL Answers??

• Consider Q: α ≤ r.

• Q = because rn < α.
– Server returns h α-rn-1 (r), g(rn+1), sig(rn+1)

– User computes h U - α (h α-rn-1 (r)) and verifies
ver(Hn+1, sig(rn+1), PK)?

• How about r < α ≤ β < r ?• How about ri < α ≤ β < ri+1 ?

54

28

One More Vulnerability

• User can discover r through brute force• User can discover ra-1 through brute force
enumeration of numbers below ra

• Solution:
– Record [K, A1, .., Am], K = ordering attribute

– g(ri.K | ri.A1 | … | ri.Am)

55

g(i | i 1 | | i m)

– Brute-force attack is no longer feasible

Completeness Verification for Range Queries

Verify α < ra-1.K ver(Ha, sig(ra), PK)?

g(ra-1)

Merkle
Tree

h(ra-1.A)

.
:

h (ra-1.K)
U-ra-1.K-1

h (r.K)
ra-1.K-L-1

hash
U - α
times

g(ra) g(ra+1)

h (ra-1.K)
U-ra-1.K-1

56

h(ra-1.A1) h(ra-1.AR)…

Record ra-1: [K A1 A2 … AR]

h (ra-1.K)
α-ra-1.K-1

Query: α ≤ K ≤ β. Result: { ra, ra+1, …, rb }

29

Other queries
• SP Query

– Based on MHT(r.A)

– Ordering attribute has to be returned (even if it is not part of the target
attributes). Why?

– For attributes that are filtered out, digests may need to be returned

• SPJ Query

– R.Ai = S.Aj (Ai is foreign-key in R, Aj is primary key in S)
• Referential integrity constraint mandates that every instance of R.Ai

must have a matching entry in S.Aj

57

• So, only need to deal with selection conditions on R.Ai or S.Aj

• Create a signature chain for R.Ai

What else?

– What about data freshness?

More efficient scheme– More efficient scheme

– Ad-hoc joins

– Aggregates

– Multi-dimensional data

– Computation

58

– Complete (complex) queries

30

Summary

• Malicious service provider may cheat• Malicious service provider may cheat

• Users need assurance on their query
answers

• Merkle hash tree offers a good solution but
…

59

• Signature chain guarantee completeness
without violating access control policy

