

Collision-resistant (one-way) hash functions

- Given x, easy to compute h(x); given h(x), difficult to determine x
- i.e., it is computationally hard to find x₁ and x₂ s.t. h(x₁)=h(x₂)
- Computational hard? Based on well established assumptions such as discrete logarithms

15

• E.g., SHA, MD5

A1	B1	C1	a1	b1	c1	T1
A2	B2	C2	a2	b2	c2	T2
A3	B3	C3	a3	b3	c3	Т3
h = h(g and h Ai)	are collisi	ion-resist	ant hash	functions	5
i – się ii = h(Retrieve	g and h Ai) whole of fir	are collisi	ion-resist	ant hash	functions	5

A signature-chain-based scheme: Let's start simple ...

- Consider a sorted list of distinct integers, $R = \{r_1 ..., r_{i-1}, r_i, r_{i+1}, ... r_n\}$
- Retrieve record whose value is greater than or equal to α - $\alpha \le r$ (i.e., $\sigma_{\alpha \le r}(R)$)
- Result Q = { r_a, r_{a+1}, \dots, r_b }, i.e., $r_{a-1} < \alpha \le r_a < r_{a+1} < \dots r_b = r_n$
- Result is complete iff:
 - Contiguity: Each pair of successive entries r_i, r_{i+1} in Q also appears in R (based on Signature Chain)
 - Terminal: Last element of Q is also last element of R, i.e., $r_b = r_n$ (based on Signature Chain)
 - Origin: r_a is the first element in R that satisfies the query condition, i.e., $r_{a-1} < \alpha \le r_a$ (based on Private Boundary Proof)

36

<section-header>NULL Answers?• Consider Q: α ≤ r.• Q = Ø because r_n < α.</td>• Server returns h ^α-r_n • (r), g(r_n +), sig(r_n +)• User computes h ^U - α (h ^α - r_n • 1 (r)) and verifies $ver(H_{n+1}, sig(r_{n+1}), PK)$?• How about $r_i < α ≤ β < r_{i+1}$?

Summary

- Malicious service provider may cheat
- Users need assurance on their query answers

. . .

- Merkle hash tree offers a good solution but
- Signature chain guarantee completeness without violating access control policy

59