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Secure Indexing/Search for 
Regulatory-Compliant Record 

Retention
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There is a need for trustworthy record 
keeping

Spending on
eDiscovery Growing 

at 65% CAGR

Instant Messaging

Files

Email

CC SoaringSoaring
DiscoveryDiscovery

CostsCosts

Average F500
Company Has 125

Non-Frivolous
Lawsuits at Any

DigitalDigital
InformationInformation

ExplosionExplosion

IDC Forecasts
60B Business

Emails Annually

Records

Corporate Corporate 
MisconductMisconduct

Focus on ComplianceFocus on Compliance
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y
Given Time

Emails Annually

HIPAA
Sources: IDC, Network World (2003), Socha / Gelbmann (2004)

Q. Zhu, W. W. Hsu: Fossilized Index: The Linchpin of Trustworthy Non-Alterable Electronic Records. 
SIGMOD’2006, 395-406, 2006
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What is trustworthy record keeping?

Storage time

Establish solid proof of events that have occurred

Storage 
Device

time

QueryRegret
Commit
Record
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Alice Bob
Adversary

Bob should get back Alice’s data

This leads to a unique threat model 

time

Query is 
trustworthy

Commit is 
trustworthy

Adversary has 
super user privileges

4

trustworthytrustworthy super-user privileges

Record is created
properly

Record is 
queried
properly

• Access to storage device
• Access to any keys 

Adversary could be Alice herself
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Traditional schemes do not work

timet e

5

Cannot rely on Alice’s signature

WORM storage helps address the problem

New Record
Record Overwrite/

DeleteDelete

Adversary cannot
delete Alice’s record

6

Write Once Read Many
(WORM)

delete Alice s record



4

WORM storage helps address the problem

New Record
Record Overwrite/

DeleteDelete

Build on top of 
conventional 
rewritable magnetic

Adversary cannot
delete Alice’s record

7

Write Once Read Many

disk, with write-once 
semantics enforced 
through software, 
with file modification
and premature
deletion operations 
disallowed.

delete Alice s record

Index required due to high volume of records

Index 

Query from 
Index

time

Regret

Commit Record
Update Index

8

Alice BobAdversary
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In effect, records can be hidden/altered by 
modifying the index

Or replace B 
with B’

Hide record B 
from the 

index A B B’B

9

The index must also be secured (fossilized)  

index A B BB

Btree for increasing sequence can be 
created on WORM

23

137 31

10

2 4 7 11 13 19 23 29 31



6

B+tree index is insecure, even on WORM

23 25

2 4 7 11 13 19 23 29 31

7 13 31

25 26 30

27
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2 4 7 11 13 19 23 29 31 25 26 30

 Path to an element depends on elements 
inserted later – Adversary can attack it

Is this a real threat?

 Would someone want to delete a record after 
d it t d?a day its created?

 Intrusion detection logging 
 Once adversary gain control, he would like to 

delete records of his initial attack

 Record regretted moments after creation

12

g
 Email best practice - Must be committed 

before its delivered
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Several levels of indexing …

1

3

…query …

…query …
… data …

base

Query

Data

Base

Worm

1 3 11 17

3 9

3 19

7 36

Keywords

Posting Lists

… base …
…index …

13

Worm

Index 3

To find documents containing keywords “Query” and “Data” and “Base”
* Retrieve lists for Query, Data and Base, and intersect the document 

ids in the list

GHT: A Generalized Hash Tree Fossilized 
Index

 Tree grows from the root down to the leaves 
without relocating committed entrieswithout relocating committed entries

 “Balanced” without requiring dynamic 
adjustments to its structure

 For hash-based scheme, dynamic hashing 
scheme that do not require rehashing

14
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GHT

 Defined by {M,K, H}

 M = {m0 m1 } mi is M  {m0, m1, …}, mi is 
size of a tree node
(number of buckets) at 
level i

 K = {k0, k1,…}, ki is the 
growth factor for level i 
 A tree has ki times as 

many nodes at level (i+1) 

15

y ( )
as at level i

 H = {h0, h1,…}, hi is a 
hash function for level I
 Different H values lead to 

different GHT variants 

m0 = m1 … = 4
k0 = k1 … = 2

Standard (Default) GHT – Thin Tree 

 Defined by {M,K, H}

 M = {m0 m1 } mi is

h0

 M  {m0, m1, …}, mi is 
size of a tree node 
(number of buckets) at 
level i

 K = {k0, k1,…}, ki is the 
growth factor for level i 
 A tree has ki times as 

many nodes at level (i+1) 

h1

h2h2

16

y ( )
as at level i

 H = {h0, h1,…}, hi is a 
hash function for level i 

m0 = m1 … = 4
k0 = k1 … = 2
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Standard (Default) GHT – Thin Tree 

 Defined by {M,K, H}

 M = {m0 m1 } mi is

h0

 M  {m0, m1, …}, mi is 
size of a tree node 
(number of buckets) at 
level i

 K = {k0, k1,…}, ki is the 
growth factor for level i 
 A tree has ki times as 

many nodes at level (i+1) 

h1

h2h2
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y ( )
as at level i

 H = {h0, h1,…}, hi is a 
hash function for level i 

m0 = m1 … = 4
k0 = k1 … = 2
h0 = x mod 4
h1 = x mod 8

What about h2? x mod 16?

Standard (Default) GHT – Thin Tree 

 Defined by {M,K, H}

 M = {m0 m1 } mi is

h0

 M  {m0, m1, …}, mi is 
size of a tree node 
(number of buckets) at 
level i

 K = {k0, k1,…}, ki is the 
growth factor for level i 
 A tree has ki times as 

many nodes at level (i+1) 

h1

h2h2
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y ( )
as at level i

 H = {h0, h1,…}, hi is a 
hash function for level i 

m0 = m1 … = 4
k0 = k1 … = 2
h0 = x mod 4
h1 = x mod 8
h2 = h3 = … = x mod 8
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GHT Variant (Fat Tree)

h0

Can tolerate non-ideal
hash functions better 
because there are many
more potential target 

h1

h2

buckets at each level

Hashing at different 
levels is independent

Can allocate different
levels to different disks
and access them in 

ll l

19

m0 = m1 … = 4
k0 = k1 … = 2

parallel

Expensive to maintain
children pointers in each 
node – number of 
pointers grow 
exponentially

h0 = x mod 4
h1 = x mod 8
h2 = x mod 16
hi = x mod 4*2i

GHT (Standard) Insertion

(0, 0, 1)

Bucket = (Level, Child – left or right, Entry within bucket)

(1, 1, 2)

(2, 0, 1)

20
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GHT Insertion

(0, 0, 1)

Insert          whose hash values at the various levels are shown.

h0(key) 1
Occupied/

lli i

(1, 1, 2)

(2, 0, 1)

h0(key) = 1

h1(key) = 6

h2(key) = 1

collision

21

( y)

h3(key) = 3

GHT Insertion

(0, 0, 1)

h0(key) 1
Occupied/

lli i

Insert          whose hash values at the various levels are shown.

(1, 1, 2)

(2, 0, 1)

h0(key) = 1

h1(key) = 6

h2(key) = 1

collision

22

(3, 0, 3)

( y)

h3(key) = 3

If hash functions are uniform, tree grows top-down in a balanced fashion
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GHT Search

(0, 0, 1)

h0(key) 1

Search for          whose hash values at the various levels are shown
- Similar to insertion 
- Need to deal with duplicate key values

(1, 1, 2)

(2, 0, 1)

h0(key) = 1

h1(key) = 6

h2(key) = 1

23

(3, 0, 3)

( y)

h3(key) = 3

 Only for point queries

 Cannot support range search

Summary

 Trustworthy record keeping is important

 However, need to also ensure efficient 
retrieval

 Existing indexing structures may be 
manipulated

 GHT is a “trustworthy” index structureGHT is a trustworthy  index structure
 Once record is committed, it cannot be 

manipulated!

24
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Most business records are unstructured, 
searched by inverted index

Query

Data

Base

Worm

1 3 11 17

3 9

3 19

7 36

Keywords Posting Lists

25

Index 3

One WORM file for each posting list
S. Mitra, W. W. Hsu, M. Winslett: Trustworthy Keyword Search for Regulatory-Compliant Record 
Retention. VLDB’2006, 1001-1012, 2006

Index must be updated as new documents 
arrive

Keywords Posting Lists

D 79Query

Data

Base

Worm

Index

1 3 11 17

3 9

3 19

7 36

3

Data

Index

Query

Doc: 7979

79

79

26

 500 keywords = 500 disk seeks
 ~1 sec per document
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Amortize cost by updating in batch

Keywords Posting Lists Doc: 79

Buffer

Query

Data

Base

Worm

Index

1 3 11 17

3 9

3 19

7 36

3

Query

Query

Doc: 82

Doc: 83

79 81 83

Doc: 80
Doc: 81

27

Query 1 seek per keyword in batch

 Large buffer to benefit infrequent terms
 Over 100,000 documents to achieve 2 docs/sec

Index is not updated immediately

Alice

Index 

Buffer

time

Omit
Alter

Buffer

Commit
Record

28

Adversary

 Prevailing practice – email must be committed before it is 
delivered
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Can storage server cache help?

 Storage servers have huge cache

 Data committed into cache is effectively on 
disk
 Is battery backed-up

 Inside the WORM box, so is trustworthy

29

Q Doc: 79

Cache Miss Cache Hit

Caching works in blocks (One block per 
posting list)

Query

Data

Base

Worm

Index

1 3 11 17

3 9

3 19

7 36

3

Base

Index

Query

Doc: 7979

79
Cache Miss

79
Cache Miss

Query

Doc: 80

80

30

 Caching does not benefit infrequent terms 
(number of posting lists >> number of cache 
blocks)

Query
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Simulation results show caching is not 
enough

Cache Misses Per Doc

100
150

200

250

300

350

400

450

500
I/

O
 P

er
 D

o
c

Cache Miss

31

0

50

100

0 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Cache Size

GB

Simulation results show caching is not 
enough

 What if number posting lists ≤ Number of 
cache blocks?

 Each update will hit the cache

32



17

So, merge posting lists so that the tails blocks fit 
in cache (#posting lists < #cache blocks)

K d
Query

Data

Base

Worm

Index

1 3 11

3 9 31

3 19

7 36

3

00 1 00 3 01 3 10 3

01 9 00 11 10 19 01 31

Document IDs

Keyword 
Encodings

33

Only 1 random I/O per document, for 4K block 
size (500 keywords, 8-byte posting)

• Query answered by scanning posting 
lists of the terms in the query

The tradeoff is longer lists to scan during 
lookup

lists of the terms in the query

Workload lookup cost before merging:

∑ tw qw
w

34
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• Query answered by scanning posting 
lists of the terms in the query

The tradeoff is longer lists to scan during 
lookup

length of posting 
list for keyword wlists of the terms in the query

Workload lookup cost before merging:

∑ tw qw
w

list for keyword w
# of times w is 

queried in workload

35

After merging into A = {A1, …, An} :

∑ ( ∑ tw ) (∑ qw )
w  A w  AA

• Query answered by scanning posting 
lists of the terms in the query

The tradeoff is longer lists to scan during 
lookup

length of posting 
list for keyword wlists of the terms in the query

Workload lookup cost before merging:

∑ tw qw
w

list for keyword w
# of times w is 

queried in workload

length of A

# of times A is

36

After merging into A = {A1, …, An} :

∑ ( ∑ tw ) (∑ qw )
w  A w  AA

# of times A is 
searched
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Which lists to merge?  

 Choose A={A1, A2 .. An}
 n = Cache blocks

 Minimize ∑ ( ∑ tw ) * (∑ qw )

 Problem is NP-complete, so need heuristics

 Heuristics (See observation in next slide)
 Separate lists for high contributor terms

Merging heuristics

37

 Merging heuristics
 Based on qw tw
 Random merging

A few terms contribute most of the query 
workload cost

5 E+09

6.E+09
(tw *qw)

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

W
o

rk
lo

ad
 C

o
st

QF

TF

38

0.E+00

0 5000 10000 15000 20000 25000

Term Rank
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Summary

 To ensure acceptable performance, posting 
lists have to be properly managedlists have to be properly managed

 We have looked at how buffering/caching can 
help 
 Merging of posting lists can result in savings

 However, need to pick the right heuristics

39

Several levels of indexing …

1

3

…query …

…query …
… data …

base

Query

Data

Base

Worm

1 3 11 17

3 9

3 19

7 36

Keywords

Posting Lists

… base …
…index …

40

Worm

Index 3

To find documents containing keywords “Query” and “Data” and “Base”
* Retrieve lists for Query, Data and Base, and intersect the document 

ids in the list
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Additional index (over the posting lists) 
support is needed to answer conjunctive 
queries (e.g., k1 AND k2) quickly

24
24

2

7

13

24

3

24

24

2

13

31

2

31
n

m
2

7

13

24

3

24

k2

41

Merge Join : O (m+n)

31

Index Join : m log(n)

24

31

k1

Can use GHT?

An alternative solution is Jump Indexes

 Path to an element only depends on elements 
inserted beforese ted be o e

 Jump index is provably trustworthy
 Leverages the fact that document IDs are increasing
 O(log N) lookup : N - # of documents (typically 

weaker than O(log n) in traditional balanced trees 
like B+-tree where n is the number of entries)
 Supports range queries too

42

 Supports range queries too

 Reasonable performance as compared to B+ trees 
for conjunctive queries in experiments with real-
workload
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The Jump Index

n 0 1 2 3 4 5

Element Pointers

n+2

n + 2 1 ≤ n+2 < n + 2 2

43

 ith pointer points to an element ni

n + 2i ≤ ni < n + 2(i+1)

Jump index in action

1

0 1 2 3 4

n + 2i ≤ ni < n + 2(i+1)

2

1 + 2 0 ≤ 2 < 1 + 2 1 1 + 2 2 ≤ 5 < 1 + 2 3

5

0 1 2 3 4

44

7
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Jump index in action

1

0 1 2 3 4 Already Set

Follow Pointer

n + 2i ≤ ni < n + 2(i+1)

2 5

0 1 2 3 4

45

71 + 2 2 ≤ 7 < 1 + 2 3

Jump index in action

1

0 1 2 3 4 Already Set

Follow Pointer

n + 2i ≤ ni < n + 2(i+1)

2 5

0 1 2 3 4

46

7

5 + 2 1 ≤ 7 < 5 + 2 2

log(N) pointers to N
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Path to an element does not depend on future 
elements

Start here Lookup (7)

1

2

0 1 2 3 4

5

0 1 2 3 4

Follow Pointer

47

7

1 + 2 2 ≤ 7 < 1 + 2 3

5 + 2 1 ≤ 7 < 5 + 2 2

Got 7

Block-based Jump Index

 Storing pointers with every element is inefficient
 With every document ID, log2(N) pointers are needed

 p entries are grouped together

l + j*Bi ≤  x  <  l + (j+1)*Bi

p g p g
 Branch factor B. 

 (B-1) logB(N) pointers
 Pointer (i,j) from block b points to b’ having smallest x

48

Jump Pointersp entries

(0
,1

)

(0
,2

)

(0
,B

-1
)

(1
,0

)

(0
,1

)
( 

i ,
j )

.. ..l
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Jump index elements are stored in blocks

P=4 entries, B = 3

l + j*Bi ≤  x  <  l + (j+1)*Bi

,

(0
,1

)

(0
,2

)

(1
,1

)

(1
,2

)

( 
2,

 2
 )

1 2 5 7

(2
,1

)

7+1*30  8 < 7+2*30

Block 0

,1
)

,2
)

,1
)

,2
)

,j 
)

8 10 15 19Block 1

7+2*32  25 < 7+3*32
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(0 (0 (1 (1 ( 
i .. ..8 10 15 19Block 1

(0
,1

)

(0
,2

)

(1
,1

)

(1
,2

)

( 
i ,

j )

.. ..21 22 25Block 2

What about Data Disposition?

 Regulations may prohibit retention after a 
certain periodcertain period

 Company may be free to dispose of records 
once mandatory retention period has passed

 Term-immutability, rather than immutability

 Software can assign an expiry date on data

50

Software can assign an expiry date on data 
that cannot be moved forward in time
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Documents may be deleted, but 
indexes contain useful 
information …

1 …query …

…query …
… data …

base

Query

Data

Base

1 3 11 17

3 9

3 19

Keywords

Posting Lists

3 … base …
…index …

51

Worm

Index

7 36

3

g

From the index, one can know that document 3 contain keywords 
“Query”, “Data”, “Base” and “Index”

Deletion from inverted indexes (on WORM)

 Secure deletion
 Destroy the media? Destroy the media?

 Another approach
 Create new copies of the document keyword’s posting 

lists, minus away those deleted documents’ IDs

 Original posting list is erased

 Impractical and costly, setting of expiry time is also 
difficult since it is not sure when the document will be

52

difficult since it is not sure when the document will be 
deleted.

S.Mitra, M. Winslett: Secure Deletion from Inverted Indexes on Compliance Storage. 
Proceedings of the 2006 ACM Workshop On Storage Security And Survivability, 
StorageSS 2006, Alexandria, VA, USA, October 30, 2006, pp. 67-72.
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Physical Deletion

 What about zeroing-out the document 
ID+associated metadata from the posting listID+associated metadata from the posting list 
files?
 Presence of holes can leak information (since ID 

are in increasing order)
 Costly to implement such fine grained deletion in 

WORM storage

53

Logical Deletion
To reduce overhead, documents with similar expiry date can be grouped
into the same disposition group. Encrypt these documents using the 
same secret key.

Query

Data

Base

1 3 11

3 9 31

3 19

54

Base

keyfile2keyfile1

Encrypted inverted index
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Logical Deletion

 To prevent “join attack”, 
encrypt (keyword ID)

To reduce overhead, documents with similar expiry date can be grouped
into the same disposition group. Encrypt these documents using the 
same secret key.

Wh ll d t i t d ith k fil 1 encrypt (keyword, ID) 
pair instead.

 Adversary can still 
determine a set of 
keywords that were 
committed in documents 
in the disposition group, 
though he cannot 
determine the exact 
association of those

Query

Data

Base

1 3 11

3 9 31

3 19

When all documents associated with keyfile1 
expires, just need to erase keyfile 1

55

association of those 
words with documents

 Document IDs can still 
be guessed from those 
of neighbors

Base

keyfile2keyfile1

Encrypted inverted index

Summary

 For trustworthy record keeping, indexes must 
also be trustworthyalso be trustworthy 

 GHT and Jump Index are examples of 
trustworthy indexes

 Both can achieve O(log(N)) search time in 
practice  

56


