
Secure Indexing/Search for g
Regulatory-Compliant Record

R iRetention

1

There is a need for trustworthy record
k ikeeping

Spending on
eDiscovery Growing

Instant Messaging

Files

Email

SoaringSoaring
DiscoveryDiscovery

CostsCosts

eDiscovery Growing
at 65% CAGR

DigitalDigital
InformationInformation

ExplosionExplosion

Files

Corporate Corporate
MisconductMisconduct

CostsCosts

Average F500

ExplosionExplosionRecords

Average F500
Company Has 125

Non-Frivolous
Lawsuits at Any

Given Time

IDC Forecasts
60B Business

Emails Annually Focus on ComplianceFocus on Compliance

HIPAA

2

Sources: IDC, Network World (2003), Socha / Gelbmann (2004)

Q. Zhu, W. W. Hsu: Fossilized Index: The Linchpin of Trustworthy Non-Alterable Electronic Records.
SIGMOD’2006, 395-406, 2006

What is trustworthy record keeping?

Establish solid proof of events that have occurred

Storage
Device

time

QueryRegret
Commit
Record

Alice Bob
Adversary

Bob should get back Alice’s data

3

This leads to a unique threat model

titime

Query is
trustworthy

Commit is
trustworthy

Adversary has
super-user privileges

R d i d R d iRecord is created
properly

Record is
queried
properly

• Access to storage device
• Access to any keys

Adversary could be Alice herself

4

Adversary could be Alice herself

Traditional schemes do not work

time

Cannot rely on Alice’s signatureCannot rely on Alice s signature

5

WORM storage helps address the problem

Record Overwrite/
New Record Delete

Adversary cannot
delete Alice’s record

Write Once Read Many

6

(WORM)

WORM storage helps address the problem

Record Overwrite/
New Record Delete

Build on top ofBuild on top of
conventional
rewritable magnetic
disk, with write-once

ti f d

Adversary cannot
delete Alice’s record

Write Once Read Many

semantics enforced
through software,
with file modification
and premature

7

p
deletion operations
disallowed.

Index required due to high volume of records

time

Index

Query from
IndexRegret

Commit Record
Update Index

Alice BobAdversary

8

In effect, records can be hidden/altered by
dif i h i dmodifying the index

Or replace B Hide record B
with B’

Hide record B
from the

index A B B’B

The index must also be secured (fossilized)

9

Btree for increasing sequence can be
d WORMcreated on WORM

23

137 31

2 4 7 11 13 19 23 29 31

10

B+tree index is insecure, even on WORM

23 25

7 13 31 27

2 4 7 11 13 19 23 29 31 25 26 30

 Path to an element depends on elements
inserted later – Adversary can attack it

11

y

Is this a real threat?

 Would someone want to delete a record after Would someone want to delete a record after
a day its created?

 Intrusion detection logging Intrusion detection logging
 Once adversary gain control, he would like to

delete records of his initial attackdelete records of his initial attack

 Record regretted moments after creation
E il b t ti M t b itt d Email best practice - Must be committed
before its delivered

12

Several levels of indexing …

1 …query …

…query …

Keywords

3
q y

… data …
… base …
…index …

Query

Data

1 3 11 17

3 9

Base

Worm

I d

3 19

7 36

3

Posting Lists

Index 3

To find documents containing keywords “Query” and “Data” and “Base”
* Retrieve lists for Query Data and Base and intersect the document

13

 Retrieve lists for Query, Data and Base, and intersect the document
ids in the list

GHT: A Generalized Hash Tree Fossilized
I dIndex

 Tree grows from the root down to the leaves Tree grows from the root down to the leaves
without relocating committed entries

 “Balanced” without requiring dynamic Balanced without requiring dynamic
adjustments to its structure

 For hash-based scheme dynamic hashing For hash-based scheme, dynamic hashing
scheme that do not require rehashing

14

GHT

 Defined by {M,K, H}Defined by {M,K, H}
 M = {m0, m1, …}, mi is

size of a tree node
(number of buckets) at(number of buckets) at
level i

 K = {k0, k1,…}, ki is the
growth factor for level igrowth factor for level i
 A tree has ki times as

many nodes at level (i+1)
as at level i

 H = {h0, h1,…}, hi is a
hash function for level I
 Different H values lead to

m0 = m1 … = 4
k0 = k1 … = 2

15

different GHT variants

Standard (Default) GHT – Thin Tree

 Defined by {M,K, H}
h0Defined by {M,K, H}

 M = {m0, m1, …}, mi is
size of a tree node
(number of buckets) at

h1
(number of buckets) at
level i

 K = {k0, k1,…}, ki is the
growth factor for level i h2h2growth factor for level i
 A tree has ki times as

many nodes at level (i+1)
as at level i

h2h2

 H = {h0, h1,…}, hi is a
hash function for level i

m0 = m1 … = 4
k0 = k1 … = 2

16

Standard (Default) GHT – Thin Tree

 Defined by {M,K, H}
h0Defined by {M,K, H}

 M = {m0, m1, …}, mi is
size of a tree node
(number of buckets) at

h1
(number of buckets) at
level i

 K = {k0, k1,…}, ki is the
growth factor for level i h2h2growth factor for level i
 A tree has ki times as

many nodes at level (i+1)
as at level i

h2h2

 H = {h0, h1,…}, hi is a
hash function for level i

m0 = m1 … = 4
k0 = k1 … = 2
h0 = x mod 4

What about h2? x mod 16?

17

0
h1 = x mod 8

Standard (Default) GHT – Thin Tree

 Defined by {M,K, H}
h0Defined by {M,K, H}

 M = {m0, m1, …}, mi is
size of a tree node
(number of buckets) at

h1
(number of buckets) at
level i

 K = {k0, k1,…}, ki is the
growth factor for level i h2h2growth factor for level i
 A tree has ki times as

many nodes at level (i+1)
as at level i

h2h2

 H = {h0, h1,…}, hi is a
hash function for level i

m0 = m1 … = 4
k0 = k1 … = 2
h0 = x mod 4

18

0
h1 = x mod 8
h2 = h3 = … = x mod 8

GHT Variant (Fat Tree)

h0

Can tolerate non-ideal
hash functions better
because there are many

h1

because there are many
more potential target
buckets at each level

Hashing at different

h2

Hashing at different
levels is independent

Can allocate different
levels to different disks
and access them in
parallel

m0 = m1 … = 4
k0 = k1 … = 2

Expensive to maintain
children pointers in each
node – number of

h0 = x mod 4
h1 = x mod 8
h2 = x mod 16

i

19

pointers grow
exponentially

hi = x mod 4*2i

GHT (Standard) Insertion

(0, 0, 1)

Bucket = (Level, Child – left or right, Entry within bucket)

(, ,)

(1 1 2)(1, 1, 2)

(2, 0, 1)

20

GHT Insertion

(0, 0, 1)

Insert whose hash values at the various levels are shown.

(, ,)

(1 1 2)

h0(key) = 1
Occupied/
collision

(1, 1, 2)
h1(key) = 6

(2, 0, 1)
h2(key) = 1

h3(key) = 3

21

GHT Insertion

(0, 0, 1)

Insert whose hash values at the various levels are shown.

(, ,)

(1 1 2)

h0(key) = 1
Occupied/
collision

(1, 1, 2)
h1(key) = 6

(2, 0, 1)
h2(key) = 1

(3, 0, 3) h3(key) = 3

22
If hash functions are uniform, tree grows top-down in a balanced fashion

GHT Search
Search for whose hash values at the various levels are shown

(0, 0, 1)

Search for whose hash values at the various levels are shown
- Similar to insertion
- Need to deal with duplicate key values

(, ,)

(1 1 2)

h0(key) = 1

(1, 1, 2)
h1(key) = 6

(2, 0, 1)
h2(key) = 1

(3, 0, 3) h3(key) = 3

23

 Only for point queries
 Cannot support range search

Summary

 Trustworthy record keeping is important Trustworthy record keeping is important
 However, need to also ensure efficient

retrievalretrieval
 Existing indexing structures may be

manipulatedmanipulated
 GHT is a “trustworthy” index structure

Once record is committed it cannot be Once record is committed, it cannot be
manipulated!

24

Most business records are unstructured,
h d b i d i dsearched by inverted index

Keywords Posting Lists

Query

Data

1 3 11 17

3 9

Base

Worm

Index

3 19

7 36

3Index 3

One WORM file for each posting list
25

One WORM file for each posting list
S. Mitra, W. W. Hsu, M. Winslett: Trustworthy Keyword Search for Regulatory-Compliant Record
Retention. VLDB’2006, 1001-1012, 2006

Index must be updated as new documents
iarrive

Keywords Posting Lists

Query

Data

1 3 11 17

3 9

Keywords Posting Lists

Query

Doc: 7979

79Data

Base

Worm

3 19

7 36
Data

Index

Query

Index 3 79

500 k d 500 di k k 500 keywords = 500 disk seeks
 ~1 sec per document

26

Amortize cost by updating in batch

Keywords Posting Lists D 79

Buffer

Query

Data

1 3 11 17

3 9

Keywords Posting Lists

Query

Doc: 79

79 81 83

Doc: 80Data

Base

Worm

3 19

7 36 Query

Doc: 80
Doc: 81

Index 3 Doc: 82

Query
Doc: 83

 1 seek per keyword in batch Query 1 seek per keyword in batch
 Large buffer to benefit infrequent terms

Over 100 000 documents to achieve 2 docs/sec
27

 Over 100,000 documents to achieve 2 docs/sec

Index is not updated immediately

Alice

Index

Alice

time

Omit
Alter

Commit
Record

Buffer Buffer

Adversary

 Prevailing practice – email must be committed before it is
delivered

28

Can storage server cache help?

 Storage servers have huge cache Storage servers have huge cache
 Data committed into cache is effectively on

diskdisk
 Is battery backed-up
 Inside the WORM box so is trustworthy Inside the WORM box, so is trustworthy

29

Caching works in blocks (One block per
i li)

Cache Miss Cache Hit

posting list)

Query

Data

1 3 11 17

3 9 Query

Doc: 7979

Cache Miss

Cache Miss

80

Cache Hit

Base

Worm

I d

3 19

7 36

3

Base

Index

y
79

Cache Miss

79Index 3 79 Cache Miss

Query
Doc: 80

 Caching does not benefit infrequent terms
(number of posting lists >> number of cache

30

(number of posting lists number of cache
blocks)

Simulation results show caching is not
henough

Cache Misses Per Doc

400
450
500

250
300
350
400

Pe
r

D
oc

50
100
150
200

I/O
 P

Cache Miss

0

0 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

Cache Size

GB

31

Cache Size

Simulation results show caching is not
henough

 What if number posting lists ≤ Number of
cache blocks?cache blocks?

 Each update will hit the cache

32

So, merge posting lists so that the tails blocks fit
in cache (#posting lists < #cache blocks)in cache (#posting lists < #cache blocks)

Query

D t

1 3 11

3 9 31 D t ID

Keyword
Encodings

Data

Base

Worm

3 9 31

3 19

7 36

00 1 00 3 01 3 10 3

Document IDs

Worm

Index

7 36

3 01 9 00 11 10 19 01 31

Only 1 random I/O per document, for 4K block
size (500 keywords, 8-byte posting)

33

size (500 keywords, 8 byte posting)

The tradeoff is longer lists to scan during
l k

• Query answered by scanning posting

lookup

lists of the terms in the query

Workload lookup cost before merging:

∑ tw qw∑ tw qw
w

34

The tradeoff is longer lists to scan during
l k

• Query answered by scanning posting

lookup

length of posting
lists of the terms in the query

g p g
list for keyword w

of times w is
queried in workloadWorkload lookup cost before merging:

∑ tw qw

queried in workload

∑ tw qw

After merging into A = {A1, …, An} :
w

After merging into A {A1, …, An} :

∑ (∑ tw) (∑ qw)
w A w AA

35

w A w AA

The tradeoff is longer lists to scan during
l k

• Query answered by scanning posting

lookup

length of posting
lists of the terms in the query

g p g
list for keyword w

of times w is
queried in workloadWorkload lookup cost before merging:

∑ tw qw

queried in workload

length of A∑ tw qw

After merging into A = {A1, …, An} :
w

length of A

of times A is
searchedAfter merging into A {A1, …, An} :

∑ (∑ tw) (∑ qw)
w A w AA

searched

36

w A w AA

Which lists to merge?

 Choose A={A1, A2 .. An}
C n = Cache blocks

 Minimize ∑ (∑ tw) * (∑ qw)
 Problem is NP-complete, so need heuristics
 Heuristics (See observation in next slide)
 Separate lists for high contributor terms
 Merging heuristics

 Based on qw tw
 Random merging

37

A few terms contribute most of the query
kl dworkload cost

6.E+09
(tw *qw)

4.E+09

5.E+09

C
os

t QF

(tw qw)

2 E+09

3.E+09

or
kl

oa
d

C

TF

0 E 00

1.E+09

2.E+09

W
o

0.E+00
0 5000 10000 15000 20000 25000

Term Rank

38

Term Rank

Summary

 To ensure acceptable performance posting To ensure acceptable performance, posting
lists have to be properly managed

 We have looked at how buffering/caching can We have looked at how buffering/caching can
help
 Merging of posting lists can result in savings Merging of posting lists can result in savings
 However, need to pick the right heuristics

39

Several levels of indexing …

1 …query …

…query …

Keywords

3
q y

… data …
… base …
…index …

Query

Data

1 3 11 17

3 9

Base

Worm

I d

3 19

7 36

3

Posting Lists

Index 3

To find documents containing keywords “Query” and “Data” and “Base”
* Retrieve lists for Query Data and Base and intersect the document

40

 Retrieve lists for Query, Data and Base, and intersect the document
ids in the list

Additional index (over the posting lists)
i d d j isupport is needed to answer conjunctive

queries (e.g., k1 AND k2) quickly

24
24

2

7

3

24
2

13
2

31
m

2

7

3

24
13

24

31

31

31
n

7

13

24

24

k2

Merge Join : O (m+n) Index Join : m log(n)

31

k1

41

Merge Join : O (m+n) Index Join : m log(n)

Can use GHT?

An alternative solution is Jump Indexes

 Path to an element only depends on elements y p
inserted before

 Jump index is provably trustworthy
L th f t th t d t ID i i Leverages the fact that document IDs are increasing

 O(log N) lookup : N - # of documents (typically
weaker than O(log n) in traditional balanced treesweaker than O(log n) in traditional balanced trees
like B+-tree where n is the number of entries)
 Supports range queries too
R bl f d t B t Reasonable performance as compared to B+ trees
for conjunctive queries in experiments with real-
workload

42

The Jump Index

n 0 1 2 3 4 5 n+2n

Element Pointers

n+2

Element Pointers

ith pointer points to an element n
n + 2 1 ≤ n+2 < n + 2 2

 ith pointer points to an element ni
n + 2i ≤ ni < n + 2(i+1)

43

Jump index in action n + 2i ≤ ni < n + 2(i+1)

1

0 1 2 3 4

1

0 1 2 3 4

2

1 + 2 0 ≤ 2 < 1 + 2 1 1 + 2 2 ≤ 5 < 1 + 2 3

5

1 2 2 1 2 1 2 5 1 2

77

44

Jump index in action n + 2i ≤ ni < n + 2(i+1)

1

0 1 2 3 4 Already Set

1

0 1 2 3 4

Follow Pointer

2 5

71 + 2 2 ≤ 7 < 1 + 2 3 71 + 2 2 ≤ 7 < 1 + 2 3

45

Jump index in action n + 2i ≤ ni < n + 2(i+1)

1

0 1 2 3 4 Already Set

1

0 1 2 3 4

Follow Pointer

2 5

77

5 + 2 1 ≤ 7 < 5 + 2 2

46
log(N) pointers to N

Path to an element does not depend on future
lelements

Start here Lookup (7)

1

0 1 2 3 4

Follow Pointer

p ()

1

2 5

0 1 2 3 4

2 5

Got 7

7

1 + 2 2 ≤ 7 < 1 + 2 3

5 + 2 1 ≤ 7 < 5 + 2 2

47

Block-based Jump Index

 Storing pointers with every element is inefficient
 With every document ID, log2(N) pointers are needed

 p entries are grouped together
 Branch factor B.

 (B-1) logB(N) pointers (B 1) logB(N) pointers
 Pointer (i,j) from block b points to b’ having smallest x

Jump Pointersp entries

l + j*Bi ≤ x < l + (j+1)*Bi

Jump Pointersp entries
(0

,1
)

(0
,2

)

(0
,B

-1
)

(1
,0

) (0
,1

)
(i

 ,j
)

.. ..l
48

(.. ..l

Jump index elements are stored in blocks

l + j*Bi ≤ x < l + (j+1)*Bi

P=4 entries, B = 3
(0

,1
)

(0
,2

)

(1
,1

)

(1
,2

)

2,
 2

)

1 2 5 7 (2
,1

)

Block 0((((((
7+1*30 8 < 7+2*30

7+2*32 25 < 7+3*32

(0
,1

)

(0
,2

)

(1
,1

)

(1
,2

)

(i
 ,j

)

.. ..8 10 15 19Block 1

) 2)) 2))

49
(0

,1

(0
,2

(1
,1

(1
, 2

(i
 ,j

.. ..21 22 25Block 2

What about Data Disposition?

 Regulations may prohibit retention after a Regulations may prohibit retention after a
certain period

 Company may be free to dispose of records Company may be free to dispose of records
once mandatory retention period has passed

 Term-immutability rather than immutability Term-immutability, rather than immutability
 Software can assign an expiry date on data

that cannot be moved forward in timethat cannot be moved forward in time

50

Documents may be deleted, but
i d i f lindexes contain useful
information …

1 …query …

…query …

K d

3

q y
… data …
… base …
…index …

Query

Data

1 3 11 17

3 9

Keywords

Data

Base

Worm

3 9

3 19

7 36

Posting Lists

Worm

Index 3

From the index one can know that document 3 contain keywords

51

From the index, one can know that document 3 contain keywords
“Query”, “Data”, “Base” and “Index”

Deletion from inverted indexes (on WORM)

 Secure deletion
 Destroy the media?
 Another approach

 Create new copies of the document keyword’s posting
lists, minus away those deleted documents’ IDs

 Original posting list is erased Original posting list is erased
 Impractical and costly, setting of expiry time is also

difficult since it is not sure when the document will be
d l t ddeleted.

52

S.Mitra, M. Winslett: Secure Deletion from Inverted Indexes on Compliance Storage.
Proceedings of the 2006 ACM Workshop On Storage Security And Survivability,
StorageSS 2006, Alexandria, VA, USA, October 30, 2006, pp. 67-72.

Physical Deletion

 What about zeroing-out the documentWhat about zeroing out the document
ID+associated metadata from the posting list
files?
 Presence of holes can leak information (since ID

are in increasing order)
 Costly to implement such fine grained deletion in Costly to implement such fine grained deletion in

WORM storage

53

Logical Deletion
To reduce overhead, documents with similar expiry date can be grouped
into the same disposition group. Encrypt these documents using the
same secret key.

Query 1 3 11

Data

Base

3 9 31

3 19

keyfile2keyfile1

54

Encrypted inverted index

Logical Deletion
To reduce overhead, documents with similar expiry date can be grouped
into the same disposition group. Encrypt these documents using the
same secret key.

 To prevent “join attack”,
encrypt (keyword, ID)
pair instead.

 Adversary can still

When all documents associated with keyfile1
expires, just need to erase keyfile 1

Adversary can still
determine a set of
keywords that were
committed in documents
in the disposition group,

Query 1 3 11
in the disposition group,
though he cannot
determine the exact
association of those
words with documents

Data

Base

3 9 31

3 19

words with documents
 Document IDs can still

be guessed from those
of neighborskeyfile2keyfile1

55

Encrypted inverted index

Summary

 For trustworthy record keeping indexes must For trustworthy record keeping, indexes must
also be trustworthy

 GHT and Jump Index are examples of GHT and Jump Index are examples of
trustworthy indexes

 Both can achieve O(log(N)) search time in Both can achieve O(log(N)) search time in
practice

56

