
Access Control

1

Access Control
• Access control: ensures that all direct accesses to

object are authorized – a scheme for mapping users to
allowed actionsallowed actions
– Protection objects: system resources for which protection is desirable,

e.g., memory, file, directory, hardware resource, software resources,
t bl t ltables, tuples, …

– Subjects: active entities requesting accesses to resources, e.g., user,
owner, program, etc.

– Access mode: type of access, e.g., read/select, write/update, execute

• Protects against accidental and malicious threats by
regulating the reading writing and execution of dataregulating the reading, writing and execution of data
and programs

• Need:
2

• Need:
– Proper user identification and authentication
– Information specifying the access rights is protected from modification

Access Control
• Access control requirement:

– Cannot be bypassed
– Enforce least-privilege and need-to-know restrictions
– Enforce organizational policyEnforce organizational policy

• Access control components:
– Access control policy: specifies the authorized accesses of a system
– Access control mechanism: implements and enforces the policy

• Separation of components allows to:
– Define access requirements independently from implementationDefine access requirements independently from implementation
– Compare different policies
– Implement mechanisms that can enforce a wide range of policies

3

A th i ti M tAuthorization Management

Wh d k i h ?Who can grant and revoke access rights?
• Centralized administration: security officer
• Decentralized administration: locally autonomous systems• Decentralized administration: locally autonomous systems
• Hierarchical decentralization: security officer >

departmental system administrator > Windows NT
d i iadministrator

• Ownership based: owner of data may grant access to other
to his/her data (possibly with grant option)(p y g p)

• Cooperative authorization: concurrence of several
authorizers

4

Access ControlAccess Control

• Discretionary access control (DAC)
– An individual user can set the policyAn individual user can set the policy

• Mandatory access control (MAC)
– The policy is built into the system– The policy is built into the system
– The user cannot modify it

• Role-based access control (RBAC)• Role-based access control (RBAC)

5

Discretionary Access ControlDiscretionary Access Control

6

Discretionary Access Controly

• DAC policies govern the access of subjects to objects on the p g j j
basis of subjects' identity, objects’ identity and permissions

• When an access request is submitted to the system, the access
control mechanism verifies whether there is a permissioncontrol mechanism verifies whether there is a permission
authorizing the access

• Such mechanisms are discretionary in that they allow subjects
to grant other subjects authorization to access their objects atto grant other subjects authorization to access their objects at
their discretion

• Most common administration: owner based
– Users can protect what they own
– Owner may grant access to others

Owner may define the type of access given to others

7

– Owner may define the type of access given to others

DAC – Access MatrixDAC Access Matrix

8

DAC – Implementation

Capability lists: What can this User do?

Authorization
R l ti

Access control lists

Relation

9

Access Control ConditionsAccess Control Conditions
• Data-dependent conditions: access constraints basedData dependent conditions: access constraints based

on the value of the accessed data
• Time-dependent: access constraints based on the p

time of the data access
• Context-dependent: access constraints based on p

collection of information (rather than sensitivity of
data) which can be accessed

• History-dependent: access constraints based on
previously accessed data

10

OS vs DBMS
• Data model is richer than that provided by OS – files vs different

levels of abstractions (physical, logical, view).
• Different abstractions are used to represent data at logical level

(e..g, relations, XML) and require different ways of protection.
• DBMS usually requires a variety of granularity levels for access y q y g y

control, e.g., relation and view, and finer granularity like attributes.
• Logical level introduces complexity

– objects are usually related by different semantic relations, and these relations j y y ,
must be carefully protected, e.g., data in different tables are linked through
foreign keys.

– several logical objects (e.g., different views) may also correspond to the same
logical/physical objects (same file) or same logical object (views) maylogical/physical objects (same file) or same logical object (views) may
correspond to different physical/logical objects (different files/relations the views
have been built)

• Data accessed by a wider variety of access modes (update, based
on SQL statements).

11

Access Control in Commercial DBMSs

• All commercial systems adopt DACAll commercial systems adopt DAC
• Current discretionary authorization models for

relational DBMS are based on the System Rrelational DBMS are based on the System R
authorization model

– P P Griffiths and B W Wade An Authorization Mechanism for a RelationalP. P. Griffiths and B. W. Wade. An Authorization Mechanism for a Relational
Database System. ACM Trans. Database Syst. 1, 3 (Sep. 1976), Pages 242 - 255.

• It is based on ownership administration with
administration delegation

12

The System R Authorization Modely
• Objects to be protected are tables and views
• Privileges include: select update insert delete• Privileges include: select, update, insert, delete,

drop, index (only for tables), alter (only for tables)
• Groups are supported whereas roles are notGroups are supported, whereas roles are not
• Privilege delegation is supported through the grant

option:option:
– if a privilege is granted with the grant option, the user

receiving it can exercise the privilege AND grant it to
thother users

– a user can only grant a privilege on a given relation if
he/she is the table owner or if he/she has received the

13

he/she is the table owner or if he/she has received the
privilege with grant option

Grant operationGrant operation

GRANT PrivilegeList| ALL[PRIVILEGES]GRANT PrivilegeList| ALL[PRIVILEGES]
ON Relation | View
TO UserList | PUBLICTO UserList | PUBLIC
[WITH GRANT OPTION]
it i ibl t t i il b th l ti• it is possible to grant privileges on both relations
and views

• privileges apply to entire relations (or views)• privileges apply to entire relations (or views)
• for the update privilege, one needs to specify

the columns to which it applies
14

the columns to which it applies

Grant operation - exampleGrant operation example
Bob: GRANT select, insert ON Employee TO Ann

WITH GRANT OPTION;
Bob: GRANT select ON Employee TO Jim

WITH GRANT OPTION;WITH GRANT OPTION;
Ann: GRANT select, insert ON Employee TO Jim;

• Jim has the select privilege (received from both Bob
and Ann) and the insert privilege (received from Ann)

• Jim can grant to other users the select privilege• Jim can grant to other users the select privilege
(because it has received it with grant option); however,
he cannot grant the insert privilege

15

Grant operationGrant operation

• The authorization catalog keeps track ofThe authorization catalog keeps track of
the privileges that each user can delegate

• Whenever a user u executes a Grant• Whenever a user u executes a Grant
operation, the system intersects the
delegable privileges of u with the set ofdelegable privileges of u with the set of
privileges specified in the command
If th i t ti i t th d• If the intersection is empty, the command
is not executed

16

Grant operation - example
Bob: GRANT select, insert ON Employee TO Jim WITH GRANT

OPTION;
Bob: GRANT select ON Employee TO Ann WITH GRANT OPTION;
Bob: GRANT insert ON Employee TO Ann;
Jim: GRANT update ON Employee TO Tim WITH GRANT OPTION;p p y ;
Ann: GRANT select, insert ON Employee TO Tim;

•The first three GRANT commands are fully executed (Bob is the•The first three GRANT commands are fully executed (Bob is the
owner of the table)
•The fourth command is not executed, because Jim does not have
the update privilege on the tablethe update privilege on the table
•The fifth command is partially executed; Ann has the select and
insert but she does not have the grant option for the insert; so Tim
only receives the select privilege

17

y p g

Revoke operationRevoke operation
REVOKE PrivilegeList| ALL[PRIVILEGES]

ON Relation | View
FROM UserList | PUBLIC|

• When a privilege is revoked, the access privileges of the
revokee should be indistinguishable from a sequence in
which the grant never occurred.

18

Revoke operationRevoke operation
REVOKE PrivilegeList| ALL[PRIVILEGES]

ON Relation | View
FROM UserList | PUBLIC|

• What happens when a “with grant option” privilege is
revoked?

Wh t h h i t d f• What happens when a user is granted access from
two different sources, and one is revoked?

19

Grants from multiple sourcesp

• grant(Bob, Ann) • grant(Bob, Ann)
• grant(Bob, Jim)
• grant(Jim Ann)

• grant(Bob, Jim)
• grant(Jim Ann)grant(Jim,Ann)

• revoke(Bob, Ann)
grant(Jim,Ann)

• revoke(Bob, Ann)

Bob

Ann

Bob

Jim

20Assume all grant statements are with grant option

But …

• grant(Bob, Ann) • grant(Bob, Ann)
• grant(Ann, Jim)
• grant(Jim Ann)

• grant(Ann, Jim)
• grant(Jim Ann)grant(Jim,Ann)

• revoke(Bob, Ann)
grant(Jim,Ann)

• revoke(Bob, Ann)

Bob

Ann

Bob

Jim

21

Recursive revocation …
• grant(Bob, Ann)

grant(Bob Jim)
• grant(Bob, Ann)

grant(Bob Jim)• grant(Bob, Jim)
• grant(Jim,Sue)

• grant(Bob, Jim)
• grant(Jim,Sue)

• grant (Ann, Jim)
• revoke(Bob, Jim)

• grant (Ann, Jim)
• revoke(Bob, Jim)

Bob

revoke(Bob, Jim) revoke(Bob, Jim)

?

Ann

Jim Sue

22

Revoke operationRevoke operation
REVOKE PrivilegeList| ALL[PRIVILEGES]

ON Relation | View
FROM UserList | PUBLIC|

• a user can only revoke the privileges he/she has granted;
it is not possible (?) to only revoke the grant option

• upon execution of a revoke operation, the user from
whom the privileges have been revoked looses these
privileges, unless the user has them from some source
independent from that that has executed the revoke

23

Revoke operationsRevoke operations
• Recursive revocation

– whenever a user revokes an authorization on a table fromwhenever a user revokes an authorization on a table from
another user, all the authorizations that the revokee had granted
because of the revoked authorization are removed

– The revocation is iteratively applied to all the subjects thatThe revocation is iteratively applied to all the subjects that
received the access authorization from the revokee

Bob

Ann

Ji

Sue

Ann Sue?Bob Jim

Bob Jim

Sue?

24

Chris

Recursive revocationRecursive revocation
• Let G1, …., Gn be a sequence of grant operations with

a single privilege on the same relations, such that i,k
= 1,…., n, if i<k, then Gi is executed before Gk. Let Ri
be the revoke operation for the privilege granted withbe the revoke operation for the privilege granted with
operation Gi.

• The semantics of the recursive revoke requires that
h f h h i i f hthe state of the authorization system after the
execution of the sequence

G1 Gn RiG1, …., Gn , Ri

be identical to the state that one would have after the
execution of the sequence

25

execution of the sequence
G1, …., Gi-1, G i+1 , …., Gn

Recursive Revocation

Ann S D70

Bob

Ann

Jim

Sue Dave10 30 40
70

Chris Pat20 50 60

b

Ann
10

60Bob

Chris

Jim Pat
20 50

60

26

Recursive revocationRecursive revocation
• Recursive revocation in the System R takes into

account the timestamps denoting when each
authorization has been granted

• Variations to this approach have been proposed that• Variations to this approach have been proposed that
do not take into account the timestamps
– Why?

• To avoid cascades of revoke
• The authorizations granted by the revokee are kept as long as the

revokee has other authorizations for the same privilege (even if these
authorizations have a larger timestamps with respect to the timestamps g p p p
of the grant operations performed by the revokee)

27

Recursive revocation without
timestamp

Ann Sue Dave70

Bob

Ann

Jim

10 30 Sue Dave40
70

Chris Pat20 50 60

70

b

Ann
10

60

Sue Dave40
70

Bob

Chris

Jim Pat
20 50

60

28

Recursive revocation without
timestamp

Ann

Bob Jim

Chris

?????

29

Noncascading RevocationNoncascading Revocation

• Recursive revocation can be a veryRecursive revocation can be a very
disruptive operation

• A recursive revoke entails:A recursive revoke entails:
– Revoking all authorizations the revokee

granted, for which no other supporting
authorizations exist and, recursively, revoking
all authorizations granted through them
Invalidating application programs and views– Invalidating application programs and views

30

Noncascading RevokeNoncascading Revoke
• A user can revoke a privilege on a table from another p g

user without entailing automatic revocation of the
authorizations for the privilege on the table the latter may
have grantedg

• Instead of deleting the authorizations the revokee may
have granted by using the privilege received by the
revoker all these authorizations are restated as if theyrevoker, all these authorizations are restated as if they
had been granted by the revoker

b

Ann

Bob

Fred

31

Noncascading RevokeNoncascading Revoke
• The semantics of the revocation without cascade of

privilege p on table t from user y by user x is:
– To restate with x as grantor all authorizations that y granted by

using the authorization being revoked
• Since y may have received the grant option for the

privilege on the table from some other users different
from x, not all authorizations he/she granted will be given , g g
to x
– x will be considered as grantor only of the authorizations y

granted after receiving the privilege with the grant option from x; g g p g g p
– y will still be considered as grantor of all authorizations he/she

granted that are supported by other authorizations not granted
by x

32

Noncascading RevokeNoncascading Revoke
80

B b Emily Gio
40

Ann

Bob

C th
Dave

y
20

30

40

60

50

Cathy
Fred

30 60 70

Ann

Bob Emily Gio
20

50

70

80

Ann

Cathy
Dave

Fred
30 60 70

33

Noncascading Revokeg
Gio

Bob Emily
20 40 50

80

Ann

Cathy
Dave

Fred

20

30 60 70
Fred

Gio
Bob Emily

40 50

80

Ann

Bob

Cathy
Dave

20

30

40 50

70
Cathy

Fred70

• Note that the authorization granted by Dave to Emily has not been
specified with Cathy as grantor Why?

34

specified with Cathy as grantor. Why?
• Because it was granted before Dave received the privilege from

Cathy

Views and content-based authorization
• Views are commonly used to support content-based

access control in RDBMS
C t t b d th i ti h ld b• Content-based access authorizations should be
specified in terms of predicates
– Views can also be used to grant privileges on simple statistics

calculated on data (such as AVG SUM)calculated on data (such as AVG, SUM,..)
• Only the tuples of a relation verifying a given predicate

are considered as the protected objects of the
authorizationauthorization

• The approach to support content-based access control in
RDBMS can be summarized as follows:
– Define a view containing the predicates to select the tuples to beDefine a view containing the predicates to select the tuples to be

returned to a given subject S
– Grant S the select/insert/update privileges on the view, and not

on the underlying table

35

Views and content-based authorization
• Queries against views are transformed through view

composition into queries against base tables
• The view composition operation combines the predicates

specified in the query on the view with the predicates
which are part of the view definitionwhich are part of the view definition

• Example: suppose we want to
authorize user Ann to access only
employees whose salary is lower than

Ann: SELECT * FROM Vemp
WHERE Job = ‘Programmer’;employees whose salary is lower than

20000:

CREATE VIEW Vemp AS

g ;

Query after view composition:

SELECT * FROM Employee
WHERE Salary < 20000;

GRANT S l t ON V TO A

SELECT * FROM Employee
WHERE Salary < 20000 AND

Job = ‘Programmer’;

36

GRANT Select ON Vemp TO Ann;

Steps in Query ProcessingSteps in Query Processing
• Parsingg
• Catalog lookup
• Authorization checkingg
• View Composition
• Query optimization

Note that authorization is performed before view
composition; therefore, authorization checking is p ; , g
against the views used in the query and not
against the base tables used in these views

37

Authorizations on viewsAuthorizations on views
• The user creating a view is called the view definerg
• The privileges that the view definer gets on the view

depend on:
– The view semantics that is its definition in terms of the baseThe view semantics, that is, its definition in terms of the base

relation(s)
– The authorizations that the definers has on the base table(s)

• The view definer does not receive privileges correspondingThe view definer does not receive privileges corresponding
to operations that cannot be executed on the view e.g.,
alter and index do not apply to views
To determine the privileges that the view definer has on the• To determine the privileges that the view definer has on the
view, the system needs to intersect the set of privileges
that the view definer has on the base tables with the set of
privileges corresponding to the operations that can be

38

privileges corresponding to the operations that can be
performed on the view

Authorizations on viewsAuthorizations on views
• Consider the following viewg

Bob: CREATE VIEW V1 (Emp#, Total_Sal)
AS SELECT Emp#, Salary + Bonus
FROM Employee WHERE
Job =‘Programmer’;

The update operation is not defined on column
Total_Sal of the view; therefore, Bob will not receive
the update authorization on such columnthe update authorization on such column

39

Authorizations on views - example

• Consider relation Employee and assume Bob is the
creator of Employeep y

• Consider the following sequence of commands:
– Bob: GRANT Select, Insert, Update ON Employee to

Tim;Tim;
– Tim: CREATE VIEW V1 AS SELECT Emp#, Salary FROM

Employee;
Ti CREATE VIEW V2 (E # A l S l) AS – Tim: CREATE VIEW V2 (Emp#, Annual_Salary) AS
SELECT Emp#, Salary*12 FROM Employee;

• Tim can exercise on V1 all privileges he has on relation Employee, p g p y ,
that is, Select, Insert, Update

• However, Tim can exercise on V2 only the privileges of Select and
Update on column Emp#; update operation is not defined on column

40

p p ; p p
Annual_Sal of V2

Authorizations on viewsAuthorizations on views
• It is possible to grant authorizations on a view: the

i il th t t th th t h / hprivileges that a user can grant are those that he/she
owns with grant option on the base tables
– Tim cannot grant any authorization on views V1 and V2 he has

defined because he does not have the authorizations with grantdefined, because he does not have the authorizations with grant
option on the base table

• Consider the following sequence of commands:
– Bob: GRANT Select ON Employee TO Tim WITH GRANT Bob: GRANT Select ON Employee TO Tim WITH GRANT

OPTION;
– Bob: GRANT Update, Insert ON Employee TO Tim;
– Tim: CREATE VIEW V4 AS SELECT Emp#, Salary FROM

Employee;Employee;
Authorizations of Tim on V4:

- Select with Grant Option;
- Update Insert without Grant Option;

41

- Update, Insert without Grant Option;

DAC SDAC Summary
• Advantages:Advantages:

– Intuitive
– Easy to implementEasy to implement

• Disadvantages:
– Maintenance of ACL or Capability listsMaintenance of ACL or Capability lists
– Maintenance of Grant/Revoke

42

