
Security in
Outsourced Databases II

(Query Processing on Encrypted Data)(Query Processing on Encrypted Data)

Customer Credit Disks replaced Data worthless if encryptedCustomer Credit
Card Number

Disks replaced
for maintenance

Laptops stolen
Backups lost

Data worthless if encrypted

1

Why Encrypt Data?Why Encrypt Data?
• We have already discussed authentication and access y

control as means to allow access to the data to
authorized persons only
H th ti ti & t l t b• However, authentication & access control may not be
enough (DB administrators can still access and see the
data; intrusion/sql injection, etc)

• If data are sensitive it is also possible to encrypt them
– Data encryption is the last barrier to protect sensitive data

confidentialityconfidentiality

2

Why Encypt Data? - External requirements

• Health Insurance Portability & Accountability
Act (HIPPA):Act (HIPPA):
– Requires data safeguards that protect against “intentional

or unintentional use or disclosure of protected health p
information”

– It mandates “to ensure the confidentiality, integrity and
availability of all electronic protected health informationavailability of all electronic protected health information
the covered entity creates, receives, maintains, or
transmits”

– It mandates “to implement a mechanism to encrypt and
decrypt electronic protected health information”

3

Why Encypt Data? - Business Compliance

• Payment Card Industry (PCI) DataPayment Card Industry (PCI) Data
Security Standard
– Stored cardholder data must be rendered unreadableStored cardholder data must be rendered unreadable,

and it includes cryptographic methods in the
recommended controls

– Adopted by American Express, Visa, MasterCard and
several other payment card companies

4

Three options for database encryption

5

SQL Server TDE (Transparent Data Encryption)
Oracle 10g/11g TDE

Can we offer better performance?

 We DO NOT fully trust the service provider with sensitive
informationinformation
 Encrypt client’s data and store at server
 Client:

i t d t d t runs queries over encrypted remote data
 verifies integrity/authenticity of results (covered in the last lecture)

 Most of the processing work to be done by the serverp g y
 Consider passive adversary

 A malicious individual who has access to data but only tries to learn
sensitive information about the data without actively modifying it orsensitive information about the data without actively modifying it or
disrupting any kind of services

6

Service Provider Architecture
Server Site

Encrypted
R lt

Client Site
(5)

Temporary
R lt

Result
Filter

Results

(4)

(6a)

(6b)

Q

Results

Server Side
Query

Service Provider
Client Side

Query ?Client Side
Query

Server Side
Query

(2)

(3) (4)

(7)

(6b)

Encrypted

Database

Query
Translator

Metadata (1)

(2)

Original Query

Actual Results User
?

Original Query
(1)

7

Actual Results User?
H. Hacigumus, B. R. Iyer, C. Li, S. Mehrotra: Executing SQL over encrypted data in the database-service-provider model.
2002 International Conference on Management of Data (SIGMOD'2002), 216-227

Query Processing 101…y g
• At its core, query processing consists of:

– Logical comparisons (> , <, = , <=, >=)
– Pattern based queries (e.g., *Arnold*egger*)
– Simple arithmetic (+, *, /, ^, log)

• Higher level operators implemented using theHigher level operators implemented using the
above
– Joins

Selections– Selections
– Unions
– Set difference
– …

• To support any of the above over encrypted data,
need to have mechanisms to support basic

8

need to have mechanisms to support basic
operations over encrypted data

Searching over Encrypted Datag yp
• Want to be able to perform operations over encrypted

data (for efficiency)(y)
SELECT AVG(E.salary)
FROM EMP
WHERE 55WHERE age > 55

• Fundamental observations
– Basic operations do not need to be fully implemented over p y p

encrypted data
– To test (AGE > 55), it might suffice to devise a strategy that

allows the test to succeed in most cases (might not work in all (g
cases)

– If test does not result in a clear positive or negative over
encrypted representation, resolve later at client-side, after

9

yp p , ,
decryption.

Relational Encryptionyp
Server Site

NAME SALARY PIN

John 50000 2
M 110000 2

etuple N_ID S_ID P_ID
fErf!$Q!!vddf>></| 50 1 10
F%%3 &% fE f!$ 65 2 10Mary 110000 2

James 95000 3
Lisa 105000 4

F%%3w&%gfErf!$ 65 2 10
&%gfsdf$%343v<l 50 2 20
%%33w&%gfs##! 65 2 20

 Store an encrypted string – etuple – for each tuple in the original table Store an encrypted string – etuple – for each tuple in the original table

 This is called “row level encryption”

 Any kind of encryption technique (e.g., AES, DES) can be used

10

y yp q (g , ,)

 Create an index for each (or selected) attribute(s) in the original table

Building the Index
• Partition function divides domain values into partitions (buckets)

Partition (R.A) = { [0,200], (200,400], (400,600], (600,800], (800,1000] }() { [] (] (] (] (] }
– partition function has impact on performance as well as privacy
– very much domain/attribute dependent
– equi-width vs. equi-depth partitioning

Partition (Bucket) ids

• Identification function assigns a partition id to each partition of attribute
A

2000 400 600 800 1000

2 7 5 1 4

Domain Values

()

Domain Values

• e.g. identR.A((200,400]) = 7
• Any function can be use as identification function, e.g., hash functions

Client keeps partition and identification functions secret (as metadata)

11

• Client keeps partition and identification functions secret (as metadata)

Building the Index
• Mapping function maps a value v in the domain of

tt ib t A t titi id

g

attribute A to partition id

2000 400 600 800 1000

2 7 5 1 4

Partition (Bucket) ids

Domain Values

– e.g., MapR.A(250) = 7 MapR.A(620) = 1

12

Storing Encrypted DataStoring Encrypted Data
R = < A, B, C >  RS = < etuple, A_id, B_id, C_id >

etuple = encrypt (A | B | C)
A_id = MapR.A(A), B_id = MapR.B(B), C_id = MapR.C(C)

Table: EMPLOYEE Table: EMPLOYEES

NAME SALARY PIN

John 50000 2
Mary 110000 2

Etuple N_ID S_ID P_ID
fErf!$Q!!vddf>></| 50 1 10
F%%3w&%gfErf!$ 65 2 10

James 95000 3
Lisa 105000 4

g
&%gfsdf$%343v<l 50 2 20
%%33w&%gfs##! 65 2 20

13

Referring back to our exampleg p
SELECT AVG(E.salary)
FROM EMP
WHERE age > 55

• Suppose the partitions on age are as follows: P1 [20 30); P2• Suppose the partitions on age are as follows: P1 - [20,30); P2 -
[30,40); P3 - [40,50); P4 - [50,60); P5 - [60,100)

• To test (AGE > 55), it suffices to retrieve all data that falls into
partitions that contain at least one employee with age > 55partitions that contain at least one employee with age > 55

– P4 and P5
– These partitions (e.g., P4) may contain records with age  55; they can be

examined at the client-side after records are decrypted.

• Records belonging to partitions that contain only employees with
age  55 (e.g., P1, P2 and P3) will not need to be returned.

14

Mapping ConditionsMapping Conditions
Q: SELECT name, pname FROM employee, project

WHERE employee pin=project pin AND salary>100kWHERE employee.pin=project.pin AND salary>100k

• Server stores attribute indices determined by mapping functions
• Client stores metadata and uses it to translate the queryClient stores metadata and uses it to translate the query

Conditions:
• Condition  Attribute op Value
• Condition  Attribute op Attribute
• Condition  (Condition  Condition) | (Condition  Condition)

| (not Condition)| (not Condition)

Where op = { = , >, , <,  }

15

Mapping Conditions (2)Mapping Conditions (2)

Example: EqualityExample: Equality

• Attribute = Value
M (A) AS M ()– Mapcond(A = v)  AS = MapA(v)

– Mapcond(A = 250)  AS = 7

2 7 5 1 4

Partition Ids

2000 400 600 800 1000

16
210 355 250 390 At client site

Mapping Conditions (3)Mapping Conditions (3)
Example: Inequality (<, >, etc.)p q y (, ,)

• Attribute < Value
S– Mapcond(A < v)  AS  { identA(pj) | pj.low  v) }

– Mapcond(A < 250)  AS  {2,7}

2 7 5 1 4

Partition Ids

2000 400 600 800 1000

Domain Values

17
210 355 234 390 At client site

Mapping Conditions (4)Mapping Conditions (4)
• Attribute1 = Attribute2 (useful for JOIN-type queries)

– Mapcond(A = B) N (AS = identA(pk)  BS = identB(pl))
where N is pk  partition (A), pl  partition (B), pk  pl  

Partitions A_id Partitions B_id
[0,100] 2
(100,200] 4
(200,300] 3

[0,200] 9
(200,400] 8

C : A = B  C’ : (A_id = 2  B_id = 9)
 (A_id = 4  B_id = 9)

18

 (A_id = 3  B_id = 8)

Relational Operators over Encrypted
RelationsRelations

• Partition the computation of the operators across client
dand server

• Compute (possibly) superset of answers at the server
• Filter the answers at the client
• Objective : minimize the work at the client and process the

answers as soon as they arrive requiring minimal storage
at the client

Operators:
– Selection
– Join
– Grouping and Aggregation
– Others: Sort, duplicate elimination, set difference, union, projection

19

Selection OperatorSelection Operator
c(R) = c(D (S

Mapcond(c)(R
S
)) D = Decrypt

Example:
A=250 Client Query

A=250 D

TABLE

E_TABLE

A_id = 7

Server Query

2 7 5 1 4

Server Query

202000 400 600 800 1000

2 7 5 1 4

Selection OperatorSelection Operator
c(R) = c(D (S

Mapcond(c)(R
S
)) D = Decrypt

Example:
A=250Client Query

Null Answer

A=250 D
D(6*&^%) = 240
D(8***^%) = 300

E# A#

2 120

6 240

8 300

TABLE

E_TABLE

A_id = 7

Server Query

etuple A#

2%$&* 2

6*&^% 7

8***^% 78 300

12 500

2 7 5 1 4

Server Query 8***^% 7

12#@! 5

212000 400 600 800 1000

2 7 5 1 4

Join Operator
R c T = c(D (R

S S

Mapcond(c) T
S
)

Example: A=B
Client Query

C

EMP PROJ C’

D

EMP PROJ

E_EMP E_PROJ Server Query

C : A = B  C’ :(A_id = 2  B_id = 9)

 (A_id = 4  B_id = 9)
 (A_id = 3  B_id = 8)

Partitions A_id
[0,100] 2
(100 200] 4

Partitions B_id
[0,200] 9
(200 400] 8

22

(100,200] 4
(200,300] 3

(200,400] 8

Join Operator
C : A = B  C’ :(A_id = 2  B_id = 9)

 (A_id = 4  B_id = 9)

 (A id = 3  B id = 8)Join Operator  (A_id 3  B_id 8)

R c T = c(D (R
S S

Mapcond(c) T
S
)

Example: A=B
Client Query

C

EMP PROJ C’

D

Server Query
EMP PROJ

E_EMP E_PROJ
P1# P2#

10 70
P1# Partition A_id
10 (0,100] 2

30 (0,100] 2

P2# Partition B_id
70 (0,200] 9

120 [0,200] 9

10 70

10 120

30 70

30 120
Condition:

P1# = P2#

23

120 (100,200] 4

250 (200,300] 3

220 (200,400] 8 120 70

120 120

250 220

P1# P2#

Join Operator
C : A = B  C’ :(A_id = 2  B_id = 9)

 (A_id = 4  B_id = 9)

 (A id = 3  B id = 8)Join Operator  (A_id 3  B_id 8)

R c T = c(D (R
S S

Mapcond(c) T
S
)

Example: A=B
Client Query

C

EMP PROJ C’

D

Server Query
EMP PROJ

E_EMP E_PROJ
P1# P2#

10 70
P1# Partition A_id
10 (0,100] 2

30 (0,100] 2

P2# Partition B_id
70 (0,200] 9

120 [0,200] 9

10 70

10 120

30 70

30 120
Condition:

P1# = P2#

24

120 (100,200] 4

250 (200,300] 3

220 (200,400] 8 120 70

120 120
250 220

P1# P2#

Grouping & Aggregation Operator
L(R) = L(D (L’ (R

S
)))

where L = {grouping attributes}  {aggregate operations}

l
Client Query

 CO ()Example:

D
did, COUNT(eid)

did, COUNT(eid)

EMP
S

did
S

E_EMP Server Query

a) Partial sorting done at server

25

) g
b) No gain in terms of communication, but client side saves up on sorting

Query DecompositionQuery Decomposition
Q: SELECT name, pname FROM emp, proj

WHERE id j id AND l 100k
Client Query

WHERE emp.pid=proj.pid AND salary > 100k

name,pname

e.pid = p.pid

name,pname

salary >100k
D

p p p

PROJ

e.pid = p.pid

Encrypted
(PROJ)

D

EMP

PROJsalary >100k

26Server Query
Encrypted

(EMP)

EMP

Query Decomposition (2)Query Decomposition (2)
name,pname

Client Query

name,pname

Client Query

e.pid = p.pid

 a e,p a e

e.pid = p.pid salary >100k
D

salary >100k
D D

E EMP

E_PROJD
E_PROJs_id = 1 v s_id = 2

27

_

Server Query
E_EMP

Server Query

Query Decomposition (3)

name pname

Client Query

name pname

Client Query

e.pid = p.pid

name,pname

salary >100k  e.pid = p.pid

name,pname

salary >100k
D

D

D
MapCond(e.p_id =

p.p_id)

E_PROJs_id = 1 v s_id = 2 E_PROJs_id = 1 v s_id = 2

28
E_EMP

Server Query
E_EMP

Server Query

Query Decomposition (4)
Q: SELECT name, pname

FROM emp, proj
name,pname

Client Query

FROM emp, proj
WHERE emp.pid=proj.pid
AND salary > 100ksalary >100k  e.pid = p.pid

QS: SELECT e_emp.etuple, e_proj.etuple
FROM e_emp, e_proj
WHERE e p id=p p id AND

D

WHERE e.p_id=p.p_id AND
(s_id = 1 OR s_id = 2)

QC: SELECT name pname

MapCond(e.p_id =
p.p_id)

Q : SELECT name, pname
FROM temp
WHERE emp.pid=proj.pid AND

salary > 100k

E_PROJs_id = 1 v s_id = 2

29

y
E_EMP

Server Query Temp = Decrypted intermediate result

Query Precision vs. Privacy
Observation:
Allocating a large number of buckets

 d b dto crypto-indices increases query precision but reduces
privacy. On the other hand, a small number of buckets
increases privacy but adversely affects performance.p y y p
The goal of the client is thus twofold:

Server Efficiency: maximize the server-side ac-
curacy of range query evaluation. Higher efficiency
results in lower server-client communication overhead
and lower post-processing costs for the client.

Maximum Privacy: minimize the information re-
vealed to the server through the crypto-indices. In

30

g yp
other words, maximize data privacy.

Fine Encryption GranularityFine Encryption Granularity

NAME SAL COM

John 50000 5000

Table: EMPLOYEE Table: EMPLOYEES

E_NAME E_SAL E_COM

45ewt*(& 3t45f33 *&%*kkJohn 50000 5000
Mary 110000 11000
James 95000 9500

45ewt*(& 3t45f33 *&%*kk
(*#hKJ(0 Ek%98* !DE#$F
()&%^JK H^F(j^7 %^g%6

Lisa 105000 10500 324(&^hj (86&&h$ 887^%$

31

H. Hacigumus, B. R. Iyer, C. Li, S. Mehrotra: Efficient Execution of Aggregation Queries over Encrypted Relational Databases.
DASFAA04, 125-136

Can we do better with aggregation?Can we do better with aggregation?

• Use homomorphic encryption functionsUse homomorphic encryption functions
– E (encryption function), D (decryption function)
 = {   } (functions on plaintext)–  = {1, 2, …, n} (functions on plaintext),

–  = {1, 2, … n} (functions on encrypted data)
(E D ) is a pri ac homomorphism if– (E, D, , ) is a privacy homomorphism if

• D(i(E(a1),E(a2),…, E(am))) = i(a1, a2, …, am)

32

Aggregation over encrypted dataAggregation over encrypted data

• One such schemeOne such scheme
– Key k = (p,q), p & q are prime numbers chosen by

client used for encryption/decryption (hidden from
server)

– N = p.q, revealed to server
E (a) = (a mod p a mod q) a  – Ek(a) = (a mod p, a mod q), a  N

– Dk(d1, d2) = d1qq-1 + d2pp-1 (mod N)
• qq-1 = 1 (mod p), pp-1 = 1 (mod q) qq (p), pp (q)

–  = {n, n, n}
–  = {, , }

33

Aggregation over encrypted dataAggregation over encrypted data

• ExampleExample
– p = 5, q = 7, so N = pq = 35, k = (5, 7)

Suppose we want to add a1=5 and a2=6– Suppose we want to add a1=5 and a2=6
– Ek(5) = (0,5), Ek(6) = (1,6) (stored in server)

At server– At server
• Compute Ek(5) + Ek(6) = (1,11)

– At client– At client
• Decrypts (1,11) = (1.7.3 + 11.5.3) (mod 35) = 11 = 5 + 6!

34

In relational DBMS
• For each attribute A that will be used in aggregation, create two

fields to encode E(a), a  domain(A), e.g., for salary, we create Sp =
salary mod p and Sq = salary mod qsalary mod p and Sq = salary mod q

• Now SUM(salary + commission) can be processed at the server as
– SELECT SUM(Sp+Cp) as s1, SUM(Sq+Cq) as s2 FROM EMPS

• Client decrypts result as
– S1*q*q-1 + s2*p*p-1 (mod p*q)

NAME SAL COM

J h 50000 5000
Etuple Sp Sq Cp Cq

fE f!$Q!! ddf 34 24 63 23

Table: EMPLOYEE Table: EMPLOYEES

John 50000 5000
Mary 110000 11000
James 95000 9500

fErf!$Q!!vddf 34 24 63 23
F%%3w&%g 56 26 34 22
&%gfsdf$%3 25 55 47 44

35

Lisa 105000 10500 %%33w&%gf 86 33 42 92

Complete example
eid name salary city did
23 Tom 70K Maple 10

Salary
Paritions IDp

860 John 60K Maple 55
320 Jim 23K River 35
875 Tim 45K Maple 58

0-25K 59
25K-50K 49
50K-75K 81875 Tim 45K Maple 58

870 Mary 40K Maple 10
200 Susan 45K Ruver 10

50K 75K 81
75K-100K 7

SalaryPH

etuple S_id City_id Did_id E_city E_did Sal_p Sal_q
fErf!$Q! 81 18 2 **^((@R@* 7 27
F%%3g 81 18 3 **^(((&%^4 18 17

Salary

F%%3g 81 18 3 (((&% 4 18 17
&%gfsd 59 22 4 Il23^ $(7%$ 2 23
^#$#%^ 49 18 3 **^((#%&*9 3 2
%%33w 49 18 2 **^((@R@* 8 7

36

%%33w 49 18 2 ((@R@ 8 7
fErf!Q!! 49 22 2 Il23^ @R@* 13 12

Select SUM(Salary) FROM emp, mgr
WHERE it M l AND l 65K d did didWHERE city=Maple AND salary< 65K and emp.did = mgr.did

• For city=Maple, we use E_city
F l 65K• For salary < 65K, we use
– S_id = 49 OR S_id = 59 (no false drop)
– S_id = 81 (false drop exists)

• For emp did = mgr did we use E didFor emp.did = mgr.did, we use E_did

• So, we can have TWO subqueries at the server (why?)
– SELECT SUMPH(SalaryPH) FROM empS, mgrS WHERE E_city=E(Maple) (y) p g _ y (p)

AND (S_id=49 OR S_id=59) AND empS.E_did=mgrS.E_did

– SELECT empS.etuple FROM empS, mgrS WHERE E_city=E(Maple) AND
S id=81 AND empS.E did=mgrS.E did_ p _ g _

• Client?

37

Summary
• Store encrypted data at server
• Process as much at server as possible and• Process as much at server as possible, and

postprocess at client
• Storage cost is higher (hash values can be asStorage cost is higher (hash values can be as

large as the original values)
• Leak some information

– number of distinct values, which records have the
same values in certain attribute, which records are
join-able, jo ab e,

– violate access control
• Effectiveness depends on the partitioning/index

38

granularity

