
1

Role-based access control

1

RBAC: Motivations

• Complexity of security administration
– For large number of subjects and objects, the number of o a ge u be o subjects a d objects, t e u be o

authorizations can become extremely large
– For dynamic user population, the number of grant and revoke

operations to be performed can become very difficult to manage

Alice Bob Carl Dave EvaUsers:

2

Windows
Account

Linux
Account

WebSphere
Account

DB2
Account

Permissions:

2

RBAC: Motivations
• Organizations operate based on roles

– Roles add a useful level of abstraction

• RBAC assigns permissions to roles in the organization,RBAC assigns permissions to roles in the organization,
rather than directly to users

• With roles, there are fewer relationships to manage
– possibly from O(mn) to O(m+n), where m is the number of users

and n is the number of permissions

Alice Bob Carl Dave Eva
Users:

3

Windows
Account

Linux
Account

WebSphere
Account

DB2
Account

DB Admin Web Admin Software DeveloperRoles:

Permissions:

RBAC: Motivations
• Roles is more stable

– Users can be easily reassigned from one role to another.
Roles can be granted new permissions as new applications and– Roles can be granted new permissions as new applications and
systems are incorporated, and permissions can be revoked from
roles as needed

– Permissions assigned to roles tend to change relatively slowly

• Let administrators confer and revoke user
membership in existing roles without authorizing
them to create new roles or change role-
permission

4

permission
– Assigning users to roles requires less technical skill than

assigning permissions to roles.

3

Groups vs. Roles

• Some differences
– Sets of users vs. sets of users as well as permissionsSets of users vs. sets of users as well as permissions
– Roles can be activated and deactivated, groups cannot

• Groups can be used to prevent access with negative
authorization.

• Roles can be deactivated for least privilege
– Can easily enumerate permissions that a role has, but not for

groups
• Roles are associated with a function, groups not necessarily

– Roles form a hierarchy, groups don’t

5

Role-Based Access Control - RBAC

• Simplify authorization management
– Subject-role-object (role-object is persistent) rather than subject-

bj tobject
– Roles are created for various job functions
– Users are assigned roles based on responsibility

• Express organizational policies
– Separation of duties (SoD)

• Define conflicting roles that cannot be executed by the same user

– Delegation of authority

6

• Supports
– Least-privilege
– SoD
– Data abstraction

4

RBAC – Basic Concepts
• User – a human being, a machine, a process, or an

intelligent autonomous agent, etc.
• Permission: Approval of particular mode of access to anPermission: Approval of particular mode of access to an

object
– Access modes and objects are domain dependent

• OS objects: Files, directories, devices, ports; Access: Read, Write, Execute
• DB objects: Relation, tuple, attribute, views; Access: Insert, Delete, Update

• Role – job function within the context of an organization
with an associated semantics regarding its authority and
responsibility

mediator between collection of users and collection of

7

– mediator between collection of users and collection of
permissions

• Permission assignment (PA): role-permission
• User assignment (UA): user-role
• Session: Dynamically activate subset of roles that user is

a member of

RBAC Models

8R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based Access Control Models.
IEEE Computer, 29(2):38--47, February 1996

5

RBAC

RBAC consolidated modelRBAC3 consolidated model

RBAC1

role hierarchy
RBAC2

constraints

9

RBAC0 base model

RBAC0

U
Users

R
Roles

P
Permissions

.

.S

UA User
assignment

PA Permission
assignment

10

.

.S
Sessions

Permissions are sets of (action, object) pairs,
e.g., (read, Table1), (write, Table2), etc.

6

RBAC0

• UA: user assignments
– Many-to-many– Many-to-many

• PA: Permission assignment
– Many-to-many mapping

• Session: mapping of a user to possibly many
roles
– Multiple roles can be activated simultaneously

11

– Permissions: union of permissions from all roles
– Each session is associated with a single user
– User may have multiple sessions at the same time

RBAC0 Components

• Users, Roles, Permissions, Sessions

PA P R (t)• PA  P x R (many-to-many)

• UA  U x R (many-to-many)

• user: S  U, mapping each session si to a
single user user(si)

• roles: S  2R, mapping each session si to a set

12

of roles roles(si)  {r | (user(si),r)  UA} and si

has permissions  rroles(si) {p | (p,r)  PA}

7

RBAC0

• Permissions apply to data and resource objects
onlyonly
– Do NOT apply to RBAC components

• Administrative permissions: modify U,R,S,P

• Session: under the control of user to
– Activate any subset of permitted roles

Ch l ithi i

13

– Change roles within a session

Role Hierarchy

RBAC1 – RBAC0 + Role Hierarchy

U
Users

R
Roles

P
Permissions

User
assignment

Permission
assignment

14

.

.

.S
Sessions

8

RBAC1

• Role hierarchies for structuring roles to
reflect an organization’s line of authorityreflect an organization s line of authority
and responsibility

• Inheritance of permission from junior role
(bottom) to senior role (top)

• Partial order

15

– Reflexive
– Transitive
– Anti-symmetric

RBAC1 Components

• Same as RBAC0: Users, Roles, Permissions,Same as RBAC0: Users, Roles, Permissions,
Sessions, PA  P x R, UA  U x R, user: S  U,
mapping each session si to a single user user(si)

• RH  R x R, partial order ( dominance)

• roles: S  2R, mapping each session si to a set of
roles roles(si)  {r | (r’  r) [(user(si),r’)  UA]}

16

roles roles(si)  {r | (r  r) [(user(si),r)  UA]}
and si has permissions  rroles(si) {p | (r”  r)
[(p,r”)  PA]}

9

RBAC1: Role Hierarchy

Cardiologist Oncologist

Primary-care
Physician

Specialist (Connector)

Inheritance
of

17

Physician

Health-care provider

of
privileges

• E.g. do not let boss see incomplete work in
progress?

How to limit the scope of inheritance?

progress?

Project
Supervisor

Test
Engineer Programmer

18

Project

Member

10

RBAC1 – Limit Scope of Inheritance

Private Roles

Test
Engineer’

Test

Programmer’Project
Supervisor

19

Test
Engineer

Programmer

Project

Member

Role Hierarchies with Private Roles

S

T1 T2 T3 T4

P3

S3

20

P

P3

11

Role Hierarchies with Private Roles

S

T1’
T3’

P3’

T4’

S3’

T1 T2 T3 T4

P3

S3

21

P

P3

RBAC2 – RBAC0 + Constraints

U
Users

R
Roles

P
Permissions

User
assignment

Permission
assignment

22

.

.

.S
Sessions Constraints

12

RBAC2 – RBAC0 + Constraints

• Enforce high-level organizational policies
– Mutually disjoint roles: Separation of duties

• UA: Same user cannot be both accounts manager and purchasing manager
• Violation is caused only as a result of collusion

– Dual constraint of permission assignment
• PA: Permission to issue checks cannot be assigned to both accounts &

purchasing managers (limit distribution of powerful permissions)
– Cardinality:

• A role can have maximum number of members
• Maximum number of roles to each user
• Any problem in enforcing minimum number?
• Can also apply to PA

23

• Can also apply to PA
– Others: Limit number of roles at runtime (per session) or based on

history or pre-requisite (e.g., user can only be assigned to the testing
role if assigned to project role already; permission to read a file is
assigned to a role if permission has been granted to read the directory)

• Any problem if one user has multiple user ids?

RBAC – Static SoD Constraints

• SSoD places restrictions on the set of roles

• No user is assigned to t or more roles in a
set of m roles

• Prevents a person being authorized to use
too many roles

• These constraints can be enforced based on

24

the users assigned to each role

13

RBAC – Dynamic SoD Constraints

• These constraints limit the number of roles a
user can activate in a single sessionuser can activate in a single session

• Examples of constraints:
– No user may activate t or more roles from the roles

set in each user session.
– If a user has used role r1 in a session, he/she cannot

use role r2 in the same session
• What if user terminates one session in one role and logs in

25

What if user terminates one session in one role and logs in
with another role?

• Enforcement of these roles requires keeping the
history of the user access to roles within a
session

RBAC2

• How to implement role hierarchy with
t i t ?constraints?

– Specify a constraint that a permission assigned to a
(junior) role must also be assigned to an inherited
(senior) role

– Specify a constraint that a user assigned to a (senior)
role must also be assigned to any parent (junior) role

26

g y p (j)

• RBAC1 is redundant (?)

14

RBAC3 – RBAC1 + RBAC2

U
Users

R
Roles

P
Permissions

User
assignment

Permission
assignment

27

.

.

.S
Sessions Constraints

RBAC3 – RBAC1 + RBAC2
• Constraints can apply to

role hierarchy
– E.g. 2 or more roles cannot have

common senior/junior role
– E.g. limit the number of senior/junior g j

roles that a given role may have

• Interactions between RH
and constraints

– E.g. Programmer & tester are
mutually exclusive. Project
supervisor inherits both sets of
permissions. How?

– E.g., Cardinality constraint – a user
can be assigned to at most one role.
How about Tester? Do cardinality

Tester Programmer

Project
supervisorTester1 Programmer1

28

How about Tester? Do cardinality
constraint applies to only direct
membership or they also carry on to
inherited membership?

• Private roles
– E.g., setting Tester to (max)

cardinality of zero means supervisor
and Tester (aka Tester1) are
mutually exclusive

Project member

15

RBAC Models (+ Administrative Roles)

29

RBAC System and Administrative
Functional Specification

• Administrative Operations
Create Delete Maintain elements and relations– Create, Delete, Maintain elements and relations

• Administrative Reviews
– Query operations

• System Level Functions
– Creation of user sessions

R l ti ti /d ti ti

30

– Role activation/deactivation

– Constraint enforcement

– Access Decision Calculation

16

Case Study: Oracle Enterprise Server

• Create password-protected role for update
– Create role update_role identified by passwd;

• Grant update privileges to protected role
– Grant insert, update on app.table1 to update_role;

• Create non-password protected role for query
– Create role query_role;

• Grant select privileges to unprotected role

31

– Grant select on app.table1 to query_role;

• Grant both roles to users
– Grant update_role, query_role to user1;

Case Study: Oracle Enterprise Server

• User1 activates the roles
– Set role update_role identified by passwd, query_role;

• Set default active role for User1
– Alter user user1 default role query_role;

• Assignable privileges
– System: create session, create table, select any table

– Object:

32

• Table: select, update, insert, delete, alter, create index

• View: select, update, insert, delete

• Procedures & functions: execute

17

Comparison of DBMSs

Item Feature Informix Sybase Oracle

1 Ability for a role grantee to grant that role to other users Yes No Yes1 Ability for a role grantee to grant that role to other users Yes No Yes

2 Multiple active roles for a user session No Yes Yes

3 Specify a default active role set for a user session No Yes Yes

4 Build a role hierarchy Yes Yes Yes

5 Specify static separation of duty constraints on roles No Yes No

6 Specify dynamic separation of duty constraints on roles (Yes) Yes No

7 Specify maximum or minimum cardinality for role No No No

33

7 Specify maximum or minimum cardinality for role
memberships

No No No

8 Grant DBMS system privileges to a role No Yes Yes

9 Grant DBMS object privileges to a role Yes Yes Yes

Source: Role-Based Access Control Features in Commercial Database Management Systems, C.
Ramaswamy, R. Sandhu

Configuring RBAC to Enforce
MAC and DAC

34

S. Osborn, R. Sandhu and Q. Munawer. Configuring Role-based Access Control to Enforce Mandatory and Discretionary
Access Control Policies. ACM Trans. Information and Systems Security. 3, 2 (May 2000), Pages 85-106.

18

Configuring RBAC for MAC
• Construction (Liberal *-Property) (write-up)

R = {L1R. . . LnR, L1W. . . LnW} where Li denote label i

RH which consists of two disjoint role hierarchies. The first role hierarchy
i t f th “ d“ l {L1R L R} d h th ti lconsists of the “read“ roles {L1R. . . LnR} and has the same partial

order as ≥MAC ; the second partial consists of the “write” roles
{L1W. . . LnW} and has a partial order which is the inverse of ≥MAC .

P = { (o,r),(o,w) | o is an object in the system}

Constraint on UA: Each user is assigned to exactly two roles xR and LW where x
is the label assigned to the user and LW is the write role corresponding to the
lowermost security level according to ≥MAC

35

Constraint on sessions: Each session has exactly two roles yR and yW (x ≥ y)

Constraints on PA:
(o,r) is assigned to xR iff (o,w) is assigned to xW
(o,r) is assigned to exactly one role xR such that x is the label of o

Configuring RBAC for MAC
MAC Lattice

RBAC Role hierarchies

RH for Read RH for Write

ReadWrite

36

Each user with label x is assigned roles xR & LW (why?)
Additional Constraints:
• Each session has exactly two matching roles yR and yW (x  y)
• For each object with label x, a pair of permissions (o,r) & (o,w) is
assigned to exactly one matching pair of xR and xW roles

19

H

M

L

H M L

H R/W R R

M W R/W R

L W W R/W

H M L

H R/W R/W R/W

M W R/W R/W

L W W R/W

Traditional MAC
Overall privilegesPrivileges at logon

H M L

(H, H) R/W R/W R/W

(M, M) R/W R/W

(L, L) R/W

RBAC simulation of MAC: Case 1

Overall mismatch

Login mismatch

37

H M L

H R R R

M R R

L R

H M L

H W W W

M W W

L W

H

M

L

H

M

L

H

M

L

H M L

H R/W R R

M W R/W R

L W W R/W

H M L

H R/W R/W R/W

M W R/W R/W

L W W R/W

Traditional MAC
Overall privilegesPrivileges at logon

H M L

(H, H) R/W R R

(M, M) W R/W R

(L, L) W W R/W

RBAC simulation of MAC: Case 2 Logon match

Match??

38

H M L

H R R R

M R R

L R

H M L

L W W W

M W W

H W

H

M

L

L

M

H

20

H

M

L

H M L

H R/W R R

M W R/W R

L W W R/W

H M L

H R/W R/W R/W

M W R/W R/W

L W W R/W

Traditional MAC
Overall privilegesPrivileges at logon

H M L

(H, H) R/W R R

(M, M) W R/W R

(L, L) W W R/W

Problem?
User with (H, H) cannot
“logon as” (inherit) (M, M) since H
for write is junior to M!

RBAC simulation of MAC: Case 2 Logon match

39

H M L

H R R R

M R R

L R

H M L

L W W W

M W W

H W

H

M

L

L

M

H

H

M

L

H M L

H R/W R R

M W R/W R

L W W R/W

H M L

H R/W R/W R/W

M W R/W R/W

L W W R/W

Traditional MAC
Overall privilegesPrivileges at logon

H M L

(H, L) R/W R/W R/W

(M, L) W R/W R/W

(L, L) W W R/W

H M L

(H, H) R/W R R

(M, M) W R/W R

(L, L) W W R/W

RBAC simulation of MAC: Case 3

Static

Restrict at runtime
Logon
match

Overall match

40

H M L

H R R R

M R R

L R

H M L

L W W W

M W W

H W

H

M

L

L

M

H

21

Configuring RBAC for DAC
• The basic idea is to simulate the owner-centric policies of

DAC using roles that are associated with each object.

– Strict DAC – only owner can grant access

– Liberal DAC – owner can delegate discretionary authority
for granting access to an object to other users

• Create an Object. For every object O that is created, three
administrative roles and one regular role are also created (we
show only Read operation)

41Administrative roles
Ordinary role

Eight Permissions
• The following eight permissions are also created along with creation of each

object O.

– canRead_O: assigned to the role READ_O (authorizes read operation on
bj t O)object O)

– destroyObject_O: assigned to the role OWN_O (authorizes deletion of the
object)

– addReadUser_O, deleteReadUser_O: assigned to the role PARENT_O
(add/remove users to/from role READ_O)

– addParent_O, deleteParent_O: assigned to the role
PARENTwithGRANT_O (add/remove users to/from role PARENT_O)

42

– addParentWithGrant_O, deleteParentWithGrant_O: assigned to the role
OWN_O (add/remove users to/from PARENTwithGRANT_O)

• Object deletion removes the roles OWN_O, PARENT_O,
PARENTwithGRANT_O and READ_O along with the 8 permissions

22

Roles and associated
Permissions

• OWN_O
• destroyObject O addParentWithGrant O• destroyObject_O, addParentWithGrant_O,

deleteParentWithgrant_O

• PARENTwithGRANT_O
• addParent_O, deleteParent_O

• PARENT_O
• addReadUser O deleteReadUser O

43

addReadUser_O, deleteReadUser_O

• READ_O
• canRead_O

Strict DAC
• Only owner has discretionary authority to grant

access to an object.
• Example:• Example:

– Alice has created an object (she is owner) and grants access to
Bob. Now Bob cannot propagate the access to another user.

• Cardinality constraints on roles:
– OWN_O = 1
– PARENT_O = 0
– PARENTwithGRANT_O = 0

B i t f th l hi h

44

• By virtue of the role hierarchy, owner can
change assignments of the role READ_O

23

Liberal DAC

• Owner can delegate discretionary
th it f ti t thauthority for granting access to other

users.
– One Level grant

– Two Level Grant

– Multilevel Grant

45

One Level Grant

• Owner can delegate authority to another
user but they cannot further delegate thisuser but they cannot further delegate this
power.

Alice (Owner) Bob Charles Dorothy

46

• Cardinality constraints as:
– Role OWN_O = 1
– Role PARENTwithGRANT_O = 0
– No restriction on Parent_O

24

Two Level Grant

• In addition to a one level grant the owner
ll t d l t tcan allow some users to delegate grant

authority to other users.

Alice Bob Charles Dorothy

47

• Cardinality constraints as:
– Role OWN_O = 1

Multi-Level Grant

• In addition to a one level grant the owner
can allow some users to delegate grant g g
authority to other users.

• Cardinality constraints as:
– Role OWN_O = 1

• Additional permission
– PARENTwithGRANT O

48

PARENTwithGRANT_O
• AddParentWithGrant_O
• DeleteParentWithGrant_O

– Grant independent revocation
– Alternatively, leave delete with OWN_O

25

Revocation

• Grant-Independent Revocation
– Grant may be revoked by anyone (not necessarily the y y y (y

granter)

– Alice grants Bob access, but Bob’s access may be
revoked by Charles

• Grant-Dependent Revocation
– Revocation is tied to the granter

49

– Alice grants Bob access, and only Alice can revoke
Bob’s access

U1_PARENT_O U1_READ_O

U2 PARENT O U2 READ O

Grant-Dependent Revocation
(One-level grant)

U2_PARENT_O

Un_PARENT_O

U2_READ_O

Un_READ_O

READ_O role associated with members of PARENT_O

50

We need a different administrative role U_PARENT_O and a regular role
U_READ_O for each user U authorized to do a one-level grant by owner.
We also need two new administrative permissions
• addU_ReadUser_O, deleteU_ReadUser_O: assigned to U_PARENT_O
• authorize the operations to add users to role U_Read_O and delete
users from U_Read_O
• cardinality of U_PARENT_O = 1

26

Summary

• Group is NOT the same as Role

• Role hierarchy is NOT the same as
company (report-to) hierarchy

• RBAC can support SoD, data abstraction
and least privilege

RBAC can be used to configure DAC and

51

• RBAC can be used to configure DAC and
MAC

