Steganographic File Systems

Conventional Protection Mechanisms In File
Systems

e User Access Control
* The operating system is fully trusted to enforce the security
policy.

e Isit good enough?

* Operating System cannot be fully trusted. Attacker can
circumvent Access Control, and look into storage
directly

* Vulnerabilities of the system — attacks from hackers
* Inadequate physical protection — house breaking

* In some distributed storage systems, data is usually
unsafe, e.g., Data-Grid, Cloud

* You are using others’ storage
 Centralized access control is hard to establish

Conventional Protection Mechanisms In File
Systems

e Encryption

* Files are encrypted so that they can only be accessed when
users supply the correct encryption key

e Is it good enough?
 What if the adversary knows that the file exists and ...

coerce/compel the owner to reveal e
the encryption key? / e

» Police or government officer can _
order the owner to give out his e
encryption key.

« Can you say NO?

How about applying steganography to
file system?

e Steganography is the art and science of writing hidden
messages in such a way that no one apart from the intended
recipient knows of the existence of the message.

— Greek Words: STEGANOS — “Covered” GRAPHIE —
“Writing”
 Hide information so that the adversary does not know its
existence.

e A higher level of security than cryptography — plausible
deniability

Steganography
is the art and
science of

+ communicating —
in a way which
hides the
existence of the
communication.

Example of Steganography

THE MOST COMMON WORK ANIMAL IS THE HORSE. THEY CAN BE USED
TO FERRY EQUIPMENT TO AND FROM WORKERS OR TO PULL A PLOW.
BE CAREFUL, THOUGH, BECAUSE SOME HAVE SANK UP TO THEIR
KNEES IN MUD OR SAND, SUCH AS AN INCIDENT AT THE BURLINGTON
FACTORY LAST YEAR. BUT HORSES REMAIN A SIGNIFICANT FIND. ON
A FARM, AN ALTERNATE WORE ANIMAL MIGHT BE A BURRO BUT THEY
ARE NOT AS COMFORTABLE AS A TRANSPORT ANIMAL.

Example of Steganography

Long-Range Aviation Airfield

Steganographic File System

e How about this: A fileis hidden In

the storage in such a way that, Y
without the corresponding access ?
< password

key, an attacker cannot prove its
very existence.

* Without access key, attacker can get
no information of the file.

* Plausible Deniability

» Even if the attacker or the government compels the owner to disclose
his file, the owner can deny the existence of the file. The owner’s denial
Is plausible because it cannot be proved to be wrong. This lovely
property is called Plausible deniability.

« We call such a system Steganographic File System.

Steganography vs Steganographic File
Systems

 Traditional Steganography

» Hide small piece of message inside cover-message (Multi-media)
« Steganographic File System

* Hide files inside the secondary storage filled with random data.

o Steganalysis — Attacks to steganography
o Statistical test to detect the hidden message
» Attacks to steganographic file systems
« Statistical analysis on the secondary storage
« Statistical analysis on the accesses on the secondary storage

Early Systems: StegCover

Hidden File 1
—

e System is divided into n equal-sized cover files

Cover Files

e Every cover is initially a random data file
C1,...Cj,..Cn

e When we want to insert a file F, we replace it with a cover Ci

(after XORing F with k cover files)
e How to select Ci for file F?

e Suppose we have 7 cover files C1-C7, and the password is:

1010001
P1 P3 P7
e Select C1, C3, C7 to XOR with F
F'=C1®C3 ®&C7 ©F
e Replace one of C1, C3,C7 with F’ and XOR itself.
C3’'=F &@C3
— Resultant content: C1,C2,C3’,C4,C5,C6,C7

Hidden File 2

]

Early Systems: StegCover

e When we want to get F, we extract it from the k covers

with our password.
e How to recover F?

e Using same password, select C1, C3’,C7
C1 ®C3" ©C7 = C1 ®(F ©C3) DC7

= C1 ®(C1 DC3 DC7 DF & C3) ®C7

= C1 ®(C1 ©C7 DF) ©C7

=F

Hidden File 1

Hidden File 2

StegCover

Given n cover files, can securely hide n/2 files
Impractical: Computationally expensive
— Need to retrieve all cover files

If there are more than one file in the system, after inserting a
new file, the old file’s context is changed

— e.g., inserting another file that also chooses C3 as one the
k cover files!

— So we must modify the context to make sure we can
extract the old file properly.

Low space utilization
Vulnerable to traffic analysis to reveal hidden files

Early Systems: StegRand

Fill the whole hard disk with random bits

Write each (encrypted) file block at an absolute disk address
given by some pseudorandom process (PRNG)

Assumption

— we have a block cipher which the opponent cannot distinguish from
a random permutation

— the presence or absence of a block at any location should not be
distinguishable.

To reconstruct hidden file, user provides password as the

seed to the PRNG, which generates a sequence of addresses
pointing to the data blocks that

compose the file Key of il
" [PRNG]— IH

KevofFile 1

| =4

0000oc
000000
0000060
000000

100000
100000

StegRand

e |f we have N blocks, we will start to get collisions
once we had written a little more than YN blocks
(birthday problem)

— Different file blocks can map to the same disk
addresses, thus causing one to overwrite the other

(data corruption)

— Replicate hidden files/blocks by limiting the number
of hidden files

e Cannot eliminate problem completely — no guarantee on
data integrity

e Low storage utilization
 Vulnerable to traffic analysis

Summary

Existing steganographic file systems have the
following problems:

— Low storage efficiency

— Long processing time

— Lack of guarantee on data integrity

StegFS — A practical steganographic
file system for local machine

 Each hidden object in the file system has a name and an access key.
 Ahidden object can be a file or a directory that contains many files.

o If a user provides a correct file name and the corresponding access
key, the system can use them to locate the file. After that, the user can
operate on the file regularly.

« Without the file name or its access key, an attacker could get no
Information about whether it ever exists, even if the attacker knows the
hardware or software of the file system completely.

e Design principles
o Offer the steganographic property — plausible deniability
« With data integrity
 Minimize space and processing overheads

H. Pang, K.L. Tan, X. Zhou: Steganographic Schemes for File System and B+-trees.

IEEE Trans. Knowl. Data Eng. 16(6): 701-713 (2004) -

StegFS

To hide a file, all information related to its existence
should be excluded from the file system

— Object’s structure (inode table) should not be in the
central directory

— Usage statistics not stored in metadata

Instead, all these are isolated within the object itself
— Header node

User accesses header node (and data) with the accesss
key

Header

—

£
-

Free Blocks List Inode Table

'-J Signature
| = Tpoe- e

A =

2
[7

StegFS Construction

bltmap LI C I I 0]
010000 LI]
001100

100000 = I I I N I I I O I
000110 1] e]
010004]

] Free block B Occupied block

.:-“"«}
g}A\
/_\
1 Bt e s Y N N I B
N [[
] = LI 10101
file header EEHE».».E
.

» The storage space is partitioned
Into standard-size blocks, and a
bitmap tracks whether a block is
free or has been allocated — a O bit
Indicates a free block and a 1 bit
signifies an allocated block.

* Afile is a link-list of data blocks.
To locate a file in the storage space,
we only need to locate the file
header.

17

StegFS Construction

* When system is created, randomly

bitmap 1 0] generated numbers are written into all
501000 O the blocks.

1000448 I N S » Some randomly selected blocks are
010010 e abandoned by turning on the
100001 i1

corresponding bits in bitmap.

1 Free block W Abandoned block

bitmap I The data blocks of a hidden file are
011000 L [. randomly selected from the storage
1001190 E : : 5 : E space (bitmap has to be updated)
011010 * All the blocks, including the file header,
Lotodd mHH-. are encrypted under a secret key, so

that they are indistinguishable from the
3 Freeblock M@ Apandoned block aPandoned blocks.

B Occupied block by hidden file

18

StegFS Construction

e StegFS additionally maintains one or more dummy
hidden files that it updates periodically.

e Finally, plain (non-hidden) files are stored in the
usual way (in the open)

Bitmap

1001101101101100

0110110111110111

1010110110110110

0110110110111101

1)

—
b

1)
!

Central Directory

0111011101110111

PFI ‘ PF2

PF3

1101111101110111

Notation:
-PF: Plain File --HF: Hidden File
--DHF: Dummy HF --AB: Abandoned Block

19

How StegFS Facilitates Security?

e Why abandoned blocks?

e For attacker, all the occupied data
. . . mull § [ealeslee
blocks in the file system look like i T 1=
abandoned blocks. It’s difficult for him _ Ionleeisnieml
to figure out whether any files are Q\ E E : g = E
hidden, and even if he knows, it is not

clear how many files are hidden

e Why dummy hidden files and why update them?

 To prevent observer from deducing that blocks allocated between
successive snapshots of the bitmap that do not belong to any plain
files must hold hidden data

e Abandoned blocks vs dummy files

 The former cannot be traced, but the latter (maintained by StegFS)
are vulnerable to attackers

How StegFS Facilitates Security?

e Hidden files have free blocks

— To deter any intruders who starts to monitor the file
system right after it is created

 Abandoned blocks are not useful here — they would have
been eliminated from consideration

 If intruder continues to take snapshots frequently enough to
track block allocations in between updates to the dummy
hidden files, then he would probably be able to isolate some
of the blocks that are assigned to hidden files.

— With an internal pool of free blocks, it is more

challenging for intruder to distinguish blocks that
contain useful data from the free blocks.
e NOTE: Free blocks are randomly allocated to store data so as

to increase the difficulty in identifying the blocks belonging
to the file and the order between them

StegFS: Header Node

Signature

Free Blocks List Inode Table

[1]

g\
[7
Free Block i Data Block

22

How to locate file header?

e At creation
— Compute h = hash(filename, access key)
— Use h as seed to a pseudorandom block number generator

— Check each successive generated block number against the
bitmap until the file system finds a free block to store the
header

— Subsequent blocks can be assigned randomly from any free
space by consulting the bitmap, and linked to the file’s inode
table

— Store signature (one-way hash function computed from
filename, access key) in header block

e What if multiple users issue same filename and access key?

* To retrieve hidden file

— Compute hash value h, and look for first block number that is
marked as assigned in the bitmap and contains a matching file
signature

* Initial block numbers given by the generator may not hold the correct
file header because they were unavailable when the file was created.

Other Issues

e StegFS is most effective for multi-user environment! Why?
e File Sharing

— Need to distinguish between user access key UAK , and file access key
FAK (to be shared)

* File system backup and recovery

— To minimize overhead, saves image of blocks marked in bitmap but do
not belong to plain files

e Overhead for abandoned blocks, dummy hidden files, free blocks within
hidden files

— To recover

e Restore image of abandoned and hidden blocks to their original addresses

— Hidden files contain their own inode tables, so cannot be adjusted by the recovery
process to reflect new block assignments

e Plain files reconstructed last — possibly at new block addresses

— How to handle accidental errors that result in corruption of data?

 The header of a hidden file can be replicated and placed in pseudorandom
locations derived from its FAK. Thus, if the file header is corrupted, the replica
can be retrieved to recover the hidden file.

e Additionally, a signature can be inserted in each data block, so that, if

necessary, a hidden file can be recovered by scanning the disk volume for
blocks with matching signatures.

Security Measures

e Perfect Security for Cryptography
— Pr(Data A|Cipher-text) = Pr(Data B | Cipher-text)
e Perfect Security for Steganography
— Pr(Exist| Appearance) = Pr(Not exist| Appearance)

How Secure is StegFS ?

C 1] N § JEEEENE
__JEERENY I EEEEN __JEEEEEE } JEN
0 I .
ENREEE JEE) RN C I N[
] B[I Il

I

Pr(exist) = 0.2 Pr(exist) = 0.5

e StegFS is not perfectly secure, as the bitmap
reveals probability information.

e However, StegFS is good enough to preserve
plausible deniability.

Space Utilization of StegFS

Abandon blocks and dummy files are crucial in StegFS.

Trivially, more abandon blocks, more secure the StegFS.

abandon blocks + dummy blocks

Space Utilization =1 -
total number of blocks

Around 40% ~ 90% >> 10% (Steg-Random)

27

How about indexes?

e |tis not always necessary to access an entire
file

e Index support would be useful

e Two approaches

III

— Can “install” a DBMS or an index structure on top
of a steganographic file system

 May suffer performance penalty if the block boundaries
are not well aligned

— Implement such a structure directly in a
steganographic disk volumne

Same as StegFS

Steganographic B-trees

€ader

l\ ~

Level 2:

Level 1:

Level (X
(Leaves

Signature Free Blocks List + Tree Pointer
/ L)
/ |
.
Free Block

StegBTree

"

-

)

\

Point to root node

Same as traditional
B+-tree

29

What will happen if we migrate StegFS to open
networks, where the storage is accessible to
anyone? Any vulnerabilities?

What has he
updated? Oo
. 50 ‘ 5.)
[
. o -
o
: Which blocks
has he accessed?

Users

o Attackers can break the system by
working on users’ accesses to their files

DataGrid, P2P storage, SAN, Cloud
30

Problem incurred by Updates

update from user’s view

Update Sal table
Set Salary += 100,000
Where name = "Bob"

update from table’s view

Bob [810.000
Alice [200.000

before update

Bob |910.00

=

Alice [200.00

o

after update

update from disk’s view

difference means

N
(1000} (1001 existence of

frem .

100110¥10110110011010011
0110100001111011110011010
1010&?6{1011011010011001
011011011011110111110000
011101110111011110010101
110111110111011111100001

before update

\ / ‘\ / useful data

— —_

10110110011010011
011010011111011110011010
IDIO}TﬂiIOIIOIIOIDOIIODI
011011011011110111110000
011101110111011110010101
110111110111011111100001

after update

* Update analysis: If an attacker
can compare two snapshots of the
raw storage, he might discover the
updates. Through the observed
updates, he can deduce the
existence of hidden data.

31

Countering Update Analysis: Dummy
Updates

X. Zhou, H. Pang, K.L. Tan: Hiding Data Accesses in Steganographic File Systems.
ICDE 2004: 572-583 32

Dummy Updates

» Because of dummy updates, an
attacker can no longer simply
deduce the existence of hidden
data from the observed updates.

Dummy Update

Update Sal table

Set Salary += 100.000 (] qgo 10
‘Where name = "Bob" N __’/ Dummy Update

7NN ' NN
(100 OI/IEJOI"- \[1/001 61 10
A -

~_ A N

—\ e ___[::::;
10011011011¢110011010011 "%_ﬂl}m@llaﬁmﬁﬂl 10011
o110f00011110+{ 10011010 0116100111110+ 10011010
1010t4611011011010011004| 10101t011011011010011001
011011011011110111110860 011011011011110111110000
011101110111011¥100%0101 011101110111011¢01100101
11011111011101111100001 1191_11_1101110111‘}3@0_91

e - e -

Snapshot 1 Snapshot 2

33

Principles of Design

Perfect Security for Steganography

® Pr(Exist|Appearance) = Pr(Not exist|Appearance)

Security — the pattern of dummy updates and the pattern of real
updates should be sufficiently similar, so that attackers cannot
distinguish them.

NS VANNVAN

insecure medium secure

— Pattern of dummy updates

— Pattern of the observed updates

Data Integrity — the dummy updates should not affect the
Integrity of the existing data.

Performance - the processing overhead should be minimized.

System Construction

A Hidden file
A block
1V |Data Part
Disk
— — Dummy file
C 1 [][]
 JEEEENE B EE
B .
=l 1 1=l = I
. . e
) =
[1 data block Bl dummy block

Wy

«Storage is partitioned into standard-
size blocks. Each block can be either a
data block or a dummy block.

*Each block is composed of an initial
vector (IV) and a data part, and is
encrypted using Cipher Block Chaining
with IV as seed.

eData blocks contain useful information,
and are organized into hidden files.

*All dummy blocks contain random
data, and are organized into a single
dummy file.

*Agent holds two keys: FAK of dummy
file, and secret key for encrypting data.
To access data, owner must also pass
the FAK of file to agent.

Dummy Updates

A Data block

1V |Data Part

Disk

il
il
i
i

Ik
1ol il

il
il
[0
il

1 useful block
Bl dummy block

Dummy updates — agent
randomly selects a data block,
decrypts it, updates its 1V, re-
encrypts it, and then writes it
back

As the data block is encrypted,
attacker cannot distinguish
whether the 1V or the data part is
modified

As dummy updates only change
IVs, they do not affect the
Integrity of existing data

Dummy Updates vs. Real Updates

AN VANES VAN

| | !
insecure medium secure

— Pattern of dummy updates
Pattern of the observed updates

58921235168497130984274618 Normal (absolutely random)
88928285168497830988278618 Abnormal - frequency
12345098761234509876123450 Abnormal - correlation

55889922112255116688449977 Abnormal - correlation

37

Real Updates

€ change the block’s position each time it's updated

Func real update(B1)

do: randomly pick up a block B2;
If B2 = B1, then
update on B1;

A Data block

1V |Data Part

else If B2 is a dummy block, then
substitute B2 for B1;
update on B2;

else
conduct dummy update on B2;
goto do;

Func end

Disk

il
il
i
i

Ik
B0R00

il
il
1]
] |

ﬂ

1 useful block 1 Bl
B dummy block [B2

38

Proof of Security

 Real updates are also absolutely random:
Each time, each data block has the same probability of being

selected.

o pattern of Real updates = pattern of dummy updates

e Conclusion: secure /\

Processing Overhead

Traditionally, each update requires 2 1/O operations — read and write

With dummy updates, we need to repeat a block selection procedure
until it successfully completes the update — each such operation
requires 2 I/O

N — Number of blocks, D — number of dummy blocks
The probability of picking a dummy block is p=D/N
The probability of repeating the selection i times is (1-p)'1p
Expected number of repeats (overhead in terms of number of
updates)

E = p+2p(1-p)+3p(1-p)?+... = N/D
The more the dummy blocks, the better the throughput

Storage space is cheap today, we use extra space to exchange better
performance

File header needs to be updated when its data block is updated. But
a file header need not incur I/O so frequently, as it can be kept in
buffer

Key Management

« DataK - access key to identify a data file,
DummyK - access key to identify the dummy file,
EK - encrypting key

 Ifthe agentisin asecure environment, it can maintain
DummyK and EK.

« Otherwise, DummyK and EK are distributed to users.

O\
& —
Y% S—

DummyK, EK

Distribute Keys to Users

O DummyK - Dummy blocks are organized into multiple dummy
files, and these dummy files are distributed to users

O EK - Each Data file or dummy file has its own encrypting key,
which is given to user.

O Each user may possess several hidden files and several
dummy files

O When a user logs on, he exposes all his hidden files and
dummy files to the agent. The agent operates on the data
blocks that users have exposed to it.

Multiple
el e hidden files
 pEEpEEE B EE 2
 Imiesiesiaml)

. Multiple
0 - - . % |
T fimml Imml B | /\, dummy files

Insecure data traffics

Read (block A), . .
Write (block D), . .
Read (block B),

*Two types of data traffics: reads and writes
*To hide them, we use dummy reads and dummy writes
* Oblivious Storage! But very inefficient — 70 times the cost!

43

Summary

Steganography can be applied to hide the existence of
files, resulting in Steganographic File System

While steganographic file systems have been developed,
It remains a challenge to realize a practical systems

Data accesses in StegFS pose a threat

o Updates analysis

 Traffics analysis

Other directions

* More efficient scheme that can hide traffics
* Distributed steganographic file system

