
Fine Grained Access ControlFine-Grained Access Control

Fine Grained Access Control

• Fine-grained access control examples:g p
– Students can see their own grades
– Students can see grades of all students in courses they

registered forregistered for
• Variant: but not the associated student-ids

– Public can see average grades for all courses
F lt / d t /i t/d l t d f– Faculty can see/update/insert/delete grades of courses
they taught

• SQL does not support such authorization
– SQL authorization at the level of table/column

• not row level

2

Fine-Grained Access Control

• Usual solution: handled by application programsy pp p g
• Application-layer access control limitations

– Complex, redundant codep
– Malicious/careless programmers
– SQL injection problems
– Application code runs in “super-user” mode always
– Repeated security logic

C b b d– Can be bypassed
• Solution: access control inside database

3

Access Control Using Views
• Common solution: Views

create view ShawnGrades as
select * from Grades where student_id = 'Shawn'v

• Per-user views – difficult to administer

select grade from ShawnGrades
where course = 'CS262B'

q

• Per-user views – difficult to administer
• Solution: parametrized views

– create view MyGrades as
select * from Grades where student id = $useridselect * from Grades where student_id = $userid

• Authorization-conscious querying
– Instead of grades, must use MyGrades for students,

th i f f lt t
4

another view for faculty, etc,

Authorization-Transparent Querying
• View-level data independence
• Analogous to physical/logical data• Analogous to physical/logical data

independence
– Changes to underlying authorization should notChanges to underlying authorization should not

directly affect queries
• Query base relations rather than viewsy

– Query rewritten internally
– Minimal query processing overheads

• Easy to build applications
– Views can be user-specific, for multi-user apps

5

– Generated queries better not be user-specific

The View Replacement Approach

• AKA: Filter model (Using query rewriting mechanisms)
• Transparent query modification

select * from Gradesq “Grades of all students”
se ect o G adesq

“Grades of current user (Shawn)”

U d i O l ’ Vi t l P i t D t b

select * from Grades
where studeint_id = ‘Shawn'qm

Grades of current user (Shawn)

• Used in Oracle’s Virtual Private Database

6

Drawbacks of View Replacement

• May provide misleading information
– Query executes in an artificial world
– Inconsistencies between the answer and user’s

external informationexternal information
– Even if query is actually authorized!

“A d ll
select avg(grade) from Gradesq “Average grade across all courses

and across all students”

select avg(grade) from Grades
where student_id = ‘Shawn’qm

“Average grade across all courses
for the current user”

7

Virtual Private Databases

8

Oracle VPD
• Sometimes referred to as Oracle Row-Level Security (RLS) or

Fine Grained Access Control (FGAC)
• FGAC: associate security policies to database object• FGAC: associate security policies to database object

– Predicates transparently added to query/update where clause for each
relation used in query/update

d fi d f i (ifi d b li i) h di– User-defined functions (specified by application) generate the predicates
• Functions encode security logic, can be in C/Java
• Secure application context stores session parameters, which can be accessed

b f ti d d i t l f i l ti t lby function and used in access control, e.g., for implementing temporal
access control

• Application Context
– Database user information is insufficient, need to know application user
– Oracle provides mechanism for application to inform DB about end user

• Combining these two features VPD enables administrators toCombining these two features, VPD enables administrators to
define and enforce row-level access control policies based on
session attributes 9

Oracle VPD (Cont)Oracle VPD (Cont.)
• Example applicationsExample applications

– Application service providers (hosted applications)
• E.g predicate: companyid = AppContext.comp_id()

– Web applicationsWeb applications
• E.g. predicate userid = AppContext.userid()

10

Why VPD?y
• Scalability

– Table Customers contains 1,000 customer records. Suppose we want , pp
customers to access their own records only. Using views, we need to
create 1,000 views. Using VPD, it can be done with a single policy
function.

• Simplicity
– Say, we have a table T and many views are based on T. Suppose we

want to restrict access to some information in T. Without VPD, all ,
view definitions have to be changed. Using VPD, it can be done by
attaching a policy function to T; as the policy is enforced in T, the
policy is also enforced for all the views that are based on T.

• Security
– Server-enforced security (as opposed to application-enforced).
– Cannot be bypassed

11

Cannot be bypassed.

Oracle VPD
• How does it work?

When a user accesses a table (or view or synonym) which
is protected by a VPD policy (function),

1. The Oracle server invokes the policy function.
2 The policy function returns a predicate based on2. The policy function returns a predicate, based on

session attributes or database contents.
3. The server dynamically rewrites the submitted query by y y q y y

appending the returned predicate to the WHERE
clause.

4 The modified SQL q er is e ec ted4. The modified SQL query is executed.
12

Oracle VPD: ExampleOracle VPD: Example

• Suppose Alice has/owns the following table.

my_table(owner varchar2(30), data varchar2(30));

• Suppose we want to implement the following
policy:policy:

– Users can access only the data of their own. But Admin
should be able to access any data without restrictions.

13

Oracle VPD: Examplep
1. Create a policy function

Create function sec_function(p_schema varchar2, p_obj varchar2)
Return varchar2
As

user VARCHAR2(100);user VARCHAR2(100);
Begin

if (SYS_CONTEXT(‘userenv’, ‘ISDBA’)) then
return ‘ ’;

lelse
user := SYS_CONTEXT(‘userenv’, ‘SESSION_USER’);
return ‘owner = ‘ || user;

end if;;
End;

// userenv = the pre-defined application context
// p obj is the name of the table or view to which the policy will apply// p_obj is the name of the table or view to which the policy will apply
// p_schema is the schema owning the table or view

14

SYS CONTEXT_
• In Oracle/PLSQL, the sys_context function is used to retrieve

information about the Oracle environmentinformation about the Oracle environment.
• The syntax for the sys_context function is:

sys context(namespace, parameter, [length])sys_context(namespace, parameter, [length])
• namespace is an Oracle namespace that has already been created.
• If the namespace is 'USERENV', attributes describing the current

Oracle session can be returned.
• parameter is a valid attribute that has been set using the

DBMS SESSION set context procedureDBMS_SESSION.set_context procedure.
• length is optional. It is the length of the return value in bytes. If this

parameter is omitted or if an invalid entry is provided, the
sys_context function will default to 256 bytes

15

USERENV Namespace Valid
ParametersParameters

16

USERENV Namespace Valid
ParametersParameters

17

Oracle VPD: Examplep
2. Attach the policy function to my_table

e ec te dbms rls add polic (object schema > ‘Alice’execute dbms_rls.add_policy (object_schema => ‘Alice’,
object_name => ‘my_table’,
policy_name => ‘my_policy’,
function_schema => ‘Alice’,
policy_function => ‘sec_function’,
statement types => ‘select, update, insert’,_ yp , p , ,
update_check => TRUE);

• The VPD security model uses the Oracle dbms rls package (RLSThe VPD security model uses the Oracle dbms_rls package (RLS
stands for row-level security)

• update_check: Optional argument for INSERT or UPDATE statement
types. The default is FALSE. Setting update_check to TRUE causes
th t l h k th li i t th l ft i t

18

the server to also check the policy against the value after insert or
update.

DBMS_RLS.ADD_POLICY syntax
• DBMS_RLS.ADD_POLICY (

object schema IN VARCHAR2 NULL,
object_name IN VARCHAR2,
policy_name IN VARCHAR2,
function_schema IN VARCHAR2 NULL,_
policy_function IN VARCHAR2,
statement_types IN VARCHAR2 NULL,
update check IN BOOLEAN FALSEupdate_check IN BOOLEAN FALSE,
enable IN BOOLEAN TRUE,
static_policy IN BOOLEAN FALSE,
policy_type IN BINARY_INTEGER NULL,
long_predicate IN BOOLEAN FALSE,
sec_relevant_cols IN VARCHAR2,_ _
sec_relevant_cols_opt IN BINARY_INTEGER NULL);

19

Oracle VPD-Examplep
3. Bob accesses my_table

select * from my_table;
=> select * from my table where owner = ‘bob’;=> select * from my_table where owner = bob ;
- only shows the rows whose owner is ‘bob’

insert into my_table values(‘bob’, ‘Some data’);

insert into my table values(‘alice’, ‘Other data’);

OK!

NOT OK!y_ (,);
- because of the check option

NOT OK!

20

Policy Commands
• ADD_POLICY – creates a new policy
• DROP_POLICY – drops a policy

DBMS_RLS.DROP_POLICY (

object schema IN VARCHAR2 NULL,
object name IN VARCHAR2object_name IN VARCHAR2,
policy_name IN VARCHAR2);

• ENABLE_POLICY – enables or disables a fine-grained access
control policy

DBMS_RLS.ENABLE_POLICY (
object schema IN VARCHAR2 NULLobject schema IN VARCHAR2 NULL,
object_name IN VARCHAR2,
policy_name IN VARCHAR2,
enable IN BOOLEAN);

enable - TRUE to enable the policy, FALSE to disable the policy 21

Column-level VPD
• Instead of attaching a policy to a whole table or a view, attach

a policy only to security-relevant columnsa policy only to security relevant columns
– Default behavior: restricts the number of rows returned by

a query.
– Masking behavior: returns all rows, but returns NULL

values for the columns that contain sensitive information.

• Restrictions
– Applies only to ‘select’ statementsApplies only to select statements
– The predicate must be a simple Boolean expression.

22

Column-level VPD: Example

• Suppose Alice has (owns) the following table.
Employees(e_id number(2), name varchar2(10), salary nubmer(3));

e_id Name Salary
1 Alice 80
2 Bob 60
3 C l 99

• Policy: Users can access e_id’s and names without

3 Carl 99

y _
any restriction. But users can access only their
own salary information.

23

Column-level VPD: Example
1. Create a policy function

Create function sec_function(p_schema varchar2, p_obj
varchar2)

Return varchar2Return varchar2
As

user VARCHAR2(100);
B iBegin

user := SYS_CONTEXT(‘userenv’, ‘SESSION_USER’);
return ‘name = ‘ || user;

End;

24

Column-level VPD: Example
2. Attach the policy function to Employees (default

behavior)behavior)

e ec te dbms rls add polic (object schema > ‘Alice’execute dbms_rls.add_policy (object_schema => ‘Alice’,
object_name => ‘employees’,
policy name => ‘my policy’policy_name > my_policy ,
function_schema => ‘Alice’,
policy_function => ‘sec_function’,
sec_relevant_cols=>’salary’);

25

Column-level VPD: Example
3. Bob accesses table Employees (default behavior).

REMEMBER: default behavior restricts the numberREMEMBER: default behavior restricts the number
of rows returned by a query
select e id name from Employee;select e_id, name from Employee;

e_id Name
1 Alice1 Alice
2 Bob
3 Carl

select e_id, name, salary from Employee;
id N S le_id Name Salary

2 Bob 60 26

Column-level VPD: Example

2’. Attach the policy function to Employees (masking
behavior)behavior)

execute dbms rls add policy (object schema => ‘Alice’execute dbms_rls.add_policy (object_schema > Alice ,
object_name => ‘employees’,
policy_name => ‘my_policy’,
function_schema => ‘Alice’,
policy_function => ‘sec_function’,
sec relevant cols=>’salary’sec_relevant_cols=> salary ,

sec_relevant_cols_opt=>dbms_rls.ALL_ROWS);

27

Column-level VPD: Example
3. Bob accesses table Employees (masking behavior).

REMEMBER: Masking behavior returns all rows, but g
returns NULL values for the columns that contain
sensitive information.

e id Name
select e_id, name from Employee;

e_id Name
1 Alice
2 Bob

select e_id, name, salary from Employee;

3 Carl

e_id Name Salary
1 Alice
2 B b 602 Bob 60
3 Carl 28

Application ContextApplication Context

• Application contexts act as secure caches of dataApplication contexts act as secure caches of data
that may be used by a fine-grained access control
policy.

– Upon logging into the database, Oracle sets up an
application context in the user’s section.
Y d fi d li i ib– You can define, set and access application attributes
that you can use as a secure data cache.

• There is a pre-defined application contextThere is a pre-defined application context,
“userenv”.

– See Oracle Security Guide.y

29

Application Context

• One can create a customized application context and attributes

Application Context

• One can create a customized application context and attributes.
– Say, each employee can access a portion of the Customers table, based on

the job-position.
– For example, a clerk can access only the records of the customers who

lives in a region assigned to him. But a manager can access any record.
– Suppose that the job-positions of employees are stored in a LDAP server

(or in the Employee table).
– Such information can be accessed and cached in an application context

when an employee logs in.

30

Multiple Policiesp
• It is possible to associate multiple policies to a database object.

– The policies are enforced with AND syntaxThe policies are enforced with AND syntax.
– For example, suppose table T is associated with {P1, P2, P3}.
– When T is accessed by query Q = select A from T where C.

l f h ()– Q’ = select A from T where C (c1 c2 c3).

31

Issue 1: InconsistenciesIssue 1: Inconsistencies

• Suppose the policy authorizes each employeeSuppose the policy authorizes each employee
to see his/her own salary

• Alice issues the following query:• Alice issues the following query:
SELECT AVG(*) FROM Employee

• The query will be rewritten to
SELECT AVG(*) FROM Employee where name = “Alice”;() p y ;

• What’s the problem?

32

Issue 2: RecursionIssue 2: Recursion
• Although one can define a policy against a table, one

l h bl f i hi h li hcannot select that table from within the policy that was
defined against the table

That is a policy function of an object should not access the object– That is, a policy function of an object should not access the object.
– Suppose that a policy function PF that protects a table T accesses T.
– When T is accessed, PF is invoked. PF tries to access T, and another PF is

i k d Thi lt i dl f ti i tiinvoked. This results in endless function invocations.

• This cyclic invocation can occur in a longer chain.
– For example, define a policy function for T, that accesses another table T1.For example, define a policy function for T, that accesses another table T1.

If T1 is protected by another policy function that refers to T, then we have a
cycle.

– It is hard to check. (A policy function can even invoke a C program.)It is hard to check. (A policy function can even invoke a C program.)

33

SummarySummary

FGAC i f l t l• FGAC is a powerful access control
• Oracle VPD implements FGAC using query

rewriting mechanismsrewriting mechanisms
• It is difficult, if not impossible, to verify whether or

not a particular user has access to a particular datanot a particular user has access to a particular data
item in a particular table in a particular state.
– Such verification requires checking all policy functions.Such verification requires checking all policy functions.
– As policy functions are too “flexible”, it is computationally

impossible to analyze them.

34

