
1

Fine-Grained Access Control

Fine Grained Access Control

• Fine-grained access control examples:
– Students can see their own gradesStudents can see their own grades
– Students can see grades of all students in courses they

registered for
• Variant: but not the associated student-ids

– Public can see average grades for all courses
– Faculty can see/update/insert/delete grades of courses

they taught

SQL d t t h th i ti

2

• SQL does not support such authorization
– SQL authorization at the level of table/column

• not row level

2

Fine-Grained Access Control

• Usual solution: handled by application programs

• Application layer access control limitations• Application-layer access control limitations
– Complex, redundant code

– Malicious/careless programmers

– SQL injection problems

– Application code runs in “super-user” mode always

– Repeated security logic

3

Repeated security logic

– Can be bypassed

• Solution: access control inside database

Access Control Using Views

• Common solution: Views

create view ShawnGrades asv

• Per-user views – difficult to administer
• Solution: parametrized views

t i M G d

select * from Grades where student_id = 'Shawn'
v

select grade from ShawnGrades
where course = 'CS262B'

q

4

– create view MyGrades as
select * from Grades where student_id = $userid

• Authorization-conscious querying
– Instead of grades, must use MyGrades for students,

another view for faculty, etc,

3

Authorization-Transparent Querying

• View-level data independence

• Analogous to physical/logical data
independence
– Changes to underlying authorization should not

directly affect queries

• Query base relations rather than views
– Query rewritten internally

Mi i l i h d

5

– Minimal query processing overheads

• Easy to build applications
– Views can be user-specific, for multi-user apps

– Generated queries better not be user-specific

The View Replacement Approach

• AKA: Filter model (Using query rewriting mechanisms)

• Transparent query modificationp q y

select * from Grades

select * from Grades
where studeint_id = ‘Shawn'

q

qm

“Grades of all students”

“Grades of current user (Shawn)”

6

• Used in Oracle’s Virtual Private Database

4

Drawbacks of View Replacement

• May provide misleading information
– Query executes in an artificial world

– Inconsistencies between the answer and user’s
external information

– Even if query is actually authorized!

select avg(grade) from Gradesq
“Average grade across all courses
and across all students”

7

select avg(grade) from Grades
where student_id = ‘Shawn’

qm

“Average grade across all courses
for the current user”

Virtual Private Databases

8

5

Oracle VPD
• Sometimes referred to as Oracle Row-Level Security (RLS) or

Fine Grained Access Control (FGAC)

• FGAC: associate security policies to database object
P di t t tl dd d t / d t h l f h– Predicates transparently added to query/update where clause for each
relation used in query/update

– User-defined functions (specified by application) generate the predicates
• Functions encode security logic, can be in C/Java

• Secure application context stores session parameters, which can be accessed
by function and used in access control, e.g., for implementing temporal
access control

A li ti C t t• Application Context
– Database user information is insufficient, need to know application user

– Oracle provides mechanism for application to inform DB about end user

• Combining these two features, VPD enables administrators to
define and enforce row-level access control policies based on
session attributes

9

Oracle VPD (Cont.)

• Example applications
– Application service providers (hosted applications)Application service providers (hosted applications)

• E.g predicate: companyid = AppContext.comp_id()
– Web applications

• E.g. predicate userid = AppContext.userid()

10

6

Why VPD?
• Scalability

– Table Customers contains 1,000 customer records. Suppose we want
customers to access their own records only. Using views, we need to

t 1 000 i U i VPD it b d ith i l licreate 1,000 views. Using VPD, it can be done with a single policy
function.

• Simplicity
– Say, we have a table T and many views are based on T. Suppose we

want to restrict access to some information in T. Without VPD, all
view definitions have to be changed. Using VPD, it can be done by
attaching a policy function to T; as the policy is enforced in T, the
policy is also enforced for all the views that are based on T

11

policy is also enforced for all the views that are based on T.

• Security
– Server-enforced security (as opposed to application-enforced).
– Cannot be bypassed.

Oracle VPD

• How does it work?

When a user accesses a table (or view or synonym) which (y y)
is protected by a VPD policy (function),

1. The Oracle server invokes the policy function.

2. The policy function returns a predicate, based on
session attributes or database contents.

3. The server dynamically rewrites the submitted query by
appending the returned predicate to the WHERE
clause.

4. The modified SQL query is executed.

12

7

Oracle VPD: Example

• S ppose Alice has/o ns the follo ing table• Suppose Alice has/owns the following table.

my_table(owner varchar2(30), data varchar2(30));

• Suppose we want to implement the following
policy:

– Users can access only the data of their own. But Admin
should be able to access any data without restrictions.

13

Oracle VPD: Example
1. Create a policy function

Create function sec_function(p_schema varchar2, p_obj varchar2)
R t h 2Return varchar2
As

user VARCHAR2(100);
Begin

if (SYS_CONTEXT(‘userenv’, ‘ISDBA’)) then
return ‘ ’;

else
user := SYS_CONTEXT(‘userenv’, ‘SESSION_USER’);
return ‘owner = ‘ || user;return owner || user;

end if;
End;

// userenv = the pre-defined application context
// p_obj is the name of the table or view to which the policy will apply
// p_schema is the schema owning the table or view

14

8

SYS_CONTEXT
• In Oracle/PLSQL, the sys_context function is used to retrieve

information about the Oracle environment.

• The syntax for the sys_context function is:

sys_context(namespace, parameter, [length])

• namespace is an Oracle namespace that has already been created.

• If the namespace is 'USERENV', attributes describing the current
Oracle session can be returned.

• parameter is a valid attribute that has been set using the• parameter is a valid attribute that has been set using the
DBMS_SESSION.set_context procedure.

• length is optional. It is the length of the return value in bytes. If this
parameter is omitted or if an invalid entry is provided, the
sys_context function will default to 256 bytes

15

USERENV Namespace Valid
Parameters

16

9

USERENV Namespace Valid
Parameters

17

Oracle VPD: Example
2. Attach the policy function to my_table

execute dbms_rls.add_policy (object_schema => ‘Alice’,

bj ‘ bl ’object_name => ‘my_table’,

policy_name => ‘my_policy’,

function_schema => ‘Alice’,

policy_function => ‘sec_function’,

statement_types => ‘select, update, insert’,

update_check => TRUE);

18

• The VPD security model uses the Oracle dbms_rls package (RLS
stands for row-level security)

• update_check: Optional argument for INSERT or UPDATE statement
types. The default is FALSE. Setting update_check to TRUE causes
the server to also check the policy against the value after insert or
update.

10

DBMS_RLS.ADD_POLICY syntax

• DBMS_RLS.ADD_POLICY (

object schema IN VARCHAR2 NULL,

object_name IN VARCHAR2,

policy_name IN VARCHAR2,

function_schema IN VARCHAR2 NULL,

policy_function IN VARCHAR2,

statement_types IN VARCHAR2 NULL,

update_check IN BOOLEAN FALSE,

enable IN BOOLEAN TRUE,

t ti li IN BOOLEAN FALSEstatic_policy IN BOOLEAN FALSE,

policy_type IN BINARY_INTEGER NULL,

long_predicate IN BOOLEAN FALSE,

sec_relevant_cols IN VARCHAR2,

sec_relevant_cols_opt IN BINARY_INTEGER NULL);
19

Oracle VPD-Example

3. Bob accesses my_table

select * from my_table;
=> select * from my_table where owner = ‘bob’;
- only shows the rows whose owner is ‘bob’

insert into my_table values(‘bob’, ‘Some data’); OK!

insert into my_table values(‘alice’, ‘Other data’);
- because of the check option

20

NOT OK!

11

Policy Commands
• ADD_POLICY – creates a new policy

• DROP_POLICY – drops a policy

DBMS_RLS.DROP_POLICY (

object schema IN VARCHAR2 NULL,

object_name IN VARCHAR2,

policy_name IN VARCHAR2);

• ENABLE_POLICY – enables or disables a fine-grained access
control policy

DBMS RLS ENABLE POLICY (DBMS_RLS.ENABLE_POLICY (

object schema IN VARCHAR2 NULL,

object_name IN VARCHAR2,

policy_name IN VARCHAR2,

enable IN BOOLEAN);

enable - TRUE to enable the policy, FALSE to disable the policy 21

Column-level VPD

• Instead of attaching a policy to a whole table or a view, attach
a policy only to security-relevant columns

D f lt b h i t i t th b f t d b– Default behavior: restricts the number of rows returned by
a query.

– Masking behavior: returns all rows, but returns NULL
values for the columns that contain sensitive information.

• Restrictions

– Applies only to ‘select’ statements

– The predicate must be a simple Boolean expression.

22

12

Column-level VPD: Example

• Suppose Alice has (owns) the following table.

Employees(e id number(2), name varchar2(10), salary nubmer(3));p y (_ (), (), y ());

e_id Name Salary

1 Alice 80

2 Bob 60

3 Carl 99

• Policy: Users can access e_id’s and names without
any restriction. But users can access only their
own salary information.

23

1. Create a policy function

Create function sec function(p schema varchar2 p obj

Column-level VPD: Example

Create function sec_function(p_schema varchar2, p_obj
varchar2)

Return varchar2
As

user VARCHAR2(100);
Begin

user := SYS_CONTEXT(‘userenv’, ‘SESSION_USER’);
return ‘name = ‘ || user;

End;

24

13

2. Attach the policy function to Employees (default
behavior)

Column-level VPD: Example

execute dbms_rls.add_policy (object_schema => ‘Alice’,

object_name => ‘employees’,

policy_name => ‘my_policy’,

function_schema => ‘Alice’,

policy_function => ‘sec_function’,

sec_relevant_cols=>’salary’);

25

3. Bob accesses table Employees (default behavior).
REMEMBER: default behavior restricts the number

f t d b

Column-level VPD: Example

of rows returned by a query

select e_id, name from Employee;

e_id Name

1 Alice

2 Bob

select e_id, name, salary from Employee;

3 Carl

e_id Name Salary

2 Bob 60 26

14

2’. Attach the policy function to Employees (masking
behavior)

Column-level VPD: Example

execute dbms_rls.add_policy (object_schema => ‘Alice’,
object_name => ‘employees’,
policy_name => ‘my_policy’,
function_schema => ‘Alice’,
policy function => ‘sec function’,policy_function sec_function ,
sec_relevant_cols=>’salary’,

sec_relevant_cols_opt=>dbms_rls.ALL_ROWS);

27

3. Bob accesses table Employees (masking behavior).

REMEMBER: Masking behavior returns all rows, but
returns NULL values for the columns that contain

Column-level VPD: Example

returns NULL values for the columns that contain
sensitive information.

select e_id, name from Employee;

l t id l f E l

e_id Name

1 Alice

2 Bob

3 Carl

select e_id, name, salary from Employee;

e_id Name Salary

1 Alice

2 Bob 60

3 Carl 28

15

Application Context

• Application contexts act as secure caches of data
that may be used by a fine grained access controlthat may be used by a fine-grained access control
policy.

– Upon logging into the database, Oracle sets up an
application context in the user’s section.

– You can define, set and access application attributes
that you can use as a secure data cache.

• There is a pre-defined application context,
“userenv”.

– See Oracle Security Guide.

29

• One can create a customized application context and attributes.

Application Context

– Say, each employee can access a portion of the Customers table, based on
the job-position.

– For example, a clerk can access only the records of the customers who
lives in a region assigned to him. But a manager can access any record.

– Suppose that the job-positions of employees are stored in a LDAP server
(or in the Employee table).

– Such information can be accessed and cached in an application context
when an employee logs in.

30

16

Multiple Policies
• It is possible to associate multiple policies to a database object.

– The policies are enforced with AND syntax.

For example suppose table T is associated with {P1 P2 P3}– For example, suppose table T is associated with {P1, P2, P3}.

– When T is accessed by query Q = select A from T where C.

– Q’ = select A from T where C  (c1  c2  c3).

31

Issue 1: Inconsistencies

• Suppose the policy authorizes each employee
t hi /h lto see his/her own salary

• Alice issues the following query:

SELECT AVG(*) FROM Employee

• The query will be rewritten to

SELECT AVG(*) FROM Employee where name = “Alice”;

• What’s the problem?

32

17

Issue 2: Recursion
• Although one can define a policy against a table, one

cannot select that table from within the policy that was
defined against the table
– That is, a policy function of an object should not access the object.

– Suppose that a policy function PF that protects a table T accesses T.

– When T is accessed, PF is invoked. PF tries to access T, and another PF is
invoked. This results in endless function invocations.

• This cyclic invocation can occur in a longer chain.y g
– For example, define a policy function for T, that accesses another table T1.

If T1 is protected by another policy function that refers to T, then we have a
cycle.

– It is hard to check. (A policy function can even invoke a C program.)

33

Summary

• FGAC is a powerful access control

• Oracle VPD implements FGAC using query
rewriting mechanisms

• It is difficult, if not impossible, to verify whether or
not a particular user has access to a particular data
item in a particular table in a particular state.
– Such verification requires checking all policy functions.

– As policy functions are too “flexible”, it is computationally
impossible to analyze them.

34

