
Computing 2D Constrained Delaunay Triangulation Using Graphics Hardware

Meng Qi, Thanh-Tung Cao and Tiow-Seng Tan∗

National University of Singapore

(a) point set S (b) Digital VD (c) DT of S (d) PSLG G (e) CDT of G

Figure 1: Delaunay triangulation (DT) and constrained Delaunay triangulation (CDT).

Abstract

This paper presents a novel approach, termed GPU-CDT, to com-
pute the constrained Delaunay triangulation (CDT) for a planar
straight line graph (PSLG), consisting of points and edges, using
the graphics processing unit (GPU). Although there are many algo-
rithms for constructing the 2D CDT using the CPU, there has been
no known prior approach using the parallel computing power of
the GPU efficiently. For the special case of the CDT problem with
PSLGs consisting of just points, which is the normal Delaunay tri-
angulation problem, a hybrid approach has recently been proposed
that uses the GPU together with the CPU to partially speed up the
computation. Our GPU-CDT works for such special case too, but
the whole computation is fully accelerated by the GPU. Our imple-
mentation using the CUDA programming model on nVidia GPUs
is numerically robust and runs several times faster than any existing
CPU algorithms as well as the prior GPU-CPU hybrid approach.
This result is reflected in our experiment with both randomly gen-
erated PSLGs and real world GIS data, with millions of points and
edges.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—[Geometric algorithms]; I.3.1
[Computer Graphics]: Hardware Architecture—[Graphics proces-
sors]

Keywords: GPGPU, Computational Geometry, Voronoi Diagram

1 Introduction

Delaunay triangulation (DT) is one of the most important geomet-
ric structures in computational geometry. Due to its nice property
of avoiding long, skinny triangles, the DT has many practical ap-
plications in different fields. In Geographical Information System
(GIS), one way to model terrain at the sampled points is to interpo-
late the data based on the DT [Gold 1994a; Gold 1994b]. In path
planning, the DT can be used to compute the Euclidean minimum
spanning tree of a set of points, because every geometric minimum
spanning tree must be a subgraph of the DT [Preparata and Shamos
1985]. DT is also often used to build quality meshes for the finite
element analysis [Huebner et al. 2001].

Constrained Delaunay triangulation (CDT) is a direct extension of
the Delaunay triangulation where some edges in the output are en-

∗{qimeng | caothanh | tants}@comp.nus.edu.sg

forced before hand [Chew 1989]; these edges are referred to as con-
straints; see Figure 1. Given a set S of n points (or sites) in the 2D
plane and a set of non-crossing constraints, collectively called a
planar straight line graph (PSLG), the CDT is a triangulation of S
having all the constraints included, while being as close to the DT
of S as possible. Constraints occur naturally in many applications.
For example, in path planning, they are obstacles; in GIS, bound-
aries between cities; in surface reconstruction, contours in the slices
of the body’s skull; in modeling, characteristic curves [Boissonnat
1988; Treinish 1995; Kallmann et al. 2003].

Recently, the Graphics processing unit (GPU) with its enormous
parallel computation power has been used for general computa-
tion in many disciplines, including computational geometry. Early
works include computing the digital Voronoi diagram, a structure
that is closely related to the DT [Hoff et al. 1999; Fischer and Gots-
man 2006]. These works also mention the possibility of obtaining
the latter from the former straightforwardly. However, we note that
the Voronoi diagram in a digital space (of a texture) is not exactly
the dual of the DT in a continuous space, and only until recently
Rong et al. [2008] presented a serious attempt in realizing such ap-
proach on GPUs. Their approach, however is a hybrid one, where
parallel computation is only used in first part of the computation,
leaving the rest to a sequential CPU algorithm. As for the CDT
problem, there is no known efficient GPU algorithm as far as we
know. In another view, the DT problem, as well as the CDT prob-
lem, does not present itself readily to parallel computation. Specif-
ically, it is not clear how to adapt traditional complex parallel al-
gorithms, such as the divide-and-conquer approach, to best use the
computing power of the GPU.

Our main contribution here is a novel algorithm, termed GPU-CDT,
to compute the CDT for a given PSLG, fully parallelized for the
GPU. Our experiment shows that our implementation of GPU-CDT
using the CUDA programming model [NVI 2010] is robust and effi-
cient. Comparing to Triangle [Shewchuk 1996], the fastest sequen-
tial mesh generation software, as well as to the hybrid approach of
Rong et al. [2008], GPU-CDT runs up to an order of magnitude
faster.

The paper is organized as follows. Section 2 introduces some basic
definitions and reviews the previous works on both DT and CDT.
Section 3 presents our GPU approach to the DT problem, and Sec-
tion 4 then extends it to handle constraints. Section 5 describes our
experimental results, and Section 6 concludes the paper.

National University of Singapore, School of Computing, Technical Report # TRB3/11, March 2011.

2 Preliminaries

In this section we first introduce some important definitions and
properties before stating some related works on computing the DT
and CDT. Let S = {p1, p2, . . . , pn} be a set of n points in the
Euclidean space �2.

Definition 1 (Voronoi diagram) For each point p ∈ S, the
Voronoi region R(p) of p is the set of points in �2 that are closer
(in Euclidean metric) to p than to any other points in S. The
Voronoi diagram V(S) of S is the space partition induced by the
Voronoi regions of the points in S. The line segments shared by
the boundaries of two Voronoi regions are called Voronoi edges,
and the points shared by the boundaries of three or more Voronoi
regions are called Voronoi vertices.

Definition 2 (Digital Voronoi diagram) In the digital space, we
only consider the set of integer grid points. Consider a 2D grid
of size m × m. We say that a grid point x is colored by the point
p ∈ S if x ∈ R(p). In case x is of equal distance from two points
pi and pj with i < j, we color x by pi. The set of all colored
grid points forms the digital Voronoi diagram D(S) of S (see Fig-
ure 1(b)). This coloring procedure is referred to as the Euclidean
coloring.

Definition 3 (Planar straight line graph) A planar straight line
graph (PSLG) G = (S,E) is a plane graph with vertex set S and
edge set E; see Figure 1(d).

Definition 4 (Delaunay triangulation) A triangulation of S is a
PSLG T = (S,E) such that |E| is maximal. An edge ab ∈ E
is said to satisfy the empty circle property with respect to S if there
exists a circle passing through a and b such that points in S are not
inside the circle. A triangulation T of S is a Delaunay triangula-
tion (DT) if each edge of T satisfies the empty circle property with
respect to S. When points in S are in general positions, i.e. no four
or more points are co-circular, the DT of S is unique. Figure 1(c)
shows an example of the DT.

Definition 5 (Constrained Delaunay triangulation) Two points
a and b of a PSLG G = (S,E) are visible from each other if the
(open) line segment ab does not intersect any other edge in E. A
triangulation T = (S,E′) is a constrained Delaunay triangulation
(CDT) of G if E ⊆ E′ and each edge ab ∈ E′ is either in E or it
satisfies the empty circle property with respect to those points of S
visible from both a and b. If E = ∅, then the CDT is exactly the
same as the DT. Figure 1(e) shows an example of the CDT.

There are many algorithms developed for the CPU to efficiently
compute the DT [Aurenhammer 1991; Fortune 1997; Su and
Scot Drysdale 1997]. All these algorithms in general follow
one of the three well-known algorithmic paradigms: divide-and-
conquer [Shamos and Hoey 1975; Dwyer 1987], sweep-line [For-
tune 1987] and incremental insertion [Guibas et al. 1992].

The algorithms for constructing the CDT can be grouped into two
categories: (a) Processing points and constraints simultaneously:
Chew [1989] shows that the CDT can be built in optimal O(n log n)
time using a divide and conquer approach to partition the prob-
lem into smaller CDT problems within vertical strips. (b) Pro-
cessing points and constraints separately: Since CDT is a gener-
alization of DT with the notion of constraints [Lee and Lin 1986;
Kallmann et al. 2003; Bernal 1995; Shewchuk 1996], we can first
construct DT of the given point set, then insert each constraint one
by one to remove triangles pierced through by the constraint, and
re-triangulate regions due to the removal of triangles to include the
constraint and to maintain the empty circle property.

3 Computing DT on GPU

The basic idea of our GPU algorithm is to derive from the digital
Voronoi diagram D(S) of the input set of points S an approxima-
tion of the DT for transforming into the needed DT. Specifically,
the algorithm consists of the following phases:

Phase 1. Digital Voronoi diagram construction Map the input
points into a texture and compute the digital Voronoi diagram.
If more than one point is mapped to a same pixel, keep just
one and treat the others as missing points.

Phase 2. Triangulation construction Find all the digital Voronoi
vertices to construct triangles for a triangulation. This trian-
gulation is an approximation of the DT.

Phase 3. Shifting Points have been moved due to the mapping in
Phase 1. Shift points back to their original coordinates and
modify the triangulation if necessary.

Phase 4. Missing points insertion Insert all missing points to be
a part of the triangulation.

Phase 5. Edge flipping Verify the empty circle property for each
edge in the triangulation, and perform edge flipping if neces-
sary.

We adopt the triangulation data structure used by Shewchuk [1996]
in our computation. A list of triangles is stored in a pre-allocated
array of size no more than 2|S|, each one has the indices of three
other triangles edge adjacent to it. Each vertex in S also has a linked
list of triangles incident to it.

3.1 Phase 1: Digital Voronoi diagram construction

In this step, we first translate and then scale the point set such that
its bounding box fits inside our texture of size m×m. Then we map
each input point p to the grid point (or pixel) closest to p in a texture.
In case several input points are mapped to a same grid point, only
one among them is recorded. Those that are not recorded become
missing points and will be inserted into the triangulation in a later
phase. With the texture containing the points or seeds, we use the
Parallel banding algorithm (PBA) of Cao et al. [2010a] to compute
the digital Voronoi diagram of these seeds. Each Voronoi region of
a seed is represented by the color of the seed.

Cao et al. [2010b] shows that by dualizing the output obtained by
the Standard flooding, one gets a valid geometrical triangulation.
The output of Standard flooding is very close to that of PBA except
that each region of a color is connected. We adopt PBA as it is a
much faster process than the Standard flooding, but the dual of its
output is not a valid geometrical triangulation. In particular, a dig-
ital Voronoi region obtained by PBA can be disconnected and its
dual thus can have duplicated and intersecting triangles (see Fig-
ure 2). Pixels in a disconnected Voronoi region is classified as: bulk
(pixels) which are path-connected to its seed, and debris (pixels)
otherwise. We want to get the same output as the Standard flood-
ing to use the theory in [Cao et al. 2010b]. First, we amend the
output from PBA by removing all the debris. This is carried out
by identifying (in parallel) all pixels whose adjacent pixels closer
to their seeds do not have the same color. This process may need
a few passes as each pass may remove just some of the debris of a
Voronoi region. After that, we can use a flooding algorithm to re-
color the debris. The detailed algorithm and its proof of correctness
is discussed in Appendix A. The number of debris is usually very
small, so the cost of this correction step is insignificant and our ap-
proach with PBA is thus a much better one than directly using the
Standard flooding.

Technical Report # TRB3/11, March 2011 2

(a) duplicated triangles (b) intersecting triangles

Figure 2: Portions of digital Voronoi digrams showing (a) corners
u and v that generate the same triangle; and (b) corners u and v
generate two intersecting triangles.

3.2 Phase 2: Triangulation construction

In this phase, we want to dualize the result from the previous phase.
A corner shared by up to 4 pixels is incident to 1 to 4 different
colors. For a corner with 3 colors, we add one triangle, and for
one with 4 colors, we add two (non-intersecting) triangles into the
triangulation. This phase can be done in parallel by processing each
row of the texture independently. A thread handling one row of the
texture first counts the number of triangles to be generated for that
row. Then we use the parallel prefix sum primitive to identify the
offset in the triangle list from which each thread can start adding
triangles.

As the digital Voronoi diagram is truncated within the texture, its
dual does not always produce a complete triangulation with a con-
vex boundary. We need an additional step of traversing along the
boundary of the texture, using the idea similar to the Graham’s scan
algorithm [1972], to identify triangles whose Voronoi vertices fall
outside the texture to add into the end of the triangle list. This ad-
ditional step is performed in the CPU as it is a simple task and can
be done concurrently while the GPU is populating the triangle list.

3.3 Phase 3: Shifting

Points are shifted away from their original positions in Phase 1.
We now work on moving them back to their original positions in
two stages: first, we scale and translate the computed triangulation
to near the original coordinates; second, we then shift the points
to their original coordinates. The first stage is done with careful
numerical accuracy consideration so that the triangulation remains
valid after scaling and translation; see Apendix B. The second stage
is described next.

In shifting a point, we assume all its neighboring points remain
static. A point to be shifted falls in one of the two categories: good
case and bad case. The former is the case when a point can be
shifted to its original position without causing any intersection of
triangles (of its fan) with other triangles. Otherwise, it is the lat-
ter case; see Figure 3. As expected due to the very small shifting
distance, majority of the cases in practice are good cases.

To achieve uniform computation while shifting points in parallel,
we handle the two mentioned categories separately. A point p can

(a) Good case (b) Bad case

Figure 3: Shifting of point from p to p′ in (a) good and (b) bad
case. Dashed lines indicate the new triangulation after shifting.

be shifted as a good case if the orientation of all triangles incident
to p remain the same after moving p to its original location. This
implies that we cannot shift two points sharing the same edge con-
currently. We use multiple passes in which no two adjacent points
are shifted in the same pass. This can be ensured by giving priority
to points with smaller index; see Algorithm 1. In this algorithm, ini-
tially all points are unchecked. To guarantee the robustness of the
computation, all the orientation tests are done using Shewchuk’s
robust orientation predicate [Shewchuk 1996].

Algorithm 1 Shifting good cases and recording bad cases

repeat
for each unchecked point pi do in parallel

if all neighbors pj of pi, j < i, has been checked then
mark pi as checked
if shifting pi is a good case then

update the coordinate of pi to its original one
else

mark pi as a bad case
end if

end if
end for

until all points have been checked

After all points have been checked and most of them shifted, we
have also marked the other points not shifted as bad cases (though
they are not necessary so due to possibly new locations of points in
its triangle fan). We handle these points by simply deleting them
from the triangulation, and mark them as missing points, just as
in Phase 1, for later processing. Notice we also need the above-
mentioned tie breaker to avoid deleting in parallel two points inci-
dent to a same edge. To delete one point, we mark all triangles in
its fan as deleted. We then use the ear-cutting method [Highnam
1982] to re-triangulate the resulting star-shape hole. Notice that the
number of new triangles is no more than the number of deleted tri-
angles, thus we can use the deleted slots in the triangle list to store
new triangles, without any racing memory access during parallel
computation.

3.4 Phase 4: Missing points insertion

This phase starts with a triangulation T , and we want to insert into
T in parallel, points of S that are not yet part of T . These points
are those missing points identified in Phase 1 and Phase 3. The in-
sertion for each missing point pi starts by efficiently identifying the
triangle(s) in T that contains pi, or has an edge passing through pi.
For a missing point obtained from Phase 1, we can start searching
from a triangle incident to the point of S mapped to the same grid
point as pi; as for one from Phase 3, we can start searching from a
triangle incident to a point pj of S sharing an edge with pi before
pi was deleted. During the processing of pi, if pj is not yet inserted,
we delay the insertion of pi to a later iteration.

With the triangle(s) containing pi found, the insertion of pi splits
the single triangle enclosing pi into three, or the two triangles pass-
ing through pi into four. As the insertion of points is to be carried
out in parallel, we need to prevent modification done to some same
triangles by the insertions of different points. This can be achieved
by first marking the triangles to be modified by pi with the vertex
index i using atomicMin operation of CUDA: when a triangle is to
be modified by different missing points, only the one with the small-
est index should be allowed. The insertion of pi is carried out only
when it managed to retain its marks on the triangle(s) it wants to
modified. It is clear that the missing point with smallest index can
always be inserted, so the algorithm terminates. This also means
that many rounds as shown in the repeat-until loop of Algorithm 2

Technical Report # TRB3/11, March 2011 3

may potentially be needed to complete all the insertions. In prac-
tice, the worst does not happen; for the case where many points fall
into a same triangle, after the first few insertions, we have missing
points quickly distributed across many newly created triangles.

Algorithm 2 Inserting missing points

repeat
for each not yet inserted missing point pi do in parallel

mark the triangle(s) containing pi with i using atomicMin
end for
for each not yet inserted missing point pi do in parallel

if it successfully marked the triangles for modification then
insert pi into the triangulation

else
record the triangle found for pi for its latter point location

end if
end for

until all missing points have been inserted

Note first that the simple way of marking without using atomicMin
does not work as there can be a live lock situation when vari-
ous modifications each needs the locking of two adjacent triangles
while these triangles together form a cycle. Note second that there
is one caveat in the above algorithm. A point pi to be inserted can
fall outside T , and many new triangles are to be created to include
pi into the new T . We adapt the standard trick of enclosing all
points of S by a pre-defined polygonal boundary, that will be re-
moved at the end of the computation.

3.5 Phase 5: Edge flipping

In this phase we verify the empty circle property for each edge T in
parallel. For an edge ab of the triangle abc, we only have to check
if the opposite point of the other triangle, say adb, adjacent to ab,
if any, is inside the circumcircle of abc. If so, an edge flipping is
performed to replace the two triangles abc and adb by triangles acd
and cbd. As in the insertion of missing points in parallel, one thread
performing an edge flip needs to modify two triangles and can thus
conflict with other threads. We use the same multiple passes strat-
egy: each thread first marks the two triangles it needs to modify
with its index using the atomicMin operation, and only if the thread
successfully marks both triangles needed for modification can pro-
ceed with the edge flipping. After the completion of this phase, the
result is indeed the Delaunay triangulation of the input point set S.

A few notes are in order. First, it is possible for an edge to be
flipped several times if its neighbors are changed. Second, in each
pass, we only need to check an edge if it was never checked before,
or it needed to be flipped but could not in the previous pass due to
conflict with other edge flipping, or its neighboring triangles were
modified. Third, to perform the in-circle test robustly, we use the
robust predicate introduced by Shewchuk [1996]. We perform only
the fast check of the predicate in the GPU, while making down
the edges with numerically inaccurate in-circle tests (the almost co-
circular cases). After all possible flipping are performed and the
result is transferred back to the CPU memory, we perform another
pass of in-circle test on the very few marked edges in CPU using
the robust predicate. After all flipping are done, if any, the result
we obtain is the desired Delaunay triangulation.

4 Computing CDT on GPU

To compute the CDT with the GPU, our algorithm processes points
and constraints separately as follows:

Step 1 Compute a triangulation T for all points (Phases 1 to 4);

Step 2 Insert constraints into T in parallel;

Step 3 Flip edges (non-constraint) if necessary (Phase 5).

Step 1 and Step 3 are as discussed, but Step 2 needs consideration to
achieve good parallelism. The naı̈ve approach of having one thread
to handle one constraint is not ideal: each constraint can intersect
many triangles in T , and each insertion thus has many smaller tasks
that can possibly be done in parallel but not explored. Also, the
difference in the number of triangles intersected by different con-
straints results in unbalanced work loads. Worst still, two different
threads handling two constraints may intersect some common trian-
gles and the threads cannot proceed independently. Our proposed
Step 2 is given in Algorithm 3 with the outer loop and the inner
loop. The idea is to identify constraint-triangle intersections with
the outer loop, and uses edge flipping to remove these intersections
in the inner loop, all in parallel using multiple passes.

Algorithm 3 Inserting constraints into the triangulation

repeat /* outer loop */
for each constraint ci do in parallel

mark all triangles intersected by ci with i using atomicMin
end for
repeat /* inner loop : details in Algorithm 4 */

do edge flipping to remove intersections to constraints
until no edge that is flippable

until all constraints are inserted

4.1 Outer loop: Find constraint-triangle intersections

The goal here is to find out, for each triangle in T , the index of a

constraint intersecting it, if any. Let ci = ab be the ith constraint,
we go through the triangle fan of a to identify the triangle A inter-
sected by ci. If ci is an edge of A, no further processing is needed.
Otherwise, from A we start walking along the constraint towards b,
visiting all triangles intersected by ci. For each triangle T found,
we record in T the result of the orientation test of each vertex of
T against ab, and the index i with atomicMin operation. The for-
mer information is used to move to the next triangle along the path,
while the later’s usage is explained in our proof of correctness.

We note that the issue of unbalanced work loads still remains here.
However, this is the less time consuming part, while the computa-
tion in the more time consuming part, the inner loop, is much more
uniform.

4.2 Inner loop: Remove intersections

The inner loop of Algorithm 3 is to perform flipping of edges to
reduce eventually the number of intersections between constraints
and triangles to zero. A triangle pair is a pair of triangles incident
to a common edge. See Figure 4. With respect to a constraint, the
triangle pair is a double intersection, single intersection, or zero
intersection, respectively, if flipping their common edge results in
two, one, or zero, respectively, intersections between the new trian-
gle pair and the constraint. A triangle pair is concave if flipping is
not allowed as its underlying space is a concave quadrilateral.

The difficulty of performing the flipping in parallel is that flipping
a triangle pair might not reduce the number of intersections, and
restricting to only flipping triangle pairs that are zero and single
intersection will reduce the number flippings in parallel. It might
also be possible that there are no zero or single intersection that
such an approach would be stuck with triangle pairs that are double

Technical Report # TRB3/11, March 2011 4

(a) double (b) single (c) zero (d) concave

Figure 4: Configurations of triangle pair intersecting constraint
(drawn in red dashed line).

intersection or concave. Our approach overcomes all these by “one-
step look-ahead”. Consider a triangle A in the chain of triangles
intersected by a constraint from one end point to the other, and let
B and C be the previous and the next triangle of A in that chain. See
Figure5; the triangle pair (A,C) is flippable in one of the following
cases:

Case 1 (A,C) is a single intersection or zero intersection.

Case 2 (A,C) and (B,A) are both double intersections, and flipping
(A,C) would result in B with B’s new next triangle form-
ing a single intersection. The later condition is equivalent to
having the union of B, A and C as a convex polygon.

Case 3 (A,C) is a double intersection and (B,A) is concave, and
flipping (A,C) would result in B with B’s new next triangle
no longer concave.

The detail of the inner loop of Algorithm 3 is given in three parallel
for loop in Algorithm 4.

Algorithm 4 Parallel processing of triangle-constraint intersections

repeat
for each triangle A intersecting a constraint do in parallel

if C is also marked by the same constraint then
determine the configuration of (A,C)

end if
end for
for each triangle A intersecting a constraint do in parallel

if (A,C) is flippable then
label A,C (and B for Case 2) using atomicMin

end if
end for
for each triangle A intersecting a constraint do in parallel

if A,C (and B for Case 2) are labeled the same then
flip (A,C) and update the links between the new
triangles and their neighbors

end if
end for

until no more edge is flippable

The labeling with atomicMin in the second for loop is to prevent
conflict in the actual flipping during the third for loop. In the label-
ing, we favor Case 1. Also, when (A,C) is Case 2 or Case 3, B is
also labeled in the second for loop, and the label is checked in the
the third for loop so that the “one-step look-ahead” is achieved.

In practice, the repeat-until loop of the Algorithm 4 should just
repeats the inner loop a few times per each outer loop instead of
repeating until no more edge is flippable. This is because as the
algorithm progresses, there are drastic reduction of the number of
flippable cases, and the parallelizm thus reduces. So, by switching
to the outer loop after a few (say 5 to 10) rounds of inner loop, the
algorithm can discover more flippable cases to improve the paral-
lelizm and performance of the inner loop without compromising on
the correctness of the algorithm as proven in the next subsection.

(a) Case 1

(b) Case 2 (c) Case 3

Figure 5: Flipping consideration of triangle pairs involving A.
Constraint is drawn in red dashed line intersecting triangles from
left to right, i.e. triangle B comes before A, and C after A.

4.3 Proof of correctness and complexity analysis

We show here that Algorithm 3 indeed terminates with all con-
straints inserted into the triangulation. Consider one iteration of the
outer loop, and let ci = ab be the constraint with the smallest index
i that still intersects some triangles in our triangulation. By using
the atomicMin operation, we ensure that all triangles intersecting ci
are marked with i. It thus suffices to prove the following:

Lemma 1 The inner loop can always successfully inserts a con-
straint into the triangulation.

Proof. Consider the chain of triangles intersecting ci from a to b.
Among these triangles, if there is one or more triangle pairs that
are single or zero intersection, then the claim is true as the marking
favor each of these cases and flipping is indeed carried out to reduce
one intersection with ci.

Otherwise, we consider the chain of triangles intersecting ci are
only double intersection or concave. We argue in the following that
there still exists a triangle pair (A,C) mong them that is flippable,
and each flipping is a step closer to removing intersection of trian-
gles with ci.

If we would remove all triangles intersecting ci, a polygonal hole
is created with vertices p1, p2, . . . as its upper part and q1, q2, . . .
as its lower part, excluding a and b; see Figure 6. Any polygon
has an ear, so let qk−1qkqk+1 be the ear such that the triangle C =
qkqk+1pj incident to qkqk+1 and intersected by ab is the earliest
in the chain. We exclude a and b themselves to be qk. Let A be
the previous triangle of C, B be the previous of A. We have A =
qkpjpj−1 since if it would be qkpjqk−1, then (A,C) should have
been a single intersection pair. The triangle pair (A,C) is a double

Figure 6: Consideration when triangle pairs intersecting con-
straint ci = ab are either double intersection or concave.

Technical Report # TRB3/11, March 2011 5

intersection, since the two angles pj−1pjqk+1 and pj−1qkqk+1 are
both less than π. We claim (A,C) is flippable: If B = qkpj−1qk−1

then (B,A) is a double intersection; the union of triangles B,A,C
is a convex polygon as needed in Case 2. If B = qkpj−1pj−2 then
(B,A) is a concave pair; because pj−2pj−1qk+1qk is convex by
the choice of qk, triangles B,A,C fulfils Case 3. As long as there
are one triangle pair that is flippable, the marking in the second for
loop will successfully mark one triangle pair for flipping (using the
index of A while also favoring flipping of Case 1), and flipping is
indeed performed for each pass of the inner loop.

We next show that flipping does not continue forever. Let us as-
sign to each triangle pair the value of 0, 1 and 2 according to its
being zero/single intersection, double intersection and concave, re-
spectively. Then, we have a base 3 number, N , to record the con-
figurations of the chain of triangles intersecting ci. A flipping due
to Case 1 deletes a digit in N , Case 2 turns digits 11 into 01, and
Case 3 turns digits 21 into 11. In other words, each flipping de-
creases the value of N . Since N is finite, our algorithm clearly
terminates by inserting a constraint as needed by the claim. �

The above concludes that our proposed algorithm computes cor-
rectly the CDT of an input PSLG. It also indirectly shows that no
flip is wasteful with the following bound on the number of flips per
constraint:

Lemma 2 The total number of flips performed by the inner loop
to add a constraint is O(n2) where n is the number of triangles
intersecting the constraint.

Proof. Flipping due to Case 1 cannot be done more than n times
since each flip reduces an intersection. Flipping due to Case 2 im-
mediately gives raise to a flipping of Case 1 (with highest priority),
and thus cannot be done more than n times too.

Flipping due to Case 3 either eliminates a concave configuration, or
pushes the concave configuration towards one end of the constraint.
There are initially O(n) concave configurations, and flipping due to
Case 1 (or Case 2) can introduce at most two (or one) concave con-
figurations, thus the number of flips in total is O(n2), as required.
�

5 Experiment Result

We have developed and tested our algorithm on a PC with an Intel
i7 930 2.8Ghz, 6GB DDR3 memory and a single NVIDIA GTX
460 Fermi graphics card with 2GB of video memory. Our pro-
gram called GPU-CDT is built under Microsoft Visual C++.NET
2008, and complied with all optimization options enabled, while
using CUDA 3.1 toolkit [NVI 2010]. The input to the program
is a PSLG containing possibly no edges but just points. All input
numbers and computations are done in single precision mode, while
double precision mode is also supported. To access the efficiency
of our program, we compare its performance, on both synthetic and
real contour data, with that of the best software available for CPU,
called Triangle [Shewchuk 1996] in our following discussion. As
indicated by Shewchuk, the performance of the divide-and-conquer
algorithm of Triangle is among the best, and we thus use it to com-
pute DT. To compute CDT, both Triangle and GPU-CDT insert con-
straints one by one based on their results of DT.

5.1 Synthetic Dataset

To generate synthetic data, we first generate randomly constraints
which do not intersect with each other, then generate randomly
points which do not lay on any constraints. There are 2 to 10 mil-
lions points with up to 1 million constraints in our test cases.

5.1.1 Varying the number of points

(a) running time

(b) speed up

Figure 7: Performance comparisons between GPU-CDT and Tri-
angle with no constraints and varying the total number of points
from 2 millions to 10 millions: running time (top) and speed up of
GPU-CDT over Triangle (bottom).

Figure 7 shows the running time and speed up of GPU-CDT com-
pared to that of the Triangle with no constraints and varying the
number of points in the range of 2 to 10 millions. In general, GPU-
CDT can run faster than Triangle by a few order of magnitude. We
note that GPU-CDT is superior to the prior work reported by Rong
et al. [2008] which is better than Triangle by no more than 50%.
Also, Figure 8 (top) shows the running time of GPU-CDT com-
pared to that of the Triangle when fixing the number of constraints
to 1 million and varying the number of points in the range of 2 to 10
millions. Figure 8 (bottom) shows the speed up of up to 31 times of
GPU-CDT compared to Triangle. We notice that in increasing the
number of points, the percentage of triangles intersected by con-
straints decreases (though the total increases), GPU-CDT thus has
less flippings to perform in parallel which results in smaller speed
up.

5.1.2 Varying the number of constraints

Figure 9 (top) shows the comparison of GPU-CDT with Triangle
when fixing the number of points at 10 millions while varying the
number of constraints from 0 to 1 million. We notice that Trian-
gle shows an obvious time increasing when more constraints are
added, while GPU-CDT shows a steady and slower growth in com-
putational time. For Triangle, it inserts constraints one by one, and
thus needs more time when there are more constraints: it takes, for
example, 32 seconds to construct a DT but 85 seconds (70% of total
time) to insert 1 million constraints into the DT. As for GPU-CDT,
the time for generating constrained Delaunay triangulation with 1
million constraints using 8192×8192 texture size is 8.5 seconds
with 2.45 seconds (less than 30% of total time) to insert constraints.
Figure 9 (bottom) shows the speed up of GPU-CDT over Triangle

Technical Report # TRB3/11, March 2011 6

(a) running time

(b) speed up

Figure 8: Performance comparisons between GPU-CDT and Tri-
angle while fixing the number of constraints to 1 million edges and
varying the total number of points from 2 millions to 10 millions:
running time (top) and speed up of GPU-CDT over Triangle (bot-
tom).

when varying the number of constraints. For the number of con-
straints from 0 to 100,000 edges, the speed up decreases due to the
overhead of GPU computation in GPU-CDT. However, when the
number of constraints increases further, the speed up of GPU-CDT
to Triangle is obvious due to the increase in the percentage of tri-
angles in DT intersecting constraints and more parallelism can be
achieved.

5.1.3 Varying the texture sizes

We test GPU-CDT with different texture sizes varying from
512×512 to 8192×8192 (as in Figure 8 and Figure 9). Basically,
when using larger texture size, the total running time is faster and
the speed up to Triangle is larger. There are two main reasons for
this trend. Firstly, the running time for Phase 4 decreases as there
are less number of missing points to handle, which also offsets the
increase in the running time for Phase 1 and Phase 2. Secondly, with
larger texture on a fixed number of points and constraints, the per-
centage of triangles intersected by constraints decreases, and thus
less work to do and thus faster running time.

5.2 Contour Dataset

We downloaded contour maps from https://www.ga.gov.au/ for our
experiments. Edges of the contour maps are divided into shorter
edges as constraints. These cases have up to 5 millions points and
constraints. Figure 10 shows one such example. When there are
few points (less than 100,000), GPU-CDT runs slower than Trian-
gle due to overhead in working with a large texture of 4096×4096
resolution. For other examples, GPU-CDT runs generally faster
than Triangle. In these real-world data, all points are connected
to at least one constraint. Most of these constraints are very short

(a) running time

(b) speed up

Figure 9: Performance comparisons between GPU-CDT and Tri-
angle while fixing the number of points at 10 millions and varying
the number of constraints from 0 to 1 million: running time (top)
and speed up of GPU-CDT over Triangle (bottom).

and do not intersect many common triangles with other constraints.
As such, GPU-CDT can handle these test cases very well by in-
serting all constraints in a few rounds of the outer loop. On the
other hand, within each inner loop, the amount of parallelism is
low due to fewer triangles intersecting constraints (typically below
35%, well below the norm for synthetic data). On the whole, the
average speed up to Triangle is up to four times in our tests.

Figure 10: An example contour dataset with a part of its CDT.
Constraints are drawn in thick line segments.

6 Concluding Remarks

This paper presents a new efficient and robust parallel approach to
construct the 2D constrained Delaunay triangulation on the GPU.
We have developed and tested the algorithm on both synthetic and
contour map data. In both cases, we have shown that our approach
runs up to 31 times faster than the best, robust constrained Delaunay
triangulation algorithm on the CPU. In another perspective, possi-
bly of independent interest, our contribution here is a framework

Technical Report # TRB3/11, March 2011 7

of utilizing the GPU in a non-conventional way to capitalize on the
computing power of many cores: instead of solving a problem com-
pletely in the continuous space, we first transform it to a problem
in the digital space, solving the latter to obtain an approximate so-
lution, and then augmenting it into the required solution in the con-
tinuous space. With this work, we look forward to developing more
efficient computational geometric algorithms running on GPUs in
the near future.

References

AURENHAMMER, F. 1991. Voronoi diagrams—a survey of a fun-
damental geometric data structure. ACM Computing Surveys 23,
3, 345–405.

BERNAL, J. 1995. Inserting line segments into triangulations and
tetrahedralizations. Tech. Rep. 5596, National Institute of Stan-
dards and Technology.

BOISSONNAT, J.-D. 1988. Shape reconstruction from planar cross
sections. Computer Vision, Graphics, and Image Processing 44,
1, 1–29.

CAO, T.-T., EDELSBRUNNER, H., AND TAN, T.-S. 2010.
Proof of correctness of the digital Delaunay triangulation algo-
rithm. manuscript, available at http://www.comp.nus.
edu.sg/˜tants/delaunay2DDownload_files/
notes-25-01-2010.pdf.

CAO, T.-T., TANG, K., MOHAMED, A., AND TAN, T.-S. 2010.
Parallel banding algorithm to compute exact distance transform
with the GPU. In I3D ’10: Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics and Games,
ACM, New York, NY, USA, 83–90.

CHEW, L. P. 1989. Constrained Delaunay triangulations. Algorith-
mica 4, 97–108.

DWYER, R. 1987. A faster divide-and-conquer algorithm for con-
structing delaunay triangulations. Algorithmica 2, 137–151.

FISCHER, I., AND GOTSMAN, C. 2006. Fast approximation of
high-order voronoi diagrams and distance transforms on the gpu.
J. Graphics Tools 11, 4, 39–60.

FORTUNE, S. 1987. A sweepline algorithm for voronoi diagrams.
Algorithmica 2, 153–174.

FORTUNE, S. 1997. Handbook of discrete and computational ge-
ometry. CRC Press, Inc., Boca Raton, FL, USA, ch. Voronoi
diagrams and Delaunay triangulations, 377–388.

GOLD, C. M. 1994. A review of potential applications of voronoi
methods in geomatics. In Proceedings of the Canadian Confer-
ence on GIS, 1647–1656.

GOLD, C. M. 1994. Review: Spatial tesselations - concepts and
applications of Voronoi diagrams. International Journal of Ge-
ographical Information System 8, 237–238.

GRAHAM, R. L. 1972. An efficient algorith for determining the
convex hull of a finite planar set. Information Processing Letters
1, 4, 132 – 133.

GUIBAS, L., KNUTH, D., AND SHARIR, M. 1992. Randomized
incremental construction of Delaunay and Voronoi diagrams. Al-
gorithmica 7, 381–413.

HIGHNAM, P. T. 1982. The ears of a polygon. In Information
Processing Letters, 196–198.

HOFF, III, K. E., KEYSER, J., LIN, M., MANOCHA, D., AND

CULVER, T. 1999. Fast computation of generalized Voronoi di-
agrams using graphics hardware. In SIGGRAPH ’99: Proceed-
ings of the 26th annual conference on Computer graphics and
interactive techniques, ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 277–286.

HUEBNER, K. H., DEWHIRST, D. L., SMITH, D. E., AND BY-
ROM, T. G. 2001. The Finite Element Method for Engineers.
Wiley, New York, NY, USA.

KALLMANN, M., BIERI, H., AND THALMANN, D. 2003. Fully
dynamic constrained Delaunay triangulations. In Geometric
Modelling for Scientific Visualization, G. Brunnett, B. Hamann,
and H. Mueller, Eds. Springer-Verlag.

LEE, D., AND LIN, A. 1986. Generalized Delaunay triangula-
tion for planar graphs. Discrete and Computational Geometry 1,
201–217.

NVIDIA. 2010. CUDA C Programming Guide.

PREPARATA, F. P., AND SHAMOS, M. I. 1985. Computational ge-
ometry: an introduction. Springer-Verlag New York, Inc., New
York, NY, USA.

RONG, G., TAN, T.-S., CAO, T.-T., AND STEPHANUS.
2008. Computing two-dimensional Delaunay triangulation us-
ing graphics hardware. In I3D ’08: Proceedings of the 2008
symposium on Interactive 3D graphics and games, ACM, New
York, NY, USA, 89–97.

SHAMOS, M. I., AND HOEY, D. 1975. Closest-point problems.
FOCS ’75: the 16th Annual Symposium on Foundations of Com-
puter Science, 151–162.

SHEWCHUK, J. 1996. Triangle: Engineering a 2D quality mesh
generator and Delaunay triangulator. In Applied Computa-
tional Geometry Towards Geometric Engineering, M. Lin and
D. Manocha, Eds., vol. 1148 of Lecture Notes in Computer Sci-
ence. Springer Berlin / Heidelberg, 203–222.

SU, P., AND SCOT DRYSDALE, R. L. 1997. A comparison of se-
quential Delaunay triangulation algorithms. Computational Ge-
ometry: Theory and Applications 7 (April), 361–385.

TREINISH, L. A. 1995. Visualization of scattered meteorological
data. IEEE Computer Graphics and Applications 15, 20–26.

Technical Report # TRB3/11, March 2011 8

A Our Flooding Algorithm

Phase 1 of our proposed algorithm is to compute a digital Voronoi
diagram of a collection of points, or called seeds, in a texture. Tech-
nically, we want and will prove in the following that the output of
this phase is the same as that of the Standard flooding mentioned in
[Cao et al. 2010a]. Then, we can apply their result to conclude that
Phase 2 of our algorithm indeed produces a triangulation.

In our algorithm, we use the efficient Parallel Banding Algorithm
(PBA) [Cao et al. 2010b] running on the GPU to start the color-
ing, which results in a Euclidean coloring. Each of the Voronoi
region resulted has a connected component called bulk which is
path-connected to its seed, and debris (if any) which are discon-
nected from the seed. Cao et al. show that bulks are subsets of the
result of the Standard flooding. So, our challenge is to identify and
recolor the debris to be the same as in the Standard flooding. Since
there are very few debris in general, the recoloring is done using
the CPU and then the result is sent back to the GPU to complete
the coloring. Algorithm 5 is our proposed approach. We use Q to
mean a priortiy queue, N(A) the set of pixels neigboring pixel A,
and pi a seed with color i. The operation min(Q) on Q is to re-
move and return the pair with minimum distance between the pixel
center and the seed of the color; ‖A − pi‖ ≺ ‖B − pj‖ means
‖A− pi‖ < ‖B − pj‖, or ‖A− pi‖ = ‖B − pj‖ with consistent
tie breaker (using, for example, the coordinates of pair of points).

Algorithm 5 Flooding Algorithm

Compute coloring with PBA, and identify all debris as uncolor.
Q = ∅
for each debris A do

Q = Q ∪ {(A, i) | B ∈ N(A) having been colored i, and
‖B − pi‖ ≺ ‖A− pi‖}

while Q 	= ∅ do
(A, i) = min(Q)
if A is not colored then

Color A with color i
Q = Q∪{(B, i) | B ∈ N(A) and ‖A−pi‖ ≺ ‖B−pi‖}

end if
end while

We next show Algorithm 5 indeed produces the same output as that
by the Standard flooding. We just need to argue for those pixels
that are identified as debris. Consider the very first instance when
Algorithm 5 colors a debris A with color r (inside the while-loop)
whereas the Standard flooding produced pixel A with color s 	= r.
There are two situations to consider :

CASE 1: ‖A− pr‖ ≺ ‖A− ps‖. From Algorithm 5, there exists a
neighbor B of A colored by r earlier, and ‖B − pr‖ ≺ ‖A− pr‖.
It follows that ‖B − pr‖ ≺ ‖A− pr‖ ≺ ‖A− ps‖. According to
our choice of A, pixel B is colored by r in the Standard flooding.
By the Ordered Coloring Lemma [Cao et al. 2010b], (A, r) must
have been considered in the Standard flooding before (A, s) and A
should thus have been colored by r then, a contradiction.

CASE 2: ‖A − ps‖ ≺ ‖A − pr‖. In the result of the Stan-
dard flooding, there is a monotonic path from ps to A. Part of this
path has been colored the same (with s) in Algorithm 5 when we
are about to color A. Let C be the pixel closest to ps in that path
not yet colored by Algorithm 5. With the previous pixel before
C has been colored with s, (C, s) must have been added to Q in
Algorithm 5. Since ‖C − ps‖ ≤ ‖A− ps‖ ≺ ‖A− pr‖, we must
have (C, s) inside Q to be extracted before (A, r), a contradiction.

The argument in Case 2 also implies the algorithm colors all pixels.
This concludes our claim of correctness of our flooding algorithm.

B Transforming the point set

To work on seeds with floating point coordinates, Phase 1 needs to
map them to a m×m texture. We want precise computation so that
the triangulation computed with respect to seeds mapped to the tex-
ture remains a triangulation when we do a part of the inverse map-
ping to the original coordinates of seeds. We discuss below precise
computation can be achieved by representing scale and translate
used in the mapping with a certain number of bits.

We just consider the 1D coordinate in x-axis; the discussion can
be generalized to 2D with scale be the larger one calculated from
both dimensions, while translate is simply a vector of two com-
ponents. Let the seeds be such that their minimum and maximum
x-coordinates are xmin and xmax, respectively. Let x be the origi-
nal coordinate of a seed. The coordinate of the seed mapped to the
texture is thus x̄ = �(x−translate)/scale� where translate = xmin

and scale = (xmax−xmin)/m. The computation of a triangulation
in Phase 2 is then performed using these integer coordinates.

Then, Phase 3 is to eventually shift all points in the texture back
to their positions given in the input. To maintain as many good
cases of shifting as possible, we first perform the inverse scaling and
shifting for the whole bounding box with all the points. Specifically,
we have x′ = (x̄ × scale + translate) as our new coordinate of
a seed before shifting it (to negate the effect of the truncation to
integer coordinate) to the original coordinate x. To ensure we still
have a same triangulation with x′ in place of x̄, we must compute
floating point number x′ with no rounding error.

Let (pMax + 1) be the maximum number of bits available for
the mantissa in our floating point numbers. Note that the explicit
mentioned of “+1” here is a provision for possible overflow of
(x̄× scale+ translate). Let the number of bits used to represent the
mantissas of the two constants scale and translate be pS and pT ,
respectively. Note that x̄ is a non-negative integer with maximum
value of (m − 1) and thus needs pM = (logm) bit to represent.
We keep pT = pMax.

We are ready to discuss how to set scale and translate before doing
the actual mapping to texture. First, the result of the (x̄× scale) is
accurately represented using no more than pMax bits, as long as
we keep scale by doing the necessary round up of its value to use
pS = (pMax − pM) bits. The round up can increase scale by just
the little bit at the least significant bit of scale and thus we still be
able to spread out the mapping of seeds on the texture. Second, the
addition of (x̄ × scale) with translate can result in rounding error
as translate can be much smaller or much larger than (x̄ × scale).
Let range = (xmax − xmin) = (m × scale). We consider two
cases to guarantee that the computation of x′ is accurate:

CASE 1: translate ≤ range. Let 2t be the largest term in
the binary representation of range. We reduce translate by
removing all terms in its binary representation that are smaller than

2t−(pMax−1).

CASE 2: translate > range. Let 2r be the largest
term in the binary representation of translate = xmin.
We round up all terms in the binary representation of

scale that are smaller than 2r−(pMax−1)+pM . Because
range = xmax − xmin ≥ 2r−(pMax−1), we have scale rep-

resented by pS bits is larger than 2r−(pMax−1)+pM for any
meaningful input and is thus non-zero. Also, the round up does not
increase more than double the value of scale, and we thus still be
able to spread out the mapping of seeds on the texture.

Technical Report # TRB3/11, March 2011 9

