2011 International Conference on Parallel Processing

Understanding Off-chip Memory Contention of
Parallel Programs in Multicore Systems

Bogdan Marius TUDOR, Yong Meng TEO

Department of Computer Science
National University of Singapore
13 Computing Drive, Singapore 117417
[bogdanma, teoym| @comp.nus.edu.sg

Abstract—Memory contention is an important performance
issue in current multicore architectures. In this paper, we
focus on understanding how off-chip memory contention affects
the performance of parallel applications. Using measurements
conducted on state-of-the-art multicore systems, we observed
that off-chip memory traffic is not always bursty, as it was
previously reported in literature. Burstiness depends on the
problem size. Small problem sizes lead to bursty memory traffic,
and generate small off-chip contention. In contrast, when large
program sizes cause memory contention, the memory traffic is
non-bursty. Based on these observations, we propose an analytical
model that relates the growth of memory contention to the
number of active cores and to the problem size, for both uniform
(UMA) and non-uniform memory access (NUMA) systems. Our
model differs from measurements on average by less than 14%.
Contention for off-chip memory grows exponentially with the
number of active cores, but adding additional memory controllers
reduces the memory contention. For programs such as the
pentadiagonal solver SP from NPB benchmark, with a large
matrix of 162° elements (input size C), our analysis shows that
memory contention increases the total number of processor cycles
to execute the program by more than ten times on a machine
with 24 cores.

[. INTRODUCTION

Over the past decade, multicore systems have become the
backbone of parallel processing. In multicore systems, the
processors consist of multiple parallel execution units called
cores. However, sharing of important resources such as caches
and memory bandwidth leads to competition and resource
contention among cores. Furthermore, the number of cores is
increasing with each technology generation, but the memory
bandwidth is increasing at a much slower rate, because of
wire delays and power dissipations, among others [22]. Thus,
off-chip memory bandwidth available per core is not keeping
pace with the increase in the number of cores. Another trend
is that memory capacity available per dollar continues to grow
according to Moore’s Law. As long as these technology trends
continue, a significant performance challenge in exploiting
multicore systems revolves around contending for off-chip
memory [16], [26].

One cause of memory contention is the increasing mismatch
between memory and processor performance. A well studied
performance issue before the shift to multicore is the latency

0190-3918/11 $26.00 © 2011 IEEE
DOI 10.1109/ICPP.2011.59

602

Simon SEE
NVIDIA
Nordic European Center
3 International Business Park
#01-20A, Singapore 609927

of accessing the main memory [12]. But in current multicore
systems, sharing off-chip memory introduces the new perfor-
mance problem of contention for memory bandwidth. Perfor-
mance of a program degrades when multiple cores compete for
off-chip memory bandwidth. Increasing the number of active
cores exerts demand for off-chip memory, and results in longer
memory access time and increases the total number of cycles
to execute a program. With lower memory cost, larger memory
capacity allows for an increase in the size of the problems that
can be executed, increasing the demand for off-chip memory
bandwidth and leading to contention.

The objective of this paper is to advance the understanding
of memory contention in parallel programs. To this effect,
our first contribution are a series of observations based on
measurements of memory request traffic in high performance
computing applications and real world programs. Using three
state-of-the-art multicore systems with 8, 24 and 48 cores,
we show that memory traffic is not always highly bursty, as
previously reported in the literature [13], [16]. We show that
there are two types of relationships between problem size,
burstiness and memory contention: (i) small problem sizes
generate small contention but off-chip requests are highly
bursty, and (ii) large problem sizes have much less bursty
memory traffic but can lead to very large memory contention.
Based on these observations, our second contribution is an
analytical queueing model for answering two key questions
in both UMA (uniform memory access) and NUMA (non-
uniform memory access) multicore systems:

1) What is the impact of the number of active cores on
memory contention?

2) What is the impact of the problem size on memory
contention?

The proposed model is validated against measurements on
systems with up to 48 cores. Because it is based on obser-
vations derived from measurements, our model achieves good
accuracy for programs with large contention, with average
relative error between 5-14% on three large multicore systems.

The rest of the paper is organized as follows. In section 2,
we discuss related work. Section 3 focuses on key observation
on memory contention in large parallel programs drawn from

IEEE
computer
® psouety



measurement experiments. In section 4 we present our analyt-
ical memory, with assumpations and modeling details. Section
5 discusses the validation of our model against measurement
for both UMA and NUMA memory systems, and the impact of
varying the number of cores and the problem size on memory
contention. Our concluding remarks are in section 6.

II. RELATED WORK

Contention for shared resources in multicore systems has
received significant attention in the research community. In
general, studies of off-chip resource contention fall in two
main directions: reducing off-chip memory accesses [4], [5],
[71, [15], [19], [21], [28], and improving the performance
of off-chip requests [13], [16], [17], [18]. In reducing off-
chip memory accesses, a major target for optimization is
the last-level of cache memory. Partitioning of shared caches
has been proposed as a technique to reduce the number
of cache misses [21], [15], [19], [24]. Utility-based cache
partitioning [21] uses specialized hardware to determine the
miss rate of co-scheduled parallel programs, and partitions the
available cache memory to reduce the overall miss rate. But,
in software-based cache partitioning [4], operating systems
page coloring is used to map the physical memory requests of
a program to a reserved part of the cache. In cache-aware
applications, co-scheduling is exploited to optimize cache
miss fairness among different programs [5] or overall system
performance [28]. Herdrich et al. [7] proposes throttling the
speed of the cores to generate an imbalanced number of
cache misses for relieving contention in applications with
different memory access intensity. There are many approaches
to improve the performance of off-chip requests. Memory
bandwidth partitioning [10], [13], [16], [17], [18] has been
proposed for optimizing different performance criteria. Kim
et al. propose ATLAS [13], a memory controller scheduler
that prioritizes threads with least-attained service levels to
improve the overall performance of co-scheduled threads. The
Fair Queue Memory System [18] ensures that co-scheduled
threads receive a predetermined fraction of the memory band-
width regardless of other threads memory requirements. Liu
et al. [16] studied and modeled the interaction between cache
and bandwidth partitioning with the goal of optimizing the
overall performance of co-scheduled threads.

While there are many studies to reduce memory contention,
there are few general models that directly link the performance
of parallel applications to resource contention, number of
active cores, problem size and the patterns of memory access.

Using high performance applications, Hood et al. [8] pro-
pose a model to determine the performance impact of shared-
resource contention such as cache, bus, memory controllers
and processor interconnects. Their differential performance
analysis approach measurs the performance for different con-
figuration scenarios. However, their approach does not apply
to predictive performance analysis, nor does it take in consid-
eration the problem size and burstiness patterns.

Sancho et al. [23] study the relationship between memory
bandwidth and peformance of parallel programs when the

603

number of memory channels of each memory controller is
changed. The approach, based on measurements of memory
bandwidth and parallel processing rate show that increasing
the number of cores exerts higher memory demand and has
diminishing results on performance due to memory bandwidth
saturation. Their focus is to understand which configuration
offers the best memory bandwidth. Our observations from
experiments using larger number of core count are largely
in line with their, but we link directly the peformance of
parallel applications with the cycles incurred when using
different number of cores. Furthermore, we complement our
observations with observations of memory burstiness patterns
and an analytical model that enables predictive performance
analysis.

Liu et al. propose a general analytical model for under-
standing the effect of bandwidth fraction on individual thread
performance [16]. Based on the cache miss ratio, their model
determines the CPI performance of co-scheduled threads, and
the slowdown of co-scheduling groups of threads relative to
scheduling each thread individually. However, it is unclear
how the fraction of last-level cache misses is determined
when different number of threads are scheduled together.
Their model also does not explore changes in problem size,
in particular large problem size that is typical for parallel
programs. In contrast, our memory model is designed to relate
contention to the last-level cache misses, problem size and
number of cores.

In our previous work [26] we proposed a combined ana-
lytical model for memory contention and data dependency in
high performance applications. The objective of the model is to
detemine the speedup of parallel applications and to determine
the number of cores that maximizes speedup. In this paper
we extend the coverage of the model to programs with low
and high memory contention, focusing also on understanding
the burstiness patterns of memory requests, and the impact of
burstiness on memory contention.

III. MEMORY CONTENTION IN MULTICORE SYSTEMS

This section presents our observations on the memory
contention in large multicore systems with different memory
architectures. We first show what are effects of memory
contention on parallel programs when the number of active
cores and the problem size change. Next, we study the nature
of memory contention by profiling the patterns of memory
access.

A. Experimental Setup

Two benchmarks that are representative of parallel comput-
ing are used in this paper. The NPB 3.3 benchmark [2] that
implements HPC dwarfs [1] using OpenMP 2.5 is selected
because these dwarfs scale in terms of both problem size
and number of threads, and covers a wide degree of memory
contention. The PARSEC 2.1 programs implemented using
pthreads represents real-world parallel workloads [3].

All programs were compiled with GCC 4.3 for 64 bit
executables using full optimizations (-03). We have profiled



Name Parallel kernel
EP Embarrassingly parallel: low data dependency, low memory
FT Spectral methods: fast Fourier transform
IS Parallel sorting: bucket sort on integers
CG Sparse linear algebra: data with many O values
SP Structured grid: pentadiagonal solver
X264 Video encoding using H264 codec

TABLE I
FIVE NPB 3.3 AND ONE PARSEC 2.1 PARALLEL PROGRAMS

six programs from NPB and four PARSEC applications, but
because of space limitations we show a subset, in Table I, that
best illustrate the different cases of memory contention. The
operating system for all experiments is 64 bit Linux 2.6.35.
The multicore systems used in experiments have two main
types of memory architectures, UMA and NUMA, as shown
in Fig. 1. In UMA systems, multiple cores are connected to

processor 0 processor n-1

core | core
0 1

core
s-1

core | core
0 1

core
s-1

semi-unified L2 cache semi-unified L2 cache

——® memory controller »47

bus 0 A bus n-1

h J
memory chips

(a) n processors with UMA interconnect

processor 0 processor n-1

core | core
0 1

core core | core
s-1 0 1

core
s-1

unified L3 cache unified L3 cache

inter-
processor

inter-

local memo
y processor < -

local memory

controller controller
connect connect
A A
y l $ y
memory chips| to other to other memory chips
processor processor

(b) n processors with NUMA interconnect

Fig. 1. Architectures of Multiprocessor Multicore Systems
a common memory controller through private buses. The last-
level cache in UMA is considered semi-unified. These reflect
UMA microarchitectures such as Intel Clovertown and Intel
Harpertown. Since all the cores share one memory controller,
contention occurs when memory requests exceed the capacity
of the memory controller. In contrast, each multicore processor
in a NUMA system accesses its own memory through its dedi-
cated local memory controller. A core accesses memory owned
by another processor through its inter-processor connection
network. Current microarchitectures based on NUMA systems
microarchitecture include Intel Nehalem and AMD K10.

The multicore systems used for the experiments are:

604

1) Intel UMA (8 cores): Dual quad-core Intel Xeon E5320
processors, 8 MB L2 cache, one memory controller with
4 GB dual-channel DDR2 RAM.

Intel NUMA (24 cores): Dual six-core Intel Xeon
X5650 processors, 12 MB L3 cache, two hardware
threads per core, two memory controllers, 12 GB triple-
channel DDR3 RAM.

AMD NUMA (48 cores): Quad twelve-core AMD
Opteron 6172 processors, 10 MB L3 cache, eight mem-
ory controllers (two controllers per processor), 64 GB
dual-channel DDR3 RAM.

For Intel NUMA, we consider the two hardware threads of
each physical core as logical cores, because the objective
of this study is off-chip memory requests. Each of the two
hardware threads issue memory requests independently, so
from the perspective of the memory accesses, the physical core
with two hardware threads appears as two cores. Therefore, we
consider Intel NUMA as having 24 cores.

The interconnect networks for the NUMA systems is shown
in Fig. 2. Intel NUMA has two memory controllers directly
interconnected, therefore there are two latencies for accessing
the memory — direct and one hop. AMD NUMA has four
processors, each with two memory controllers. The eight
memory controllers are interconnected through a partial mesh,
and there are three latencies of accessing the memory — direct,
one hop and two hops.

2)

3)

@D

©

(a) Intel NUMA

(b) AMD NUMA
Fig. 2. Memory Interconnect of NUMA Systems

The program was partitioned into a fixed number of threads.
The number of cores was varied from one to maximum number
of cores of the machine using a fill-processor-first policy. For
Intel NUMA, memory controller 0 was used until all cores
from processor 0 were active, and then memory controller 1
was activated. For AMD NUMA, the memory controllers be-
longing to the same processor were activated simultaneously,
in the following order: 0 and 1, then also 2 and 3, then also
4 and 5, and finally 6 and 7. Each experiment was conducted
five times and average values are reported. To minimize
the variability of the results, we fixed the CPU affinity for
each thread using sched_setaffinity system call. The
NUMA policy was applied using numactl. We used PAPI
4.1.2.1 on NUMA and PAPI 3.7.0 on UMA to access the pro-
cessor hardware counters. We measure the following counters:
PAPI_TOT_CYC for the number of cycles, PAPT_TOT_INS
for the number of instruction, PAPI_RES_STL for stall
cycles, PAPI_L2_TCM for the number of cache misses,



LLC_MISSES on Intel NUMA and L3_CACHE_MISSES on
AMD NUMA for L3 misses. The work cycles were determined
as the difference between all cycles and stall cycles. We used
papiex tool to measure the hardware counters of the pro-
filed applications only, without interference from background
processes and operating system. To assure that the memory
bandwidth is not shared with any other process, we turned off
all non-essential processes and we run the profiled application
with the highest priority allowed for non-root processes. We
used the LIKWID toolkit to determine the mapping between
logical core ids and the physical topology. [25].

B. Measurement Experiments and Observations

Our measurement experiments focus on understanding how
the execution of a program is affected by the off-chip memory
traffic. We first perform a set of measurements on the num-
ber of cycles required to execute the programs when using
different number of cores. Second we measure the patterns
of memory traffic to understand the nature of the memory
contention.

1) Memory Contention vs Number of Cores: For each
program, we measure the total number of cycles required to
execute the program across all the active cores, including
initialization and cleanup, as well as the number of stall
and work cycles, and the total number of last-level cache
misses. Mainstream processor cores are based on superscalar
and deeply-pipelined microarchitectures. Thus, in each cycle a
core can execute multiple integer and floating point operations
and issue multiple memory requests. If the operands of an
instruction are available in the registers, the execution of
the instruction can proceed. Otherwise, the core stores the
instruction in the instruction dispatch queue until the operands
are fetched from the first-level cache. If the data is not
available in the first-level cache, then it attempts to fetch it
from the subsequent levels of cache. If the data is not found in
cache, the core issues a memory request to the main memory.
Due to the long latencies of accessing higher levels of cache
or the main memory, instructions can be stopped for several
hundreds of cycles [12]. If the entire dispatch queue is filled
with instructions waiting for data, no instructions can proceed
and the core is stalled waiting for memory. If no operations are
completed during a cycle, it is called a stall cycle. In contrast,
if at least one instructions is completed during the cycle then
is termed a work cycle. Next we discuss our observations.

Tabel II shows the the normalized increase in the total
number of cycles for five HPC dwarfs with small (W) and
large (C) problem size!. The increase in the number of cycles
is defined as the difference between the total cycles incurred
using n cores and one core, normalized to the number of
cycles on one core. We present the normalized increase for
n equal to half and all cores of the systems (i.e. 4 and 8 on

IProblem sizes are denoted by letters, and are according to NPB benchmark
specification. Notation CG.C means program CG problem size C.

605

Normalized Increase in Number of Cycles

Program | Size Intel UMA Intel NUMA AMD NUMA
#Cores #Cores #Cores

n=4 n=8 | n=12 n=24 | n=24 n=48

EP 0.00 0.00 | 0.03 0.57 0.01 0.59
IN 0.10 0.57 | 0.33 0.33 0.21 0.44
FT W 032 0.58 | 0.18 0.34 0.11 0.23
CG 0.01 0.04 | 0.10 0.43 0.11 0.13
SP 032 0.58 | 0.10 0.50 0.13 0.21
EP 0.00 0.00 | 0.01 0.54 0.06 0.55
IS 0.07  0.56 0.26 0.85 0.40 0.70
FT C 0.70  1.80 1.62 3.94 0.39 0.46
CG 0.91 2.41 1.43 3.31 0.83 1.91
SP 334 7.05 | 655 11.59 | 4.69 9.84

TABLE II

NORMALIZED INCREASE IN NUMBER OF CYCLES FOR SMALL (W) AND
LARGE (C) PROBLEM SIZE IN HPC DWARFS

Intel UMA, 12 and 24 on Intel NUMA, 24 and 48 on AMD
NUMA). Because FT.C working set size exceeds 4 GB and
leads to swapping in our Intel UMA system, we use class B
as large problem size for program FT on Intel UMA. Overall,
on all three systems the increase in number of cycles is more
pronounced for higher number of active cores.

We identified two types of behavior with respect to the
number of active cores:

1) Programs with small problem size or working sets which
are cached effectively generate low number of off-chip
requests. This leads to a negligible growth in number of
cycles when the number of active cores increase.
Programs with large problem sizes generate high number
of off-chip memory requests which lead to a significant
growth in the number of cycles when the number of
cores increase.

We discuss in detail these two patterns using a representative
HPC program. Program CG is a parallel application that
approximates the largest eigenvalues for a large and sparse
matrix. We use a small and a large problem size [2]:

1) Class W consists of a matrix with 7,000% elements;

2) Class C consists of a matrix with 150, 000% elements.
CG is representative for all HPC applications and is chosen
because it represents a case with moderate memory contention
(SP and FT have higher contention, IS, EP and all PARSEC
programs have lower contention).

Table II shows for CG the growth of the number of cycles
when using all the cores of systems (8 cores on Intel UMA,
24 cores on Intel NUMA, 48 cores on AMD NUMA), relative
the the baseline value of one core. Small problem size W
generates very small increase in number of cycles, even on
large number of cores. In contrast, problem size C shows a
very large growth in number of cycles, on all three systems.

Next we focus the discussion on the more interesting case of
large problem size. Fig. 3 shows the effects of increasing the
number of active cores on the total number of cycles, stalled
cycles, work cycles and last level cache misses for CG.C. On
all systems, there are three observations when the number of
active cores is increased:

2)



' Total Cycles —»— &
45 | Stalled Cycles ---@---- >
— 40 Work Cycles -4 s L
= r Last Level Misses —+— @
235 A 8
= ’ 2
830 | l6 =
$05 | e
o 3
é 20 | 14 g
815 -
[S S
2 10 L 12 g
51 [S
R . N . A A N S
0 ‘ ‘ 0o %
1 4 8
Number of Cores
(a) Intel UMA: Xeon E5320
40 ‘ 14
STotal gycles Tx— &
talled Cycles --®@--- o
,_35 Work Cycles - 112 r
30 | Last Level Misses —+— 9
£ 3
g% | =
o° [
§20 L E,
°15 | 1]
3 S
€10 | S
2 B
51 N £
>
oLt ‘ ‘ ‘ 0 <
1 6 12 18 24
Number of Cores
(b) Intel NUMA: Xeon X5650
40 i . . 3
Total Cycles —»— e
35 Stalled Cycles ---@--- ©
— Work Cycles - ¥
30| Last Level Misses —+— @
E25 2 g
8 2
° o}
§20 L E,
S) >y =
3 15 \ 1 &
g 10 ‘u"’ <
z @
5 |+HHHHH ko]
| E
>
oL ., ., Q<
1 6 12 18 24 30 36 42 48
Number of Cores
(c) AMD NUMA: Opteron 6172
Fig. 3. CG.C: Varying the Number of Cores
1) The number of total cycles increases non-uniformly.
2) The growth in number of total cycles is due to an

increase in number of stall cycles.
The number of work cycles and the number of last level
cache misses grow insignificantly.

3)

For problem size C, the patterns of growth depend on the
architecture and the number of memory controllers. For Intel
UMA we observe two sustained growth intervals, the first
from one to four cores, the second from five to eight. This
corresponds to a per-processor pattern of growth. Similarly,

606

on Intel NUMA, the growth on the first processor (1 to
12 cores) is similar in shape with the growth from 13 to
24 cores. However, when the second processor is activated
(from 13 cores onward), there is a small decrease in memory
contention which results from the added memory bandwidth
of the second memory controller. On AMD NUMA, there are
four intervals of growth, each corresponding to activating two
memory controllers from a processor.

As the number of cores is increased, we observe that the
number of work cycles remains roughly constant because the
critical path of the program is dominated by instruction waiting
for operands fetched from memory. Instruction execution is
interleaved almost fully with fetching operands. Thus, the
increase in the total number of cycles is dominated by waiting
for memory requests or stall cycles. This can be clearly seen
in Fig. 3, as the shape of growth of the stall cycles closely
follows the shape of growth of total cycles.

Another interesting observation is that the total number of
last-level cache misses, L2 for UMA and L3 for NUMA,
changes unsignificantly when the number of active cores is
increased. Because we fixed the number of threads, and varied
only the number of cores, the total number of instructions
also remains constant for a given problem size. This confirms
that the increase in the total number of cycles is the result
of contention for off-chip memory requests, rather than an
increase in the number of memory requests or an increase in
the number of instructions executed.

2) Burstyness of Memory Traffic: To understand the nature
of memory contention, we profiled the memory access pat-
terns. Using a very fine grained sampler we have developed,
we measure the number of last-level cache misses that oc-
cur every five microseconds. This allows us to measure the
burstiness of memory accesses over time. The sample size of
five microseconds gives very good resolution of the lifetime
of the applications, but has minimal impact on intrusiveness.
The difference between the number of last level cache misses
incurred when using the profiler and when running without
profiler is less than 3%.

The second objective of our experiments is to analyze
the relationship between problem size and the burstiness of
memory traffic. To study this, we measure the burstiness of
last-level cache misses over time. Table III shows the input size
for both problems. Figure 4 shows the burstiness of off-chip

Program and Size Problem Size Description

CG.S matrix of size 1,400
CG.W matrix of size  7,000?
CG.A matrix of size 14,0002
CG.B matrix of size 75,0002
CG.C matrix of size 150, 0002
x264.simsmall 8 frames at 640 x 360
x264.simmedium 32 frames at 640 x 360
X264.simlarge 128 frames at 640 x 360

X264.native 512 frames at 1,920 x 1,080

TABLE III
PROBLEM SIZE DESCRIPTION FOR CG AND X264

memory traffic for programs CG and x264, each for a selection
of problem size ranging from small and large. Program CG



determines the largest eigenvalues of a sparse matrix, while
x264 performs H.264 video encoding for different frame
numbers and resolutions.

Fig. 4 shows the burstiness of the memory traffic for both
programs, on Intel NUMA using 24 threads and 24 cores.
The graph in log-log scale plots P(Burst Size > x), the
probability that the memory burst size exceeds the number

of cache lines x, for different sizes of cache lines. The plot
100 4

T F SR EeEy ‘

X

S, o
o N
T T

<
[
T

s

4
&
T

Prob(#Requested Cache Lines > X)
o
I8
x XX

S,

&

T
o008 a
«Q Qqa

QQQ -«
N OD>Z0
.

20 50 100 200 500 1000 2000
x(#Cache Lines)

(a) HPC Dwarf: CG

<
T
.

S,
o
T
.

S
IS
T

x264.simsmall ~ +
x264.simmedium =
x

Prob(#Requested Cache Lines > x)
o
&
-

0l
o
&

X264 .simlarge
_ X264.native

<,
&

2 5 50

x(#Cache Lines)
(b) PARSEC: x264
Fig. 4. Burstiness of Off-Chip Memory Traffic
shows that the size of memory requests varies widely, ranging
from four to seven orders of magnitude from small to large
program sizes. However, the small (S and W for CG, sim-*
for x264) and large problem sizes (B and C for CG, native
for x264) behave quite differently. In small problem size, for
both programs the long tail property of the distribution of
burst size is prominent. For bursts larger than 50 cache lines,
log P(BurstSize > x) decreases linearly with log = with the
log of burst size in approximatly a diagonal straight line. This
confirms that the traffic is highly bursty, which is in line with
previous observations about the nature of memory traffic [13].
However, as the problem size increases, the deviation from a
decreasing diagonal line becomes more clear: and for large
problem sizes B and C in program CG the long tail property
is absent. This means that memory traffic for program CG is
not significantly bursty. The intuitive explaination behind this
observation is that large problem size B and C the memory
bandwidth is saturated and therefore there are no significant
time intervals without memory requests. The same trend

100 200

607

of decreasing burstiness when problem size increases was
observed for all programs with significant memory contention
(CG, FT and SP). The results on the other two systems, Intel
UMA and AMD NUMA are roughly similar.

In conclusion, our experiments show two types of memory

contention behavior with respect to problem size:

1) Small problem sizes lead to small contention for off-chip
resources but result in highly bursty traffic.

2) Large problem sizes can lead to non-bursty memory
traffic but results in large off-chip memory contention
among cores.

Motivated by these results, we next propose an analytical
model for programs with large memory contention.

IV. PROPOSED ANALYTICAL MODEL

The aim of our proposed analytical model is to relate the
behavior of off-chip memory contention to the number of
cores and the problem size in multicore systems. From small
problem size, the contention is close to zero. As such, we focus
our model on large problem sizes that generate significant
contention.

Let C'(n) denotes the total number of cycles required to
execute a program on n homogeneous cores. C'(n) can be
expressed as

C(n) =W(n)+ B(n) + M(n) ()
where W(n) is the total number of work cycles, B(n) is
the total number of stall cycles incurred for non off-chip
memory contention such as cache hits, pipelines hazards,
branch mispredictions and uncontented memory accesses, and
M (n) is stall cycles due to off-chip memory contention. For
sequential or single-thread execution, there is no off-chip
resource contention among cores, and thus M (1) is zero.
Since the number of work cycles, W(n), does not grow
with the number of cores, as discussed in section III-B, we
hypothesize that B(n) does not grow with the number of
cores. Because intuitively cache hits, pipeline hazards and
branch mispredictions are independent of off-chip resource
contention. Therefore, it does not matter on how many cores
these stall cycles are divided, since the total number remains
the same. Thus,

M(n) = C(n) = B(n) = W(n) = C(n) = C(1)  (2)
Definition 1 (Degree of Memory Contention). The degree of
memory contention for a program running on n homogeneous
cores, w(n), is defined as the total number of stall cycles
incurred due to memory contention over the total number of
cycles required to execute the program without contention:

_ M(n)
_C)-c)
wlm) = =" @)

When w(n) is zero, the program has no memory contention,
and values greater than zero measures the degree of contention.
Positive memory contention due to the effect of the cache is
exposed when w(n) is smaller than zero.



To model a system with multiple processors, we apply
hierarchical decomposition in two steps. Firstly, we model the
increased in the number of cycles within one processor. As
observed from our experimental analysis, the memory traffic
for large problem size is non-bursty. Therefore, we can apply
a M/M/1 queuing model [11]. Next, we model the effect of
scaling to multiple processors.

For one processor with n cores, assume arrival requests from
different cores are independent and identically distributed. Let
Creq(n) denote the average number of CPU cycles required to
service one off-chip memory request. Let A denote the arrival
rate of memory requests to the memory controller, and y the
service rate of the memory controller. In UMA, the memory
controller is shared among processors and in NUMA each
processors has its own memory controllers. From the M/M/1
model,

1
Creq (TL) = m (5)

Let L be the arrival rate of memory requests generated by one
core. When n cores are active, A = nL. If r(n) denotes the
number of last-level cache misses,
Cn) = r(0)Cregm) = "0 ©
- req - IL,L _ TLL

Equation 6 reveals that the number of cycles increases with
the number of active cores in a processor. Furthermore, in pro-
grams with larger memory requirements and where memory
request arrival rate is high, the number of stall cycles increases.

To model multiple processors, we present a model based
on its memory interconnection architectures. In UMA, each
processor issues memory requests through its dedicated bus to
access off-chip memory. Thus, the queuing time for different
buses is independent, and the main contention is for the shared-
memory controller. In a dual processors system with n; cores
active in the first processor, and no in the second processor,
the total number of cycles is

CUMA(n):C(n1)+C’(n2)—|—AC )

where AC' accounts for the difference in the number of cycles
due to the increase in the load on the memory controller.

Assume a fill-processor-first policy for increasing the num-
ber of cores. When c cores are active on the first processor
and one core on the second processor, AC' = C(c+1)—C(c).
Generalizing, if ¢ cores are active in one processors, and
n — c in the next processors, the number of cycles required to
execute a program on n cores is

Cuma(n) =C(c) + C(n—c)+ AC ®)

In NUMA systems, there are two main types of off-chip
memory requests. Local memory requests proceed to the local
memory controller, while requests to remote memory belong-
ing to other processors are delivered through the memory
interconnection network. Remote memory requests are slower
because these requests travel travel across interconnection
networks to reach the memory. In multiprocessor systems
running programs with large memory requirements, the stall
cycles due to memory requests are larger than the work cycles.
Since memory request stall cycles dominates, work cycles can

608

be interleaved and the number of cycles for a program on
NUMA is

Cnuma(n) =r(n)(Creq(n) +6(n)) )
where §(n) is the number of additional stall cycles incurred
by a remote memory request. Assume memory affinity is
homogeneous among threads. Given n cores, with ¢ cores
allocated on one processor and with n—c on the next processor,
memory accesses can be divided proportionally between the
two processors with = on the first and "¢ on the second.
Thus, Cnuara(n) is the sum of the cycles incurred due to
local and remote memory accesses:

CNUMA(n) :r(n)(%CTeq(c)+ n—c5(n)) (10)
and Cyyara(n) can be expressed as
Cnuma(n) =C(c) +r(n)p(n —c) (11)

where p = %, is the average number of stall cycles spent on

remote memory requests per core. This assumes that remote
memory requests are proportionally distributed among the n
cores. For a system with multiple memory latencies (such as
AMD NUMA), p is a average weighted to the number of
memory requests to each of the remote memories.

To derive C(n) in equation 6, we apply linear regression to
obtain the parameters ¢ and L. This requires two measurement
runs to determine the total number of cycles for the program
executed on one core, and another run using two or more
cores. For multiple processor systems, Cpyar4(n) in equation 8
and Cnpara(n) in equation 11 are also derived from linear
regression of AC' and p, respectively. Subsequently, degree of
memory contention, w(n), as in equation 4 is obtained.

V. ANALYSIS

In this section, we apply our analytical model to study the
effects of increasing the number of cores and the problem size
on memory contention. Due to space constraint, we discuss the
validation of our model against measurement together with the
analysis.

We discuss the validation and accuracy of our model against
measurements before analyzing the effects of varying the
number of cores. We show detailed validation results on a
program with large contention, CG.C and another with small
contention, EP.C. We also provide summary validation results
for all applications.

Fig. 5 shows the comparison between modeled and mea-
sured degree of memory contention for program CG.C using
a fill-processor-first-policy. The average relative error across
all measured and predicted model results is 5-14% on all
three systems. For Intel UMA we use three measured values
of C(n) to apply the model: C(1), C(4) and C'(5) and achieve
average accuracy of 6%. For AMD NUMA, we use five
measured values as inputs: C(1), C(12), C(13), C(25) and
C(37) and achieve the best accuracy with error less than 5%
across all problems with large contention. For AMD NUMA,
we could use three values, C'(1), C(12), C(13) and assume
that all interconnects are homogeneous, but this degrades the
prediction accuracy up to 25% average relative error, because



2.5

Measurement —»—
Model ---®--
2 L |
15 | .
=
3
1 L |
05 | ]
0 b 4 8
n (Number of Cores)
(a) Intel UMA: Xeon E5320
4.5 — ‘
Measurement —<— ?
4 Model -~ B
35 |
3 L
o 25 |
3 2L
15
1 L
05 r
0= 6 12 18 24
n (Number of Cores)
(b) Intel NUMA: Xeon X5650
2 T T T
18 Measurement —x—

02 bee

18 24 30 36 42

n (Number of Cores)

(c) AMD NUMA: Opteron 6172
Fig. 5. High Contention: Effects of Increasing the Number of Cores on CG.C

48

using three inputs would assume that the remote memory
latencies are homogeneous, which is not valid on our AMD
NUMA system. On Intel NUMA, we use four measured values
of C(n) for the regression: C(1), C(2), C(12) and C(13) and
the model reaches accuracy of 11% average error. Using only
three values for regression — C'(1), C'(12) and C'(13) on Intel
NUMA slightly increases the inaccuracy of the prediction to
an average of 14% across the profiled applications. There are
two main sources of is caused by two factors: (i) variability
of measurement values and (ii) oversubscription effects. To
counter the variability of measurement values due to the

609

operating system scheduler moving threads across NUMA
domains, we binded each thread to a specific core. This
has reduced the variability of the results, but has introduced
negative caching effects between the threads that share the
same core. Because we fix the number of threads, but vary
the number of cores, there will be more than one thread
executing on each core. Due to oversubscription, there are load
imbalances between the threads assigned to the same core.
This leads to variability in the measured number of cycles
incurred by the threads among different runs of the programs.
The effects are more pronounced when the oversubscription
factor (ratio of threads to cores) is large [9]. The patterns of
growth observed on the other programs with large contention
(FT and SP) were similar to those observed on CG.

Programs with low contention do not cause a significant
increase in number of cycles when the number of active cores
increases. Fig. 6 shows the modeled and measured values of
contention for EP.C.

For UMA, memory contention is negligible because demand
for memory that arises from more cores can be met by the
cache and off-chip memory resources. However, the NUMA
architectures shows two interesting trends. The effect of posi-
tive memory contention (w(n) < 0) is observed with less than
11 cores on EP.C running on Intel NUMA because adding
cores also increases memory resources (L1 and L2 cache).
Beyond one processor, memory contention increases to 50%,
which is not captured by our model. This is caused by an
increase in number of last level cache misses, from 1,800
misses on one core to 31,000,000 on 24 cores. Our model
assumes the number of work cycles and last level misses
constant. This assumptions holds for programs with large
memory contention, but may not be for programs with low
contention, such as EP. Furthermore, the increase in degree of
contention is correlated with the latency of memory accesses.

Next we show summary results for all applications. The
goodness-of-fit for determining the linearity of ﬁ, as shown
in table IV for n = 1 to 4 on Intel UMA, n = 1 to 12 on
Intel NUMA and AMD NUMA, further confirms the accuracy
of our model. There is a correlation between the goodness of

System Goodness-of-fit, RZ, for Programs
EP.C | IS.C | FT.B | CG.C | SP.C | x264.native
Intel UMA 0.86 0.97 1.00 0.96 0.97 0.87
Intel NUMA 0.91 0.98 0.99 0.94 0.96 0.85
AMD NUMA 0.90 0.99 1.00 0.97 0.99 0.81
TABLE 1V

COLINEARITY GOODNESS-OF-FIT FOR PROGRAMS

fit R2 and the degree of memory contention. Programs EP.C
and x264.native, which show the smallest degree of contention
also have lower colinearity. This confirms that the M/M/1
queueing model does not explain their behavior very well,
because they are bursty. R? is close to 1 (i.e. perfect colinearity
of 1/C(n)) when the memory overhead is high. The accuracy
of the M/M/1 model for describing the behavior of programs
with large memory contention further confirms the non-bursty
nature of programs with large memory contention.

We present an analysis of the growth of memory contention
for CG.C. The program exhibits high degree of memory



Measurement —»—
Model ---®--
0.5 1
% 0+t L e T
-0.5 1
1 1 4 8
n (Number of Cores)
(a) Intel UMA: Xeon E5320
0.6 — ;
Measurement —»%—
05 | Model --®--
0.4 t 1
. 03+ 1
£
° 02t ]
0.1 ]
(PR X EESTEEEE S8 -0 0-0-0-0-0-0-0-0-0-9
01 6 12 18 24
n (Number of Cores)
(b) Intel NUMA: Xeon X5650
0.6 [~ T T T
Measurement —»—
05 Model ---®--

-0.1 4 ‘ 5

18 24 30 36

n (Number of Cores)
(c) AMD NUMA: Opteron 6172

Fig. 6. Low Contention: Effects on Increasing the Number of Cores on EP.C

48

contention of 1.8 to 3.3 times as compared with a sequential
execution. On Intel UMA, the contention closely follows
how many cores are used in each processor. For one to
four cores, the increase in w(n) is due to contention of the
shared bus, since all cores within one processor share the
same memory bus. From four to five cores, the increase in
contention is small, since memory requests by the fifth core,
which is allocated in a new processor, uses the bus of the
new processor. When the buses and the memory controllers
in both processors reach maximum load, contention is most
severe as can be seen from increasing the number of cores
from seven to eight. On both Intel NUMA and AMD NUMA,

610

the degree of memory contention is smaller than on UMA
for similar number of cores. However, the pattern of growth
still have a per-processor shape. On Intel UMA, from one to
twelve cores, w(n) increases non-linearily, which shows that
the memory controller of the first processor becomes saturated.
When the thirteenth core is activated, in processor two, the
memory controller of processor two takes over a fraction of the
memory requests from processor one controller, reducing the
contention. This is why there is a sharp decrease in w(n) from
twelve to thirteen. There are other reasons that lead to better
NUMA performance such as the larger cache size, faster bus
speed and larger memory bandwidth. Overall, the programs
that show a larger degree of memory contention on UMA also
manifest large contention on NUMA.

Memory contention can be broadly characterized as low,
as shown in Fig. 6 and high, as in Fig. 5. However the
mapping between problem size and degree of contention is
not bijective. Low problem size results in low contention for
all programs analyzed by us. This is due to the size of the
working set which is of comparable size to the caches of the
system. However, for large problem size, there are two cases.
In the first case, EP.C and x264.native have large working set
(920 MB for EP, 400 MB for x264), much larger than the
cache of the system, yet do not result in large contention.
This is because their pattern of accessing the memory results
in low number of cache misses and therefore their performance
does not depend significantly on the memory bandwidth. In
contrast, the second case, of CG, FT, and SP, their large
problem size also translates in large contention. The program
with the largest observed contention, the pentadiagonal-solver
SP access memories along all dimensions of a 3D space.
Such complex data access patterns leads to large number of
cache misses. This results in SP.C having the largest values
of contention, with w(n) reaching 7.1 on eight cores on Intel
UMA and 11.6 on 24 cores on Intel NUMA.

VI. CONCLUSIONS

This paper presents an analytical model for understanding
memory contention of shared-memory programs in both uni-
form and non-uniform-memory access multicore systems. Our
model is inspired by a series of observations derived from
experiments on state-of-the-art UMA and NUMA systems
using 8, 24 and 48 cores. In constrast with previously reported
behavior of memory requests, which assumed that memory
traffic is always bursty, we discovered that the burstiness
of memory traffic depends on the problem size. Programs
with large sizes and high memory requirements lead to large
memory contention factors but have non-bursty memory traf-
fic. Based on the observations, we proposed an analytical
queueing model for programs with large contention in both
UMA and NUMA multiprocessor systems. Our model is val-
idated against measurements using two representative parallel
program benchmarks, NPB and PARSEC. While the model
is simple and based on a high-level abstraction of multicore
systems, it has high accuracy and differs from measurements
by 5-14% for problems with large contention, in the range of



problem sizes and number of cores used in the experiments.

Our analysis addresses the impact of increasing the number
of cores and the problem size. In a multiprocessor system,
increasing the number of cores generally also increases mem-
ory contention, as anticipated. However, contention increases
very slightly for small problem sizes, with maximum observed
increase of around 50% on EP.C when using 48 cores on
a quad-processor AMD NUMA system. For programs with
large memory requirements, memory contention among cores
becomes significant as the number of active cores is increased,
with a peak of more than 1000% increase in program SP.C on
24 cores on an Intel NUMA system. The burstiness of memory
traffic is also affected by the problem size. Small problems
benefit the most from the cache memory, and access main
memory in seldom bursts. When problem size increases, if
the patterns of cache access result in significant cache misses,
we observed more frequent and more sustained accesses to
main memory, which result in non-bursty traffic.

There are two main limitations in our model, namely,
high-level model abstraction and its decrease in accuracy for
programs with low degrees of contention. To account for
contention at the next level of system details, the model can
be extended, at the expense of higher modeling cost, to factor
in bus speed and bandwidth, memory size and bandwidth,
number of memory channels, service-discipline of memory
controllers, among others. The second limitation is our de-
crease in accuracy for programs with low working sets and low
memory requirements. Some of the observations regarding the
independence of last level cache misses and work cycles to the
number of active cores may not hold for programs with small
working sets. When applied to such programs, such as x264
or EP, the assumption of memory requests being independent
and identically distributed no longer holds, leading to lower
accuracy of our M/M/1-based model. However, the usefulness
of the model increases for programs with large memory
requirements, and for this case the model has good accuracy.

REFERENCES

[1] K. Asanovic et al., The Landscape of Parallel Computing Research:
A View from Berkeley, Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, 2006.

D. H. Bailey et al., The NAS Parallel Benchmarks — Summary and Pre-
liminary Results, Proc. of ACM/IEEE Conference on Supercomputing,
pages 158-165, Albuquerque, USA, 1991.

C. Bienia et al., The PARSEC Benchmark Suite: Characterization
and Architectural Implications, Proc. of 17th International Conference
on Parallel Architectures and Compilation Techniques, pages 72-81,
Toronto, Canada, 2008.

S. Cho, L. Jin, Managing Distributed, Shared L2 Caches through OS-
level Page Allocation, Proc. of 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 455-468, Orlando, USA, 2006.
A. Fedorova, M. Seltzer, M. D. Smith, Improving Performance Isolation
on Chip Multiprocessors via an Operating System Scheduler, Proc. of
16th International Conference on Parallel Architecture and Compilation
Techniques, pages 25-38, Brasov, Romania, 2007.

E. Haritan et al., Multicore Design Is the Challenge! What Is the
Solution? Proc. of 45th Annual Design Automation Conference, pages
128-130, Annaheim, USA, 2008.

A. Herdrich et al., Rate-based QoS Techniques for Cache/Memory in
CMP Platforms, Proc. of 23rd International Conference on Supercom-
puting, pages 479-488, Yorktown Heights, USA, 2009.

(2]

(31

[4

=

[5

—

[6]

[7

—

611

(8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24

IS
9

[26]

[27]

[28]

R. Hood et al.,, Performance Impact of Resource Contention in
Multicore Systems, Proc. of 24th International Symposium on Parallel
& Distributed Sytems, Atlanta, USA, 2010.

C. Iancu et al., Oversubscription on Multicore Processors, Proc of 24th
International Symposium on Parallel & Distributed Processing, Atlanta,
USA, 2010.

E. Ipek et al., Self-optimizing Memory Controllers: A Reinforcement
Learning Approach, Proc. of 35th Annual International Symposium on
Computer Architecture, pages 39-50, Beijing, China, 2008.

R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
Wiley, 1991.

T. Karkhanis, J. E. Smith, A Day In the Life of a Data Cache Miss, Proc.
of 2nd Workshop on Memory Performance Issues, Anchorage, USA,
2002.

Y. Kim et al., ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers, Proc. of 16th International
Symposium on High Performance Computer Architecture, Bangalore,
India, 2010.

W. E. Leland et al., On the Self-similar Nature of Ethernet Traffic
(Extended Version), IEEE/ACM Transactions on Networking, 2:1-15,
1994.

C. Liu, A. Sivasubramaniam, and M. Kandemir, Organizing the Last
Line of Defense Before Hitting the Memory Wall for CMP, Proc. of 10th
International Symposium on High Performance Computer Architecture,
Madrid, Spain, 2004.

F. Liu et al., Understanding how Off-chip Memory Bandwidth Partition-
ing in Chip Multiprocessors Affects System Performance, Proc. of 16th
International Symposium on High Performance Computer Architecture,
Bangalore, India, 2010.

O. Mutlu, T. Moscibroda, Parallelism-aware Batch Scheduling: Enhanc-
ing Both Performance and Fairness of Shared DRAM Systems, Proc. of
35th Annual International Symposium on Computer Architecture, pages
63-74, Beijing, China, 2008.

K. J. Nesbit et al., Fair Queuing Memory Systems, Proc. of 39th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 208—
222, Orlando, USA, 2006.

K. J. Nesbit, J. Laudon, J. E. Smith, Virtual Private Caches, Proc. of
34th Annual International Symposium on Computer Architecture, pages
57-68, San Diego, USA, 2007.

K. Park, W. Willinger, Self-Similar Network Traffic and Performance
Evaluation, John Wiley & Sons, Inc., New York, USA, Ist Edition,
2000.

M. K. Qureshi, Y. N. Patt, Utility-based Cache Partitioning: A Low-
overhead, High-performance, Runtime Mechanism to Partition Shared
Caches, Proc. of 39th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 423-432, Orlando, USA, 2006.

B. M. Rogers et al., Scaling the Bandwidth Wall: Challenges in
and Avenues for CMP Scaling, Proc. of 36th Annual International
Symposium on Computer Architecture, pages 371-382, Austin, USA,
2009.

J. C. Sancho, D .Kerbyson, M. Lang, Analyzing the Trade-off between
Multiple Memory Controllers and Memory Channels on Multi-core
Processor Performance Prof. of Workshop on Large-Scale Parallel
Processing, Atlanta, USA, 2010.

V. Suhendra, T. Mitra, Exploring Locking & Partitioning for Predictable
Shared Caches on Multi-cores, Proc. of 45th Annual Design Automation
Conference, pages 300-303, Annaheim, USA, 2008.

J. Treibig, G. Hager, G. Wellein, LIKWID: A lightweight performance-
oriented tool suite for x86 multicore environments, Proc. of Ist Inter-
national Workshop on Parallel Software Tools and Tool Infrastructures,
San Diego, USA, 2010.

B. M. Tudor, Y. M. Teo, A Practical Approach for Performance Analysis
of Shared-Memory Programs, Proc. of 25nd International Parallel &
Distributed Processing Symposium, Anchorage, USA, 2011.

Y. Xie, G. Loh, Dynamic Classification of Program Memory Behaviors
in CMPs, Proc. of 2nd Workshop on Chip Multiprocessor Memory
Systems and Interconnects, Beijing, China, 2008.

S. Zhuravlev, S. Blagodurov, A. Fedorova, Addressing Shared Resource
Contention in Multicore Processors via Scheduling, Proc. of 15th Edition
of Architectural Support for Programming Languages and Operating
Systems, pages 129-142, Pittsburgh, USA, 2010.



