An Approach for Direct Dataflow Execution
on Contemporary Multicore Systems

Dumitrel Loghin, Bogdan Marius Tudor and Yong Meng Teo
Department of Computer Science
National University of Singapore
{dumitrel,bogdan,teoym} at comp.nus.edu.sg

Abstract—Traditionally, imperative programming uses a series
of state-based operands to model control-flow and, as a result,
suffers from the well-known von Neumann bottleneck. In con-
trast, dataflow programs are driven only by the availability of
instruction operands. However, the lack of mainstream dataflow
hardware hinders direct dataflow instruction execution. On the
other hand, direct execution of dataflow programs on von
Neumann machines incurs a high performance cost. In this paper,
we present preliminary results on the direct execution of dataflow
programs on multicore systems through emulation of tagged-
tokens mechanism. Compared with direct translation of SISAL
programs to C code, we achieved a speedup of 44 for CPU-
intensive applications and 22 for memory-bounded applications
on a 48-cores AMD NUMA system.

I. INTRODUCTION

Chip processors with tens of cores have established them-
selves as the backbone of computing. With each technological
generation, multicore systems have an increasing number of
cores integrated on a die and they are being used across
different application domains. However, as the number of cores
grows, it is increasingly challenging to scale the software to
this level of parallelism.

Unfortunately, traditional methods for writing parallel pro-
grams, such as using C, C++ or Fortran supported by pthreads
or OpenMP require the programmer to focus on the control
flow of the program, rather than to understand the parallelism
structure. Furthermore, it is often a tedious and complex
task [14], [23]-[25] to map high-level program parallelism to
low-level hardware parallelism. Thus, with each multicore gen-
eration, there is a growing gap between coarse-grain hardware
parallelism and the parallelism exposed by traditional software
development methods.

A dataflow program uses a model of computation distinct
from the control-flow, or von Neumann model of compu-
tation [1], [10], [22]. In the dataflow model, a program is
represented as a directed graph. Nodes in the graph represent
program operations and can be simple such as arithmetic
operations, or complex such as sorting. The edges represent
the flow of data from a producer node to consumer nodes.
A node becomes ready to execute when there is data on all
its input edges. This principle of dataflow execution relieves
the programmer from explicitly identifying, exposing and con-
trolling the parallelism in a program. A tagged-token dataflow
architecture exposes the principles of dynamic dataflow graph
execution [1], [10]. Tagged-tokens method allows multiple
instances of the same subgraph, where subgraph can be a
function or the body of a loop, to be executed in parallel.

Tokens belonging to different contexts are colored with differ-
ent tags. During program execution, when a function call or a
new iteration of a loop is spawned, a new tag is generated.

This paper investigates coarse-grain dataflow execution on
modern multicore systems. Given a fine-grain dataflow graph,
obtained from a SISAL [16] program, we perform node fusion
and optimization to derive an executable dataflow graph. The
C++ representation of this graph, linked together with our pro-
posed Runtime Dataflow Engine (RDE) produces an executable
for multicore systems. RDE exploits multithreaded architecture
by distributing dataflow tasks across multiple processor cores,
using runtime generation and matching of tagged-tokens. Our
preliminary results show that execution on RDE performs
better than direct translation of SISAL program into control-
flow program.

The contributions of our papers are twofold. First, we
propose a multithreaded emulator of dataflow execution on
multicore systems. Second, we present a cost analysis for
mapping dataflow parallelism to modern multicore hardware.
The novelty of the analysis stems from linking the overhead of
managing tokens to the cost of the synchronization operations,
highlighting the non-linear impact of the number of cores and
memory latency on performance. The cost analysis is derived
from measurements on a 48 cores NUMA system. We show
that task granularity is key to achieving good performance
and discuss the conditions for a dataflow program to scale
on multicore.

The rest of the paper is structured as follows. Section II
presents the related work. Section III shows our proposed ap-
proach and the organization of our dataflow execution system.
In section IV we evaluate the performance of the proposed
system against direct translation of the same code. Finally, in
section V we conclude.

II. RELATED WORK

The principles of dataflow execution, in particular fine-
grain dataflow, have been widely studied and applied in a
variety of computing systems. During the last three decades,
dataflow research includes the design of dataflow machines
[1], [10], and languages [5], [6]. More recent effort includes
the translation of dataflow programs to imperative programs
for execution on hybrid CPU-GPGPU systems [2], [7], [11],
[13].

The shift to multicore has brought large parallel systems
to mainstream. The availability of multicore systems naturally
raises the question of the extent with which dataflow programs

can benefit from this parallelism. However, currently direct
dataflow execution on multicore systems is not well understood
and the cost of translating dataflow code to von Neumann
code remains unclear. Our approach is based on the principles
of dynamic dataflow described in Arvind and Nikhil [1] and
implemented in the Manchester Dataflow Machine [10]. The
Manchester Dataflow Machine was the first implementation
of fine-grain dataflow execution. Each ring, in the multi-ring
machine, consists of four pipeline units, namely token queue,
matching unit, fetching unit and functional unit. A program is
executed by placing initial data tokens in the token queue. The
matching unit determines if a node has all input tokens. When
all tokens are available, the node fetches its instruction from
the fetch unit and is ready to be executed by the functional
unit. Otherwise, the node waits for its missing operands in the
matching unit. Software simulation of dataflow architecture in-
cludes the work by Barahona and Gurd [9] in 1985. Generally,
simulators closely models fine-grained dataflow execution and
details of the dataflow machine. In contrast, we adopt a higher
level of abstraction by modeling only tokens generation and
consumption by independent dataflow instructions for coarse-
grain execution. While the Manchester Dataflow Machine
keeps a token queue and uses a hash mechanism for token
matching, we maintain a map of active contexts for every node
to support immediate node-context matching.

A number of studies exploit dataflow execution on non-
dataflow machines. In a compiler-based approach, a dataflow
program is translated into von Neumann code such as in fsc [5],
sisalc [17] for SISAL and sac2c [6] for Single Assignment C.
In this approach, the generated code is either sequential or par-
allel. For example, in a program with two nested for loops over
the interval 1 to n, fsc generates n? lightweight threads called
filaments. For superscalar processors, dataflow analysis has
been used to improve instruction issue rate [3]. In distributed-
memory code generation, Serot uses the tagged-token dataflow
model for implementing parallel skeletons and discusses the
importance of bounding the iterations and recursions resulting
from parallel nesting [18]. In contrast, our approach generates
an Executable Dataflow Graph for direct execution using our
Runtime Dataflow Engine on shared-memory multithreaded
architecture.

Hybrid dataflow-von Neumann model has also been ex-
plored. Based on dataflow granularity curve, Sterling et al.
observed that medium-grain dataflow achieves the best perfor-
mance [21]. However, our analysis shows that the granularity
curve shifts with the number of cores and the latency of
memory operations. Thus, finding the optimal granularity is
more complicated in current multicore systems. More recently,
Evripidou et al. proposed a new programming model called
Data-Driven Multithreading (DDM) [15], based on dataflow
model of execution. Subsequent works include tools for ex-
ploiting DDM on commodity multicores [19], [20], and the
usage of DDM in HPC [4]. Targeting function level paral-
lelism, Gupta and Sohi applied dataflow analysis to generate
multithreaded code from imperative programs [8]. In contrast
with the previous approaches, we start with a dataflow program
and exploit different levels of parallelism including function
calls, loop iteration and fused instructions. Our evaluation
shows that different levels of granularity are important in
achieving good performance on contemporary multicores.

III. APPROACH
A. Overview

The primary objective of our approach is to efficiently
execute a dataflow program on current multicore systems
through emulation of dataflow execution. Given a dataflow
program, we perform a set of transformations to obtain an
executable dataflow graph with different levels of granularity.
This graph is directly executed on an emulated dataflow engine
running on a multicore system as shown in Fig. 1. In order to

SISAL
Program

¥

IF1 Dataflow
Graph

Executable
Dataflow
Graph

Runtime
Dataflow
Engine

GNU C/C++
Compiler

Multithreaded
x86 64
Executable

Fig. 1: Proposed dataflow approach

compare the performance of our approach with sisalc [17], we
use SISAL as the starting point. A dataflow program in SISAL
is first compiled into an [FI graph. Next, dfgen takes the
IF1 graph, and fuses nodes to obtain an Executable Dataflow
Graph (EDFG) with different task granularities. A Runtime
Dataflow Engine (RDE) executes EDFG using a work-pool
model. Workers execute dataflow tasks in parallel on different
cores. The generated EDFG in C++ code is linked with RDE
to produce a x86 executable for multicore systems.

B. Executable Dataflow Graph

EDFG is a more efficient graph representation obtained
from IF1 by performing two main transformations, namely,
node fusion and node optimizations. EDFG consists of three
type of nodes. Simple nodes, as in IF1, represent operations
such as addition, multiplication and comparison. Fused nodes
are composed from a sequence of simple nodes representing
functions and loop iterations with different levels of gran-
ularity. Compound nodes, as in IF1, represent wrappers for
complex instructions such as branches and loops, and nodes
for function entry and exit points required in EDFG.

Node fusion is performed to obtain dataflow tasks with
different levels of granularity. Subgraphs, such as functions and
loop iterations, are collapsed into fused nodes to reduce token
management overhead. At runtime, a fused node is executed
as a dataflow task. Fig. 2a shows a SISAL program that adds

define main
type IntArray = arrayl[integer];

function main(n: integer; A, B: IntArray
returns IntArray)
for 1 in 1, n
returns array of A[i] + B[i]
end for
end function
(a) SISAL program
(0) main
n|(A||B
(2) RangeGenerate
(3) AElement) ((4) AElement
(0) main
(5) Plus n||A[|B
(6) AGather (16) Fused ForAll
1 1
(7) ASetLl (7) ASetL
(1) main (1) main
(b) IF1 graph (c) EDFG

Fig. 2: Node fusion in loops

two arrays of size n using a for loop. By applying node fusion
to loop iterations, we reduce the number of nodes from five
(Fig. 2b) to one (Fig. 2c¢). Our evaluation shows that node
fusion reduces the number of tokens by several orders of
magnitude.

In node optimization, node trimming is performed to
reduce redundant nodes. In IF1, branching is achieved using
a Select node, with three subgraphs: condition, then branch
and else branch. By default, IF1 groups these three subgraphs
into one compound node. Thus, in a naive implementation,
the three subgraphs are executed in parallel but only one
result is selected at the end. We optimize by putting three
Select start-nodes for the three subgraphs and two Select
end-nodes, one for then branch and one for else branch.
In the optimized form, the conditional subgraph is moved
up such that it executes before entering the then and else
subgraphs. We do this by adding two special nodes: Select
Then and Select Else. By doing this optimization, we avoid
executing unnecessary operations. Similarly, a ForAll node
used in looping, contains three subgraphs: generator, body
and results. Usually, a ForAll generator has a RangeGenerate
node or a AScatter node. The RangeGenerate node distributes
indexes and AScatter distributes array elements to loop body.
We call these nodes Generator. The results subgraph usually

contains a Reduce or an AGather node. The Reduce node
reduces the body results into a single value. AGather node
produces an array from body results. We call these nodes
Result. In our approach, a Generator spawns new contexts and
a Result restores the original contexts. In the first iteration,
four special nodes are generated: one each at ForAll entry and
exit, one at the beginning of the body subgraph and one at
the beginning of the results. These four nodes can be removed
by making Generator node the entry node in ForAll and by
adding a new edge from Generator to Result. Through this
link, Result node will be notified when the loop begins and
when it reaches the end. This optimization reduces the total
number of operations by 10-20% on the workloads that we
evaluated.

C. Runtime Dataflow Engine

RDE is designed to achieve better dataflow execution per-
formance using a high-level abstraction of dataflow machine.
Fig. 3 shows the runtime execution of EDFG on RDE with
four main execution steps:

1) initial data tokens arrive at the static EDFG to pick-up
the corresponding nodes (dataflow tasks) for execu-
tion

2) a color is generated by a tag generator for each
static node and are forwarded to the dynamic dataflow
graph store

3) anode with all input tokens available (dataflow task)
is ready for execution and is sent to the task pool,
otherwise, it waits at the dynamic dataflow graph
store

4) workers (processor cores) pick-up dataflow tasks
from the task pool for execution and result tokens
are then returned to the static graph.

initial data 2) '
@M Static Tag Dynamic
EDFG Generator Dataflow

Graph

node[instr,op,dest] node[tag,instr,op,dest]

3

result tokens Task Pool

@

Fig. 3: Runtime Dataflow Engine

To avoid heavy usage of synchronization, RDE employs a lazy
evaluation mechanism. Instead of pushing result tokens, RDE
stores them in producer nodes and just notifies the consumer
nodes that an operand is available, without copying the operand
information. Thus, tokens are fetched only when consumer

nodes are executed, minimizing the need for inter-thread syn-
chronization. Furthermore, the notifications mechanism uses
atomic integer operations, thus avoiding the usage of costly
pthreads semaphores or locks.

IV. EVALUATION

In this section, we present an evaluation of our approach in
two parts. First, we compare our approach for direct dataflow
execution (DFE) against direct SISAL to C translation done
by sisalc [17] compiler that generates sequential von Neumann
code. Secondly, we analyze the cost of dataflow execution for
different levels of task granularity.

We present preliminary performance results of our ap-
proach using two programs with widely different character-
istics. Matrix multiplication (MM), a commonly used bench-
mark, multiplies two square matrices of size n using three for
loops. This program has ample parallelism with regular task
sizes, and is memory intensive. The second program, prime
number counting (PR), computes the number of primes in the
interval 1 to n. In contrast with MM, it has irregular task sizes
and generates little memory traffic. Both programs allow us
to test the effectiveness of dataflow node fusion on functions
and loops. RDE and dfgen are implemented in C++. In RDE,
each worker thread is bound to a core and in our experiments,
the number of threads is always less or equal with the number
of cores. The experiments were performed on a 48-core AMD
Opteron 6172 NUMA system. The NUMA system has 64 GB
RAM accessed by cores through eight memory controllers
with three memory latencies: 0-hops (local controller), -
hop (traversing one NUMA links) and 2-hops (traversing two
NUMA links). We have used the latest 64-bit Linux kernel,
version 3.8.0 and GCC version 4.6.3. All C++ programs were
compiled with optimization (-02 flag). Each experiment was
conducted three times and the smallest execution time is
reported.

A. Comparison with sisalc

Table I compares our direct dataflow execution (DFE)
time with sisalc on three input sizes for each program. When

Time [sec]
Program n sisalc | DFE Speedup
1000 28.4 2.1 13.5
MM 2000 334.8 15.0 223
4000 —* 176.0 -
100k 51.8 2.5 20.7
PP 200k 211.8 6.0 353
500k 1359.5 30.4 44.7

TABLE I: Comparison with sisalc

comparing to sisalc programs, our DFFE has a speedup of 22 for
MM (n=2000) and 44 for PR(n=500k). For MM (n=4000) sisalc
does not run due to a memory allocation failure. The different
speedup of MM and PR can be explained by the fact that MM
intensively uses the memory, thus, many processor cycles are
stalled waiting on memory requests. On the other hand, PR

*execution aborted due to memory allocation failure

is less memory intensive and better uses the computational
resources of a multicore system. For both programs, the
best performance is achieved using medium granularity, as
explained below.

As expected, the performance of our approach is strongly
influenced by the task granularity. We describe the different
task granularities used in our analysis. The average granularity
of a dataflow task is defined as:

DI
= — 1
FDI M
where DI is the total number of fine-grain (IF1) dataflow

nodes, and F'DI is the total number of dataflow tasks after
applying node fusion. In the MM program with three for-loops:

DIy =6n+2n?+3n+6)

The PR program consists of two for-loops, with the outer loop
iterating through the numbers in the interval 5 to n, and the
inner loop searching dividers for each number. Thus:

5
DIpp = §n2 —3n—-25 3)

In this paper, we evaluated five types of node fusion ranging
from fine-grain to coarse-grain:

e &, — no fusion;

e &y — inner-most loop iteration is fused, and function
calls within for loops are fused;

e &3 — everything is fused, except the outer-most loop;

e &, —node fusion is applied until the number of tasks
in the outer-most loop is equal to the number of cores;

e &5 — all the nodes are fused into one dataflow task.

We present the execution time of our two applications on
three selected input sizes for the best performing granularity
$3. Because the execution time on low core counts it is much
larger than on large core counts, Fig. 4a and 4b are plotted
using a log scale to better show the difference between the
performance achieved by different core counts. Both figures
show that our DFE implementation scales well, achieving a
maximum parallel speedup of 35 for MM(n=2000) and 44 for
PR(n=500k) on 48 cores.

The performance of our DFE is strongly linked to the
granularity of the dataflow instructions. Thus, we focus on
the medium task granularities ®2, ®3 and ®4. Their execution
times are shown in Fig. 5a for MM and in Fig. 5b for PR. &,
for PR does not run with large input size due to high usage
of memory, thus is not plotted on Fig. 5b. For MM (n=2000),
granularity ®» executes on average eight times slower than
®3 on all core counts. For both MM and PR, ®3 performs
better than ®4 due to a larger work-pool of dataflow tasks. On
CPU intensive applications, such as PR(n=200k), ®3 performs
66% better in average. On memory bounded applications, such
as MM(n=2000), the difference is smaller: 12% in average.
For both task granularities we observe that executions on low
core counts results in smaller performance difference between
®3 and P,. However, for core counts larger than 24, ®j
consistently out-performs ®4. As expected, the finest grain,
®,, is much slower, incurring a prohibitively large execution

100000

10000 ; ‘
n=500k —e—
n=200k —8—
n=100k —+—

1000]
100]

-

3+

Execution Time [s]

10

+—1

1 6 12 18 24 30 36 42 48
Number of Threads

(b) PR

Fig. 4: Effect of problem size on execution time, using ®3 granularity

n=4000 —e—
n=2000 —&—
10000
o,
[0}
£ 1000
= g
c
S
S 1001]
(]
a
10 + Y
}.
1 I I I I I I I
1 6 12 18 24 30 36 42 48
Number of Threads
(2) MM
D2 —e—
1000 ! o3 —o— 1
g 4 ——
v, 3
(]
£ 100t |
'_
c
S
3 s
uéJ'é 10 |]
116 12 18 24 30 36 42 48

Number of Threads

(a) MM (n=2000)

»3 —H—

1000 O4 ——

100

10

Execution Time [s]

1 6 12 18 24 30 36 42 48

Number of Threads

=
o

(b) PR(n=200k)

Fig. 5: Effect of task granularity on execution time

time (more than one hour when executing MM(n=1000) and
PR(n=100k) on 48 cores) and incurs a very large memory
usage. ®5 achieves a similar performance to 3 and ¢4 on
one core, for both MM and PR.

B. Cost of Different Task Granularities

Motivated by the impact of dataflow granularity on perfor-
mance, we analyze the cost of dataflow execution. In particular,
we investigate the cause for the drop in performance when
dataflow programs with small task granularity are executed
on modern multicore systems. To focus the analysis, in this
section we discuss the performance of MM(n=2000) using
®, and ®3. As shown in the previous section, ®3 has the
best performance among the granularities, but ®; under-
performs @3 by a factor of eight. We profiled the execution of
MM(n=2000) measuring the following parameters:

1) VNI — Number of machine instructions (i.e. von
Neumann instructions) executed by the programs
across all threads;

2) S — Number of synchronization operations performed

by the OS kernel (i.e. atomic increment and decre-
ment, mutex and semaphore lock and unlock opera-
tions);

3) Tsyne — Average time required by the kernel to
complete all synchronization operations

4) A — Number of active threads, averaged across the
execution time of the program. A thread is consid-
ered active if it is not stopped at a synchronization
operation;

5) T - Total execution time of the programs.

The number of von Neumann instructions VNI, average
thread utilization A and total execution time 7" are measured
using the processor hardware events counters which are sam-
pled using the perf tool. The dataflow tasks F'DI and the
fine-grain dataflow instructions DI are measured using our
own instrumentation code inserted in the RDE. The number
of synchronization operations S and average blocking time
for synchronization operations, Ty, are measured using the
strace system call.

500 ‘ 5000

"2 - VNI —B—
2-S —e—

400 | 4000
457300 | 13000
— o
= b
€ 200/ 2000 @

x:
100| | 1000
0 \ \ \ \ \ \ \ 0
6 12 18 24 30 36 42 48

Number of Threads

(a) @2

500 5

®3 - VNI —5—
®3-S —e—

Number of Threads

(b) ¢3

Fig. 6: MM(n=2000) — Von Neumann instructions (VNI) and total synchronization operations (S) for two granularities

Our analysis shows that the execution of dataflow programs
with small task granularity on contemporary multicores suffers
from three performance problems:

1) The number of von Neumann instructions, VNI, is
larger than the same program executed with coarse-
grain dataflow tasks.

2) Due to the larger number of dataflow tasks, the total
time spent by the program in synchronization opera-
tions is substantial. Furthermore, this synchronization
time increases with the number of cores.

3) The number of active threads of the dataflow mul-
tithreaded execution is low, even if the dataflow
program has enough parallelism and the system has
enough cores.

Further, we detail the three effects. Figures 6a and 6b
show the total number of von Neumann instructions, VNI,
and the total number of synchronization operations, S, for
P, and P53 granularities of MM(n=2000). The figures show
that VNI on ®, is more than three times larger than on
®3. To understand the reason for the increase in VNI, we
have profiled the entire run of the programs using Zoom
statistical profiler. The profiler shows the breakdown of VNI
in each RDFE function, for both userspace and kernelspace.
The profiler indicates that for ®5, over 70% of VNI are
incurred by the OS kernel when executing system calls, and
less than 30% are directly attributed to the userspace RDE
code. Moreover, the system call responsible for 99% of the
time spent in kernel mode is futex, which is the system call
used to perform synchronization among threads. In contrast,
for @3, more than 99% of V NI are incurred in userspace. This
analysis indicates that the breakdown in performance for ®,
is attributed to synchronization operations among the threads
of the RDE.

To validate our hypothesis, we have profiled the total
number of synchronization operations performed by the OS
kernel. Figure 6a shows that for small dataflow granularity ®5
there is a strong correlation between the increase in number
of synchronization operations, .S and the increase in VNI
(Pearson product-moment correlation coefficient is 0.94). In

contrast, for larger dataflow granularity ®3, the correlation
between the increase in V. NI and increase in .S is very weak
(Pearson product-moment correlation coefficient is —0.43).
This validates our hypothesis, showing that synchronization
has a big impact on ®, execution. However, for ®3 our
analysis shows that VNI and S are not correlated. Moreover,
S is about 3000 time smaller than for ®,, thus the effect of
synchronizations is negligible.

300 ‘ ‘
P2 —o— 0
®3
200
=
[}
3
g
&
[y
100
0 . b
greeee? 18 T 24 30 36 42 48

Number of Threads

Fig. 7: MM(n=2000) — T, vs. threads

Figure 6a also shows that the number of synchronization
operations increases with the number of threads. This is
because in Linux, locks and semaphores are implemented on
top of a construct called fast userspace mutex (hence the name
futex for the system call) [12]. If only one thread attempts to
lock an uncontended futex, the thread will proceed without
performing a system call. Thus, for the uncontended case, the
lock will resolve quickly. However, if multiple threads contend
for a lock, the futex will perform a system call. The kernel will
then award the futex to one of the threads, and suspend the
other threads. Therefore, for the contended case, the locking
operation will incur a higher cost, because the OS kernel must
be involved. In our programs, the total number of lock/unlock
operations is constant. However, for small number of threads
the likelihood that a lock is contended by several threads is
small: 20 — 40% of all locks are contended when m < 6. But

for m > 12, more than 70% of all lock operations are observed
to require a system call. Thus, even if the total number of
locks operations is constant in the programs, executions on
larger number of threads will result in more calls to the OS
futex routines, which in turn increases the number of von
Neumann instructions incurred by the programs. To further
show the effect of synchronization on the execution time, we
plot the total time spent in synchronization operations versus
the number of threads. Fig. 7 shows the exponential increase of
Tsync, thus canceling the gain of using more cores for useful
work.

al
o

N w 5
o o o
T T

=
o
T

Average Number of Active Threads

(=}

1 6 12 18 24 30 36 42 48
Number of Threads

Fig. 8: MM(n=2000) — A vs. threads

Next we discuss the evolution of the number of active
threads with the increase of core counts. Ideally, in a perfectly
scaling program, the average number of active threads equals
the core count. However, in a realistic program, data depen-
dency among threads leads to synchronization operations that
decreases the average number of active threads [23]. Fig. 8
shows the evolution of A for all three medium granularities
Py, &3 and P4, on MM(n=2000). When multiple threads
are active, the program will suffer a parallelism loss due to
data-dependency among threads. Even if it scales, ®3 suffers
form the above effect, having A=44 when using 48 cores.
For ®,, the heavy usage of synchronization has a dramatic
effect on A, reducing it to less then 10 for big core counts.
®, suffers from the unavailability of work. Thus, even if the
number of dataflow tasks equals the number of used cores, data
dependency between tasks decreases the number of ready-to-
execute tasks.

The conclusion of the analysis is that the cost of token
management is by far the most significant overhead in tagged-
token dataflow execution on contemporary multicore systems.
Selecting the right granularity is the main factor for managing
this cost. On small number of cores the performance difference
between medium and larger granularity is small, but on large
number of cores, programs with medium dataflow granularities
consistently achieve a better performance.

V. CONCLUSION

This paper proposes a new approach for exploiting dataflow
parallelism on multicore systems. Our approach consists of
two main steps. First, a SISAL program is translated into an
Executable Dataflow Graph (EDFG). We applied node fusion
on both loops and functions to increase the grain size and

node optimization to remove redundant nodes. Our approach
reduces the overhead of generating and managing tokens. In
the second step, the EDFG is executed on a light-weight Run-
time Dataflow Engine (RDE) which emulates tagged-tokens
dataflow execution. RDE exploits multicore parallelism using
a work-pool model that distributes coarser-grain dataflow tasks
to cores. Our proposed execution approach surpasses sisalc by
44 times for prime number counting program and 22 times
for memory-bounded matrix multiplication. However, key to
achieving good performance is the granularity of dataflow
tasks. Our evaluation shows that task granularity has a non-
uniform relationship to performance. On a 48-cores AMD
NUMA system, medium-size task granularities achieve best
performance.

Our preliminary results motivate the extension of this
work in two directions. First, we are developing runtime
techniques to generate malleable tasks of different granularities
that dynamically adapt to changes in the parallelism of the
system. Secondly, a hierarchical dataflow execution engine
can be implemented by breaking the EDFG into subgraphs
that execute on different memory domains. This can improve
the DFE performance on NUMA shared-memory systems,
and more importantly, allow execution on distributed-memory
systems and hybrid shared/distributed-memory systems.

ACKNOWLEDGMENTS

This work is supported by the Singapore National Research
Foundation.

REFERENCES

[11 K. Arvind, R. S. Nikhil, Executing a Program on the MIT Tagged-token
Dataflow Architecture, [EEE Transactions on Computers, 39(3):300—
318, 1990.

[2] A. Balevic, B. Kienhuis, An Efficient Stream Buffer Mechanism for
Dataflow Execution on Heterogeneous Platforms with GPUs, Proc.
of 1st Workshop on Data-Flow Execution Models for Extreme Scale
Computing, pages 53-57, 2011.

[3] A. Bracy, P. Prahlad, A. Roth, Dataflow Mini-graphs: Amplifying Su-
perscalar Capacity and Bandwidth, Proc. of 37th Annual International
Symposium on Microarchitecture, pages 18-29, 2004.

[4] C. Christofi, G. Michael, P. Trancoso, P. Evripidou, Exploring HPC
Parallelism with Data-driven Multithreading, Proc. of 2nd Workshop
on Data-Flow Execution Models for Extreme Scale Computing, 2012.

[5S] V. W.Freeh, G. R. Andrews, A Sisal Compiler for Both Distributed- and
Shared-Memory Machines, Technical report, Department of Computer
Science, University of Arizona, Tucson, 1995.

[6] C. Grelck, S.-B. Scholz, Sac - From High-Level Programming with
Arrays to Efficient Parallel Execution, Parallel Processing Letters,
13(3):401-412, 2003.

[71 J. Guo, J. Thiyagalingam, S.-B. Scholz, Breaking the GPU Program-
ming Barrier with the Auto-parallelising SAC Compiler, Proc. of 6th
Workshop on Declarative Aspects of Multicore Programming, pages
15-24, 2011.

[8] G. Gupta, G. S. Sohi, Dataflow Execution of Sequential Imperative
Programs on Multicore Architectures, Proc. of 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 59-70, 2011.

[9] J. R. Gurd, P. Barahona, Simulated Performance of the Manchester
Multi-ring Dataflow Machine, Parallel Computing, pages 419-424,
1985.

[10] J. R. Gurd, C. C. Kirkham, I. Watson, The Manchester Prototype
Dataflow Computer, Commununications of the ACM, 28(1):34-52,
1985.

(1]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

A. Hagiescu, H. P. Huynh, W.-F. Wong, R. S. M. Goh, Automated
Architecture-aware Mapping of Streaming Applications onto GPUs,
Proc. of 25th IEEE International Symposium on Parallel and Dis-
tributed Processing, pages 467-478, 2011.

F. Hubertus, R. Russsel, M. Kirkwood, Fuss, Futexes and Furwocks:
Fast Userlevel Locking in Linux, Proc. of 4th Ottawa Linux Symposium,
pages 479-495, 2002.

H. P. Huynh, A. Hagiescu, W.-F. Wong, R. S. M. Goh, Scalable Frame-
work for Mapping Streaming Applications onto Multi-GPU Systems,
Proc. of 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 1-10, 2012.

B. Jang, P. Mistry, D. Schaa, R. Dominguez, D. R. Kaeli, Data
Transformations Enabling Loop Vectorization on Multithreaded Data
Parallel Architectures, Proc. of 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 353-354, 2010.

C. Kyriacou, P. Evripidou, P. Trancoso, Data-driven Multithreading
Using Conventional Microprocessors, IEEE Transactions on Parallel
and Distributed Systems, 17(10):1176-1188, 2006.

L. L. Laboratory, J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft,
J. Glauert, C. Kirkham, B. Noyce, R. Thomas, SISAL: Streams
and Iteration in a Single Assignment Language. Language Reference
Manual, Lawrence-Livermore-National-Laboratory, 1985.

P. Miller, Sisal Lives, http://sisal.sourceforge.net/, 2012.

J. Serot, Tagged-Token Data-Flow for Skeletons, Parallel Processing
Letters, 11(04):377-392, 2001.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

K. Stavrou, M. Nikolaides, D. Pavlou, S. Arandi, P. Evripidou, P. Tran-
coso, TFlux: A Portable Platform for Data-driven Multithreading
on Commodity Multicore Systems, Proc. of the 37th International
Conference on Parallel Processing, pages 25-34, 2008.

K. Stavrou, D. Pavlou, M. Nikolaides, P. Petrides, P. Evripidou,
P. Trancoso, Z. Popovic, R. Giorgi, Programming Abstractions and
Toolchain for Dataflow Multithreading Architectures, Proc. of the 8th
International Symposium on Parallel and Distributed Computing, pages
107-114, 2009.

T. Sterling, J. Kuehn, M. Thistle, T. Anastasis, Studies on Optimal
Task Granularity and Random Mapping, Advanced Topics in Dataflow
Computing and Multithreading, pages 349-365, 1995.

P. C. Treleaven, D. R. Brownbridge, R. P. Hopkins, Data-Driven
and Demand-driven Computer Architecture, ACM Computing Surveys,
14(1):93-143, 1982.

B. M. Tudor, Y. M. Teo, A Practical Approach for Performance
Analysis of Shared-memory Programs, Proc. of 25th IEEE International
Symposium on Parallel and Distributed Processing, pages 652—663,
2011.

B. M. Tudor, Y. M. Teo, S. See, Understanding Off-chip Memory
Contention of Parallel Programs in Multicore Systems, Proc. of 40th
International Conference on Parallel Processing, pages 602-611, 2011.
Z. Wang, M. FE. O’Boyle, Mapping Parallelism to Multi-cores: a
Machine Learning Based Approach, Proc. of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages
75-84, 2009.

