Formalization of Emergence in Multi-agent Systems Ba Linh Luong¹, Yong Meng Teo¹, Claudia Szabo² ¹ National University of Singapore ² University of Adelaide 21 May 2013 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (PADS) Montreal, Canada #### **Outline** - Motivation - Objective - Related work - Grammar-based Approach - Formalization - Emergent Property States - Example: Boids Model - Evaluation - Summary #### **Motivation** - **Emergence**: system properties that cannot be derived from the properties of the individual entities - Desirable or undesirable #### Challenges - Advance understanding of emergence - Lack of consensus on emergence #### Propose Formalization - Set of emergent property states - Reason about cause-and-effect of emergence #### **Objective** A formal approach for determining the set of emergent property states in a given system. ## **Emergence Perspectives** | | Perspective | How | | |--|---|------------------------------|--| | Philosophy
[6, 30] | Surprise - Limitations of our knowledge | Observer with correct scale | | | Natural & Social
Science
[2, 11, 16] | Observer-independent | Self-organization, hierarchy | | | Computer Science
[6, 8, 22] | Derived from entity interactions (weak emergence) | Simulation | | ## **Types of Emergence** ## **Emergence Formalization** | Approach | Prior Knowledge | Analysis | | | |-----------------------------|-----------------|-------------|--|--| | Variable-based [15, 26, 35] | required | post-mortem | | | | Event-based [10] | required | post-mortem | | | | Grammar-based
[22] | not required | on-the-fly | | | #### **Outline** - Motivation - Objective - Related work - Grammar-based Approach - Formalization - Emergent Property States - Example: Boids Model - Evaluation - Summary ## **Grammar-based Approach** - Kubik's approach: "The whole is greater than the sum of its parts." - Main idea: determine the set of system states that are in the whole but not in the sum (L_ξ) $$L_{\xi} = L_{\text{whole}} \setminus L_{\text{sum}}$$ - L_{whole}: set of all system states obtained by simulation - $-L_{sum}$: set of all permutations of states of individual parts #### **Limitations** - Suffers from state-space explosion (L_{whole} , L_{sum}) [next slide] - Cannot model agent types [introduce agent type, A_{ii} type i (1 ≤ i ≤ m)] - No support for mobile agents [define mobility as attributes of agents: P_i = P_{i mobile} U P_{i others}] - Closed systems with fixed number of agents [agents can enter and leave system] ## **Proposed Approach – Reduce State Space** $$L_{\text{whole}} = L_{\text{whole}}^{\text{I}} \cup L_{\text{whole}}^{\text{NI}}$$ $$L_{sum} = L_{sum}^{P} \cup L_{sum}^{NP}$$ $$L_{\xi} = L_{\text{whole}}^{\text{I}} \setminus L_{\text{sum}}^{\text{P}}$$ I: interest NI: not interest P: possible NP: not possible #### **Proposed Formalization** A system consisting of m agent types and n agents A_{11} , ..., A_{mn_m} (n = n_1 + ... + n_m , n_i agents of type i) interacting in an environment (2D grid) consisting of c cells is defined as GBS = $$(V_A, V_E, A_{11}, ..., A_{mn_m}, S(0))$$ - A_{ii} : agent type i (1 ≤ i ≤ m) of instance j (1 ≤ j ≤ n_i) - $-V_A=\bigcup_{i=1}^m V_{A_i}$: set of possible agent states for all agent types, and V_{A_i} denotes the set of possible states for agents of type i - V_E: set of possible cell states - $-\mathbf{V} = V_A \cup V_E$ - $S(t) \in V^{c+n}$: system state at time t #### **Environment** - Cell (e) - Ve: set of possible states of cell e - $-s_e(t) \in V_e$: state at time t - Environment (E) - $-\mathbf{V_E} = \bigcup_{e=1}^{c} V_e$ - $-\mathbf{S}_{E}(t) \in V_{E}^{c}$: state at time t #### **Agent** • Agent A_{ij} ($1 \le i \le m$, $1 \le j \le n$), is defined as: $$A_{ij} = (P_i, R_i, s_{ij}(0))$$ P_i: set of attributes for agents of type i $$P_i = P_{i_mobile} U P_{i_others}$$ $P_{i_mobile} = \{x \mid x \text{ is an attribute that models mobility}\}$ R_i: set of behavior rules for agents of type i $$R_i = R_{i_mobile} U R_{i_others}$$ $R_i: V_{A_i} \rightarrow V_{A_i}$ // V_{A_i} : set of possible states for agents of type i - $s_{ij}(t) \in V_{A_i}$: state of A_{ij} at time t ## **Emergent Property States** Set of emergent property states $$L_{\xi} = L_{whole}^{I} \setminus L_{sum}^{P}$$ Set of system states with agent coordination (GROUP) $$L_{\text{whole}}^{\text{I}} = \{ w \in V^{\text{c+n}} | S(0) \Rightarrow^*_{\text{GROUP}} w \}$$ Sum of states of individual agents $$L_{sum} = superimpose(L(A_{11}),..., L(A_{mn_m}))$$ $L_{sum} \Rightarrow^{constraints} L_{sum}^{P}$ ## **Example** - Boids model [Reynolds87] - Separation (collision avoidance) - Alignment - Cohesion - Two types of birds, five ducks and five geese, moving on a 8 x 8 grid - Maximum speed: ducks (2 cells/step), geese (3 cells/step) - Birds re-enter the system when they pass the grid edges ## **Vector Representation of Velocity** | Direction | Speed | | | | |------------|-------|---------|---------------------------|--| | | 0 | 1 | 2 | | | North | (0,0) | (0,1) | (0,2) | | | North-east | (0,0) | (1,1) | (1,2), (2,1), (2,2) | | | East | (0,0) | (1,0) | (2,0) | | | South-east | (0,0) | (1,-1) | (1,-2), (2,-1), (2,-2) | | | South | (0,0) | (0,-1) | (0,-2) | | | South-west | (0,0) | (-1,-1) | (-1,-2), (-2,-1), (-2,-2) | | | West | (0,0) | (-1,0) | (-2,0) | | | North-west | (0,0) | (-1,1) | (-1,2), (-2,1), (-2,2) | | #### **Agents – Ducks** • Duck instance A_{1j} ($1 \le j \le 5$) is defined as $A_{1j} = (P_1, R_1, s_{1j}(0))$ $$- P_1 = P_{1_mobile} \cup P_{1_others}$$ $$P_{1_mobile} = \{position(g_{1j}), velocity(v_{1j})\}, P_{1_others} = \emptyset$$ - $$V_{A_1} = \{(x,y) | 1 \le x \le 8; 1 \le y \le 8\} \times \{(\alpha,\beta) | -2 \le \alpha \le 2; -2 \le \beta \le 2\}$$ - $$R_1 = R_{1_mobile} \cup R_{1_others}$$ $R_1 = R_{1_mobile} \cup R_{1_others}$ $$- \quad \mathsf{s_{1j}(t)} \in \mathsf{V}_{\mathsf{A}_1}$$ ## Behavior Rules for Ducks – R_{1_mobile} - For duck instance A_{1j} (1 \leq j \leq 5) at time t with position $g_{1j}(t)$ and velocity $v_{1j}(t)$: - Update position: $$g_{1j}(t+1) = g_{1j}(t) + v_{1j}(t+1)$$ – Update velocity: $$v_{1j}(t + 1) = v_{1j}(t) + separation(A_{1j})$$ + alignment(A_{1j}) + cohesion(A_{1i}) **Similarly for Geese!** ## L_{whole}^{I} #### **Emergent Property States** • $$L_{\xi} = L_{whole}^{I} \setminus L_{sum} = \{S(1), S(2), S(3), S(4), ..., S(11)\}$$ - Flocking at least 4 birds of the same type fly together - Together each bird has at least one immediate neighbor of the same type - 1. known emergent states: S(2), S(3), S(4), ..., S(11) - 2. unknown emergent state: S(1) ## **Experimental Results** - Java simulator - Equal numbers of ducks and geese | | number of states | | | L_{ξ} | |-----------------|------------------|---------------------|----|----------------------------| | number of birds | L_{whole}^{I} | L_{sum} L_{ξ} | | $\overline{L_{whole}^{I}}$ | | 4 | 13 | 767 | 6 | 0.46 | | 6 | 18 | 70,118 | 12 | 0.67 | | 8 | 13 | 509,103 | 9 | 0.69 | | 10 | 26 | 13,314,006 | 23 | 0.88 | #### **Summary** - Grammar-based set-theoretic approach - Reduce state space - Without a priori knowledge of emergence - Agents of different types, mobile agents, and open systems - Example of boids model - Open issues: reduce state space, reasoning of emergent property states #### **Q & A** #### Thank You! [teoym,luongbal]@comp.nus.edu.sg claudia.szabo@adelaide.edu.au Y. M. Teo, B. L. Luong, C. Szabo, Formalization of Emergence in Multi-agent Systems, ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Montreal, Canada, May 19-22, 2013. #### **Separation Rule** - Goal: avoid collision with nearby birds - How: if duck b is close to another bird a, i.e. within ε cells, then b flies away from a ``` separtion(b) = \sum_{distance(a,b) \le \varepsilon} b.position - a.position ``` ``` separation(boid b) vector c = 0; for each boid a if |a.position - b.position| ≤ ε then c = c - (a.position - b.position) return c ``` #### **Alignment Rule** - Goal: fly as fast as nearby ducks - How: change velocity of duck b λ % towards the average velocity of its neighbor ducks ``` alignment(b) = ((\sum_{\substack{duck(a)\\neighbor(a,b)}}^{k} a.velocity)/k - b.velocity)/\lambda ``` ``` Alignment(boid b) vector c = 0; integer k = 0; for each neighbor duck a k = k + 1; c = c + a.velocity; endfor c = c / k; return (c - b.velocity) / A ``` #### **Cohesion Rule** - Goal: stay close to nearby ducks - How: move duck b γ% towards the center of its neighbor ducks ``` cohesion(b) = ((\sum_{\substack{duck(a)\\neighbor(a,b)}}^{k} a.position)/k - b.position)/\gamma ``` ``` Cohesion(boid b) vector c = 0; integer k = 0; for each neighbor duck a k = k + 1; c = c+ a.position; endfor c = c / k; return (c - b.position) / y PADS 2013, Montreal, Canada, 19-22 May ``` ## L_{sum} - $L_{sum} = superimpose(L(A_{11}), ..., L(A_{15}), L(A_{21}), ..., L(A_{25}))$ - For illustration, consider two geese: $L_{sum} = superimpose(L(A_{23}), L(A_{25}))$ = $L(A_{23})$ superimpose ($L(A_{25})$) U $L(A_{25})$ superimpose ($L(A_{23})$) ## $L(A_{23})$ and $L(A_{25})$ (1,0) ## $L_{sum} = superimpose(L(A_{23}), L(A_{25}))$