

Formalization of Emergence in Multi-agent Systems

Ba Linh Luong¹, Yong Meng Teo¹, Claudia Szabo²

¹ National University of Singapore

² University of Adelaide

21 May 2013

ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (PADS)

Montreal, Canada

Outline

- Motivation
- Objective
- Related work
- Grammar-based Approach
 - Formalization
 - Emergent Property States
 - Example: Boids Model
- Evaluation
- Summary

Motivation

- **Emergence**: system properties that cannot be derived from the properties of the individual entities
 - Desirable or undesirable

Challenges

- Advance understanding of emergence
- Lack of consensus on emergence

Propose Formalization

- Set of emergent property states
- Reason about cause-and-effect of emergence

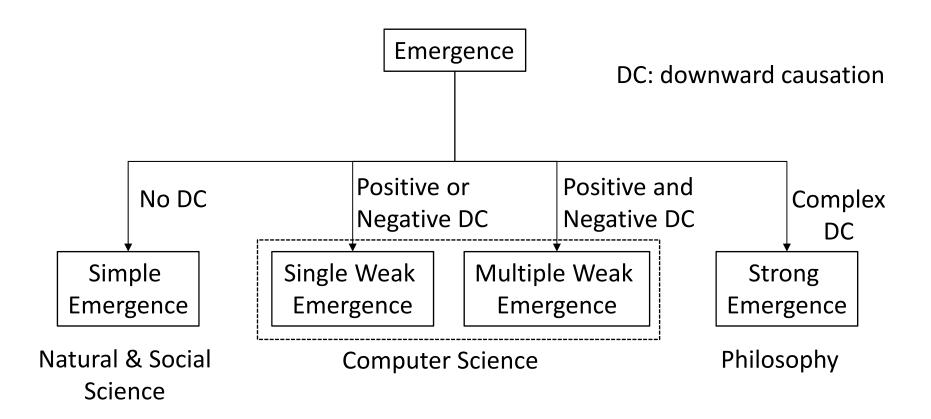
Objective

A formal approach for determining the set of emergent property states in a given system.

Emergence Perspectives

	Perspective	How	
Philosophy [6, 30]	Surprise - Limitations of our knowledge	Observer with correct scale	
Natural & Social Science [2, 11, 16]	Observer-independent	Self-organization, hierarchy	
Computer Science [6, 8, 22]	Derived from entity interactions (weak emergence)	Simulation	

Types of Emergence



Emergence Formalization

Approach	Prior Knowledge	Analysis		
Variable-based [15, 26, 35]	required	post-mortem		
Event-based [10]	required	post-mortem		
Grammar-based [22]	not required	on-the-fly		

Outline

- Motivation
- Objective
- Related work
- Grammar-based Approach
 - Formalization
 - Emergent Property States
 - Example: Boids Model
- Evaluation
- Summary

Grammar-based Approach

- Kubik's approach: "The whole is greater than the sum of its parts."
- Main idea: determine the set of system states that are in the whole but not in the sum (L_ξ)

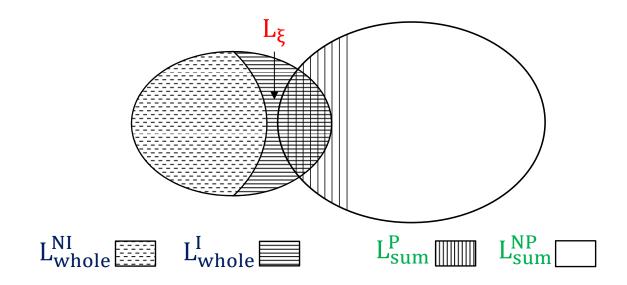
$$L_{\xi} = L_{\text{whole}} \setminus L_{\text{sum}}$$

- L_{whole}: set of all system states obtained by simulation
- $-L_{sum}$: set of all permutations of states of individual parts

Limitations

- Suffers from state-space explosion (L_{whole} , L_{sum}) [next slide]
- Cannot model agent types
 [introduce agent type, A_{ii} type i (1 ≤ i ≤ m)]
- No support for mobile agents
 [define mobility as attributes of agents:
 P_i = P_{i mobile} U P_{i others}]
- Closed systems with fixed number of agents [agents can enter and leave system]

Proposed Approach – Reduce State Space



$$L_{\text{whole}} = L_{\text{whole}}^{\text{I}} \cup L_{\text{whole}}^{\text{NI}}$$

$$L_{sum} = L_{sum}^{P} \cup L_{sum}^{NP}$$

$$L_{\xi} = L_{\text{whole}}^{\text{I}} \setminus L_{\text{sum}}^{\text{P}}$$

I: interest

NI: not interest

P: possible

NP: not possible

Proposed Formalization

A system consisting of m agent types and n agents A_{11} , ..., A_{mn_m} (n = n_1 + ... + n_m , n_i agents of type i) interacting in an environment (2D grid) consisting of c cells is defined as

GBS =
$$(V_A, V_E, A_{11}, ..., A_{mn_m}, S(0))$$

- A_{ii} : agent type i (1 ≤ i ≤ m) of instance j (1 ≤ j ≤ n_i)
- $-V_A=\bigcup_{i=1}^m V_{A_i}$: set of possible agent states for all agent types, and V_{A_i} denotes the set of possible states for agents of type i
- V_E: set of possible cell states
- $-\mathbf{V} = V_A \cup V_E$
- $S(t) \in V^{c+n}$: system state at time t

Environment

- Cell (e)
 - Ve: set of possible states of cell e
 - $-s_e(t) \in V_e$: state at time t
- Environment (E)
 - $-\mathbf{V_E} = \bigcup_{e=1}^{c} V_e$
 - $-\mathbf{S}_{E}(t) \in V_{E}^{c}$: state at time t

Agent

• Agent A_{ij} ($1 \le i \le m$, $1 \le j \le n$), is defined as:

$$A_{ij} = (P_i, R_i, s_{ij}(0))$$

P_i: set of attributes for agents of type i

$$P_i = P_{i_mobile} U P_{i_others}$$

 $P_{i_mobile} = \{x \mid x \text{ is an attribute that models mobility}\}$

R_i: set of behavior rules for agents of type i

$$R_i = R_{i_mobile} U R_{i_others}$$

 $R_i: V_{A_i} \rightarrow V_{A_i}$ // V_{A_i} : set of possible states for agents of type i

- $s_{ij}(t) \in V_{A_i}$: state of A_{ij} at time t

Emergent Property States

Set of emergent property states

$$L_{\xi} = L_{whole}^{I} \setminus L_{sum}^{P}$$

 Set of system states with agent coordination (GROUP)

$$L_{\text{whole}}^{\text{I}} = \{ w \in V^{\text{c+n}} | S(0) \Rightarrow^*_{\text{GROUP}} w \}$$

Sum of states of individual agents

$$L_{sum} = superimpose(L(A_{11}),..., L(A_{mn_m}))$$

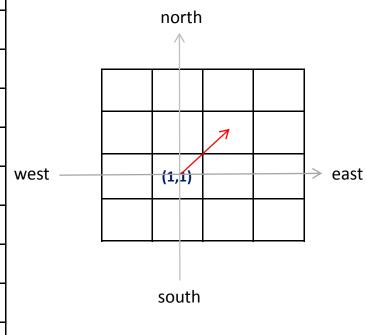
 $L_{sum} \Rightarrow^{constraints} L_{sum}^{P}$

Example

- Boids model [Reynolds87]
 - Separation (collision avoidance)
 - Alignment
 - Cohesion
- Two types of birds, five ducks and five geese, moving on a 8 x 8 grid
- Maximum speed: ducks (2 cells/step), geese (3 cells/step)
- Birds re-enter the system when they pass the grid edges

Vector Representation of Velocity

Direction	Speed			
	0	1	2	
North	(0,0)	(0,1)	(0,2)	
North-east	(0,0)	(1,1)	(1,2), (2,1), (2,2)	
East	(0,0)	(1,0)	(2,0)	
South-east	(0,0)	(1,-1)	(1,-2), (2,-1), (2,-2)	
South	(0,0)	(0,-1)	(0,-2)	
South-west	(0,0)	(-1,-1)	(-1,-2), (-2,-1), (-2,-2)	
West	(0,0)	(-1,0)	(-2,0)	
North-west	(0,0)	(-1,1)	(-1,2), (-2,1), (-2,2)	



Agents – Ducks

• Duck instance A_{1j} ($1 \le j \le 5$) is defined as $A_{1j} = (P_1, R_1, s_{1j}(0))$

$$- P_1 = P_{1_mobile} \cup P_{1_others}$$

$$P_{1_mobile} = \{position(g_{1j}), velocity(v_{1j})\}, P_{1_others} = \emptyset$$

-
$$V_{A_1} = \{(x,y) | 1 \le x \le 8; 1 \le y \le 8\} \times \{(\alpha,\beta) | -2 \le \alpha \le 2; -2 \le \beta \le 2\}$$

-
$$R_1 = R_{1_mobile} \cup R_{1_others}$$

 $R_1 = R_{1_mobile} \cup R_{1_others}$

$$- \quad \mathsf{s_{1j}(t)} \in \mathsf{V}_{\mathsf{A}_1}$$

Behavior Rules for Ducks – R_{1_mobile}

- For duck instance A_{1j} (1 \leq j \leq 5) at time t with position $g_{1j}(t)$ and velocity $v_{1j}(t)$:
 - Update position:

$$g_{1j}(t+1) = g_{1j}(t) + v_{1j}(t+1)$$

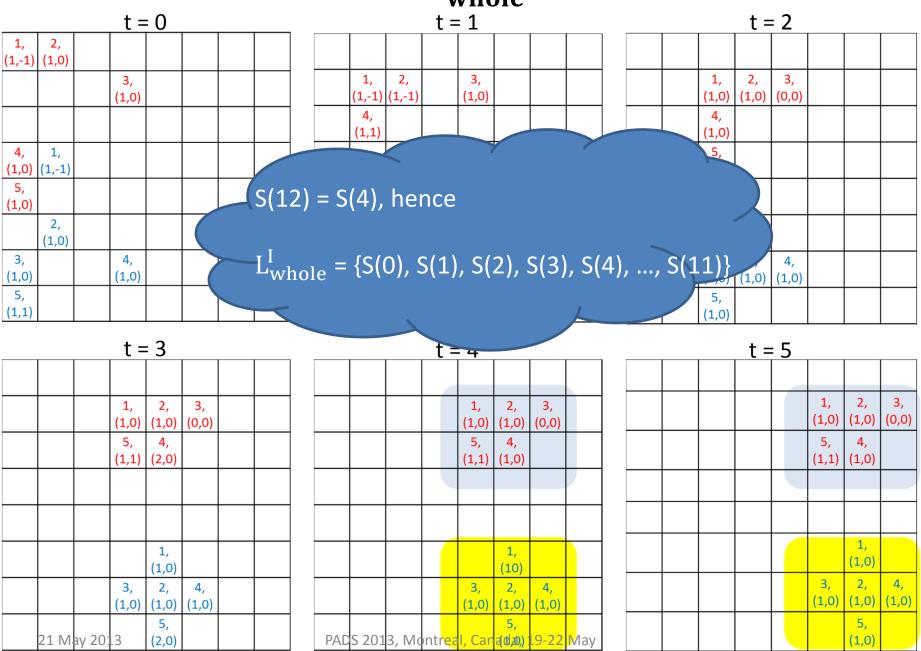
– Update velocity:

$$v_{1j}(t + 1) = v_{1j}(t) + separation(A_{1j})$$

+ alignment(A_{1j})
+ cohesion(A_{1i})

Similarly for Geese!

L_{whole}^{I}



Emergent Property States

•
$$L_{\xi} = L_{whole}^{I} \setminus L_{sum} = \{S(1), S(2), S(3), S(4), ..., S(11)\}$$

- Flocking at least 4 birds of the same type fly together
 - Together each bird has at least one immediate neighbor of the same type
 - 1. known emergent states: S(2), S(3), S(4), ..., S(11)
 - 2. unknown emergent state: S(1)

Experimental Results

- Java simulator
- Equal numbers of ducks and geese

	number of states			L_{ξ}
number of birds	L_{whole}^{I}	L_{sum} L_{ξ}		$\overline{L_{whole}^{I}}$
4	13	767	6	0.46
6	18	70,118	12	0.67
8	13	509,103	9	0.69
10	26	13,314,006	23	0.88

Summary

- Grammar-based set-theoretic approach
 - Reduce state space
 - Without a priori knowledge of emergence
 - Agents of different types, mobile agents, and open systems
- Example of boids model
- Open issues: reduce state space, reasoning of emergent property states

Q & A

Thank You!

[teoym,luongbal]@comp.nus.edu.sg claudia.szabo@adelaide.edu.au

Y. M. Teo, B. L. Luong, C. Szabo, Formalization of Emergence in Multi-agent Systems, ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, Montreal, Canada, May 19-22, 2013.

Separation Rule

- Goal: avoid collision with nearby birds
- How: if duck b is close to another bird a, i.e. within ε cells, then b flies away from a

```
separtion(b) = \sum_{distance(a,b) \le \varepsilon} b.position - a.position
```

```
separation(boid b)

vector c = 0;

for each boid a

if |a.position - b.position| ≤ ε then

c = c - (a.position - b.position)

return c
```

Alignment Rule

- Goal: fly as fast as nearby ducks
- How: change velocity of duck b λ % towards the average velocity of its neighbor ducks

```
alignment(b) = ((\sum_{\substack{duck(a)\\neighbor(a,b)}}^{k} a.velocity)/k - b.velocity)/\lambda
```

```
Alignment(boid b)

vector c = 0;

integer k = 0;

for each neighbor duck a

k = k + 1;

c = c + a.velocity;

endfor

c = c / k;

return (c - b.velocity) / A
```

Cohesion Rule

- Goal: stay close to nearby ducks
- How: move duck b γ% towards the center of its neighbor ducks

```
cohesion(b) = ((\sum_{\substack{duck(a)\\neighbor(a,b)}}^{k} a.position)/k - b.position)/\gamma
```

```
Cohesion(boid b)

vector c = 0;

integer k = 0;

for each neighbor duck a

k = k + 1;

c = c+ a.position;

endfor

c = c / k;

return (c - b.position) / y

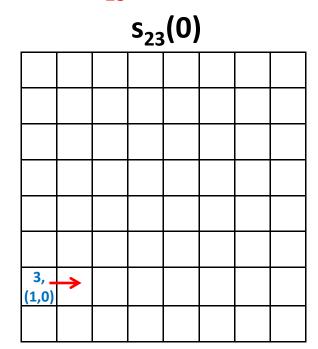
PADS 2013, Montreal, Canada, 19-22 May
```

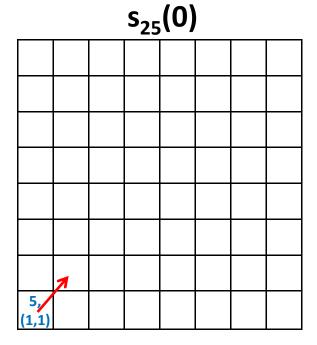
L_{sum}

- $L_{sum} = superimpose(L(A_{11}), ..., L(A_{15}), L(A_{21}), ..., L(A_{25}))$
- For illustration, consider two geese:

 $L_{sum} = superimpose(L(A_{23}), L(A_{25}))$

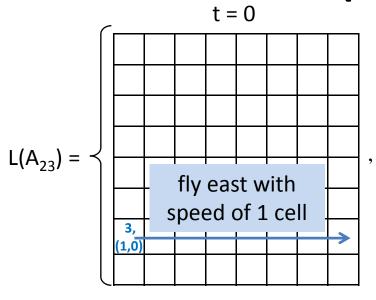
= $L(A_{23})$ superimpose ($L(A_{25})$) U $L(A_{25})$ superimpose ($L(A_{23})$)

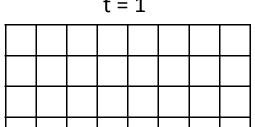


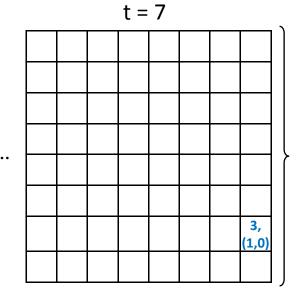


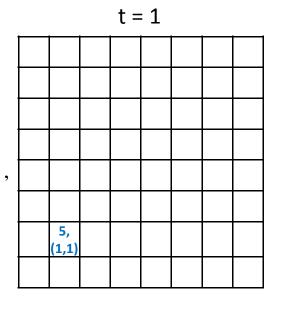
$L(A_{23})$ and $L(A_{25})$

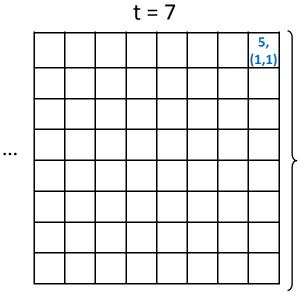
(1,0)











$L_{sum} = superimpose(L(A_{23}), L(A_{25}))$

