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Energy Use of Datacenters 

• Energy consumption of large-scale data centers and its costs  
are significant 
– 2006 - 6,000 data centers in US consumed 61x109  KWh of 

energy, 1.5% of all electricity consumption, at a cost of 
$4.5 billion 

– 2006-2011 - from 7 GW  to 12 GW, 10 new power plants 
 

• 1998-2007: performance of supercomputers (+7,000%) has 
increased 3.5 times faster than their operating efficiency* 
(+2,000%) 

 
 

       *operating efficiency of a system = performance per Watt of power 
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Datacenter Power Usage 
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Source: L. Barroso, J Clidaras and U. Hölzle, The Datacenter as a Computer: An Introduction to 
Warehouse-Scale Machines, Morgan Claypool, 2013 



Wimpy vs Brawny Servers  
[Gupta et al. 2013] 
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Intra-node Heterogeneity 

• KnightShift: [Wong et al. 2012] 

– Low utilizations, lower energy proportionality 

– Knight responds to low-utilization requests  

– Enables two energy-efficient operating regions 

 

• Thin servers with smart pipes: [Lim et al. 2013] 

– Accelerator for memcached  

– 6X-16X power-performance improvement 
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Inter-node Heterogeneity 

• Dynamic request allocation on heterogeneous 
clusters 
– Throughput vs. power [Heath et al. 2005] 

– Pikachu: dynamic load balancing among fast and 
slow nodes for MapReduce  [Gandhi et al. 2013] 

• Static analysis of single workload on 
heterogeneous clusters  
– Unexplored from energy-time performance 

perspective 
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Objective 

• For a given application with a power budget,  
to determine energy efficient heterogeneous 
configurations that meet an execution time 
deadline. 

– Energy efficient configurations meet a given 
deadline with the minimum energy 
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Contributions 

• A measurement-based analytical model to 
determine energy efficient configurations on a 
mix of heterogeneous nodes  
– Meets a deadline with minimum energy 

 

• Our analysis shows that energy-deadline 
Pareto frontier consisting of heterogeneous 
mixes is almost always more energy-efficient 
than homogeneous clusters 
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Approach 
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Approach 
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Applications 

Broad range of datacenter application domains 
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Domain Program Problem Size 

HPC EP 2,147,483,648 random numbers 

Web Server memcached 600,000 GET/SET operations 

Streaming video x264 600 frames 704 × 576 

Financial Black-scholes 500,000 stock options 

Speech recognition Julius 2,310,559 samples 

Web security RSA-2048 5000 keys verifications 



Heterogeneous System  

• ARM v7-A Cortex-A9 

• quad-core, 0.2 to 1.4GHz 
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• AMD K10, x86_64 

• six-core, 0.8 to 2.1GHz 

 

 



Baseline Execution 

• Measurements needed only for a single node, for 
each type of node 
– non-intrusive hardware performance counters 

• Execute the program for a very small problem 
size 
– measure instructions, computation cycles and stall 

cycles 
– Ex: measure instructions per GET operation of 

memcached 

• Execute micro-benchmarks to measure active and 
stall power of processor cores 
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Execution Time Model 
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Parallel Application 

nARM 
nAMD 

match the execution rates between 
ARM and AMD nodes 

T(nARM) ≈ T(nAMD) 
 

within a type of node 
workload is equally divided 

T(nARM) ≈ 
TARM(1) 

nARM
 

 
T(1)  ≈ max( TCPU , TI/O  ) [CPU and I/O overlap]*  

TCPU  ≈ Tcore,work  + Tcore,stall 
* B.M. Tudor and Y.M. Teo, On Understanding the Energy Consumption of ARM-based Multicore Servers, Proceedings of ACM 

SIGMETRICS, pp 267-278, Carnegie Mellon University, Pittsburgh, USA, June 17 - 21, 2013 

http://www.comp.nus.edu.sg/~teoym/pub/13/SIGMETRICS2013-p267.pdf
http://www.comp.nus.edu.sg/~teoym/pub/13/SIGMETRICS2013-p267.pdf
http://www.comp.nus.edu.sg/~teoym/pub/13/SIGMETRICS2013-p267.pdf


Execution Time Model 

• Tcore,work  ≈ 
computational work cycles 

clock  frequency   

 

• Tcore,stall ≈ 
stall cycles due to memory contention 

clock  frequency
 

 

– Stall cycles increase linearly with  

• increase in core clock frequency  

• increase in the number of cores 
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Energy Model 

• Total Energy = EARM × nARM + EAMD × nAMD 

• Enode  = E core + E mem + E I/O + Eidle 

• Ecore = Pcore,act × Tcore,work + Pcore,stall × Tcore,stall  

– Power × Time  

– uses execution time model  

– measured values for Pcore,act , Pcore,stall  
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Model Summary 

Execution Time Model 

T max(TARM,TAMD) 

TARM max(TCPU,ARM,TI/O,ARM) 

TCPU,ARM max(Tcore,ARM,Tmem,ARM) 

Tcore,ARM Icore,ARM× (WPIARM+ SPIcore,ARM) 

fARM

 

Tmem,AR

M 

Icore,ARM× (WPIARM+ SPImem,ARM) 

fARM

 

Ti/o,ARM max(TI/O,ARM , 1/λI/O) 

Energy Model 

E EARM +EAMD 

EARM (Ecore,ARM +Emem,ARM +EI/O,ARM +Eidle,ARM) × nARM 

Ecore,ARM (Pcore,act,ARM × Tact,ARM + Pcore,stall,ARM × Tstall,ARM) × cact, ARM 
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Model Validation 
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Performance-to-Power Ratio 
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memory bound 
on ARM 

x86 ISA has special 
instruction for cryptography 



Research Questions 

1. Is heterogeneity better than homogeneity ? 

2. Are larger mixes of heterogeneous nodes 
better ? 

3. … 
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Heterogeneity versus Homogeneity 
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(36,380) 



Heterogeneity versus Homogeneity 
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Heterogeneity versus Homogeneity 
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Heterogeneity 
 
• Enables a sweet region 

 
• Saves more energy for a  
    given deadline 



Are larger mixes better ? 
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• Larger mixes are 
more energy 
efficient 
 

• Enables more 
number of “sweet 
spots” 

 
 
 



Observations 

1. Heterogeneity allows larger energy savings 
compared to homogeneous systems. 

2. Larger mixes increase the number of 
configurations in the sweet region. 

3. … 
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Conclusions 

• measurement-driven analytical model to 
determine energy-efficient configurations for 
a single workload on a heterogeneous mix 
with different ISA’s 

 

• Heterogeneity is almost always more energy-
efficient than homogeneity 
– But not for programs with large sequential 

fraction and high parallel overhead 

 
 

 

 

 

10-Sep-14 29 ICPP 2014 



Questions ? 

Thank you  

[lavanya,teoym]@comp.nus.edu.sg 

 

L. Ramapantulu, B.M. Tudor, D.Loghin, T. Vu and Y.M. 
Teo, Modeling the Energy Efficiency of Heterogeneous 
Clusters, Proceedings of 43rd International Conference 
on Parallel Processing, Minneapolis, USA, Sep 9-12, 
2014. 
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Thank you 

 

 



BACKUP SLIDES 



System Overview 

Node AMD K10 ARM Cortex-A9 

ISA X86_64 ARM v7-A 

Cores/node 6 4 

Core clock frequency 0.8-2.1 GHz 0.2-1.4 GHz 

L1 data cache 64KB/core 32KB/core 

L2 cache 512KB/core 1MB/node 

L3 cache 6MB /node NA 

Memory 8GB DDR3 1GB LP-DDR2 

I/O bandwidth 1Gbps 100MBps 

10-Sep-14 ICPP 2014 33 



Stalls due to memory contention 
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CPU and I/O Overlap 

• Tudor et al.  [SIGMETRICS’13] 

• Server workloads (Ex: memcached) 
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What is a good mix ?  
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• Replacing a few 
brawny nodes by 
wimpy nodes 
enables a sweet 
region 
 

 
 
 



Other Research Questions 

• Queuing Delay 

– As cluster utilization increases due to faster job 
arrivals, the energy savings are further amplified, 
but the minimal response time achievable is 
reduced 
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Queuing Delay 
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