Modeling the Energy Efficiency of Heterogeneous Clusters

Lavanya Ramapantulu, Bogdan Marius Tudor, Dumitrel Loghin, Trang Vu, Yong Meng Teo Department of Computer Science National University of Singapore

> 10th September 2014 43rd International Conference on Parallel Processing, Minneapolis, MN, USA

Outline

- Motivation
- Objective
- Methodology
- Analysis
- Conclusions

Energy Use of Datacenters

- Energy consumption of large-scale data centers and its costs are significant
 - 2006 6,000 data centers in US consumed 61x10⁹ KWh of energy, 1.5% of all electricity consumption, at a cost of \$4.5 billion
 - 2006-2011 from 7 GW to 12 GW, 10 new power plants
- 1998-2007: performance of supercomputers (+7,000%) has increased 3.5 times faster than their operating efficiency* (+2,000%)

*operating efficiency of a system = *performance per Watt of power*

Datacenter Power Usage

Source: L. Barroso, J Clidaras and U. Hölzle, *The Datacenter as a Computer: An Introduction to Warehouse-Scale Machines*, Morgan Claypool, 2013

Wimpy vs Brawny Servers [Gupta et al. 2013]

performance [MFLOPS]

Intra-node Heterogeneity

- KnightShift: [Wong et al. 2012]
 - Low utilizations, lower energy proportionality
 - Knight responds to low-utilization requests
 - Enables two energy-efficient operating regions

- Thin servers with smart pipes: [Lim et al. 2013]
 - Accelerator for memcached
 - 6X-16X power-performance improvement

Inter-node Heterogeneity

- Dynamic request allocation on heterogeneous clusters
 - Throughput vs. power [Heath et al. 2005]
 - Pikachu: dynamic load balancing among fast and slow nodes for MapReduce [Gandhi et al. 2013]
- Static analysis of single workload on heterogeneous clusters
 - Unexplored from energy-time performance perspective

Objective

- For a given application with a power budget, to determine energy efficient heterogeneous configurations that meet an execution time deadline.
 - Energy efficient configurations meet a given deadline with the minimum energy

Contributions

 A measurement-based analytical model to determine energy efficient configurations on a mix of heterogeneous nodes

– Meets a deadline with minimum energy

 Our analysis shows that energy-deadline Pareto frontier consisting of heterogeneous mixes is almost always more energy-efficient than homogeneous clusters

Outline

- Motivation
- Objective
- Methodology
- Analysis
- Conclusions

Approach

Approach

Applications

Broad range of datacenter application domains

Domain	Program	Problem Size
HPC	EP	2,147,483,648 random numbers
Web Server	memcached	600,000 GET/SET operations
Streaming video	x264	600 frames 704 × 576
Financial	Black-scholes	500,000 stock options
Speech recognition	Julius	2,310,559 samples
Web security	RSA-2048	5000 keys verifications

Heterogeneous System

- AMD K10, x86_64
- six-core, 0.8 to 2.1GHz
- ARM v7-A Cortex-A9
- quad-core, 0.2 to 1.4GHz

Baseline Execution

- Measurements needed only for a single node, for each type of node
 - non-intrusive hardware performance counters
- Execute the program for a very small problem size
 - measure instructions, computation cycles and stall cycles
 - Ex: measure instructions per GET operation of memcached
- Execute micro-benchmarks to measure active and stall power of processor cores

Execution Time Model

Execution Time Model

• $T_{core,work} \approx \frac{computational work cycles}{clock frequency}$

• $T_{core,stall} \approx \frac{stall cycles due to memory contention}{clock frequency}$

- Stall cycles increase linearly with
 - increase in core clock frequency
 - increase in the number of cores

Energy Model

- Total Energy = $E_{ARM} \times n_{ARM} + E_{AMD} \times n_{AMD}$
- $E_{node} = E_{core} + E_{mem} + E_{I/O} + E_{idle}$
- $E_{core} = P_{core,act} \times T_{core,work} + P_{core,stall} \times T_{core,stall}$
 - Power × Time
 - uses execution time model
 - measured values for P_{core,act} , P_{core,stall}

Model Summary

Execution Time Model				
т	max(T _{ARM} ,T _{AMD})			
T _{ARM}	max(T _{CPU,ARM} ,T _{I/O,ARM})			
T _{CPU,ARM}	max(T _{core,ARM} ,T _{mem,ARM})			
T _{core,ARM}	I _{core,ARM} × (WPI _{ARM} + SPI _{core,ARM})			
	f _{ARM}			
T _{mem,AR}	I _{core,ARM} × (WPI _{ARM} + SPI _{mem,ARM})			
М	f _{ARM}			
T _{i/o,ARM}	$max(T_{I/O,ARM}, 1/\lambda_{I/O})$			
Energy Model				
E	E _{ARM} +E _{AMD}			
E _{ARM}	(E _{core,ARM} +E _{mem,ARM} +E _{I/O,ARM} +E _{idle,ARM}) × n _{ARM}			
E _{core,ARM}	$(P_{\text{core,act,ARM}} \times T_{\text{act,ARM}} + P_{\text{core,stall,ARM}} \times T_{\text{stall,ARM}}) \times c_{\text{act, ARM}}$			

Model Validation

Program	Configuration		Execution time	Energy
Trogram	ARM nodes	AMD nodes	error[%]	error[%]
EP	8	1	3	10
	8	0	3	2
memcached	8	1	10	8
	8	0	3	1
x264	8	1	11	10
	8	0	13	11
blackscholes	8	1	4	7
	8	0	4	13
Julius	8	1	13	1
	8	0	1	2
RSA-2048	8	1	2	8
	8	0	1	12

Outline

- Motivation
- Objective
- Methodology
- Analysis
- Conclusions

Performance-to-Power Ratio

Research Questions

- 1. Is heterogeneity better than homogeneity ?
- 2. Are larger mixes of heterogeneous nodes better ?
- 3. ..

Heterogeneity versus Homogeneity

Heterogeneity versus Homogeneity

Heterogeneity versus Homogeneity

Are larger mixes better ?

Observations

- 1. Heterogeneity allows larger energy savings compared to homogeneous systems.
- 2. Larger mixes increase the number of configurations in the sweet region.

3. ..

Conclusions

- measurement-driven analytical model to determine energy-efficient configurations for a single workload on a heterogeneous mix with different ISA's
- Heterogeneity is almost always more energyefficient than homogeneity
 - But not for programs with large sequential fraction and high parallel overhead

Questions?

Thank you [lavanya,teoym]@comp.nus.edu.sg

L. Ramapantulu, B.M. Tudor, D.Loghin, T. Vu and Y.M. Teo, **Modeling the Energy Efficiency of Heterogeneous Clusters**, Proceedings of 43rd International Conference on Parallel Processing, Minneapolis, USA, Sep 9-12, 2014.

Thank you

BACKUP SLIDES

System Overview

Node	AMD K10	ARM Cortex-A9
ISA	X86_64	ARM v7-A
Cores/node	6	4
Core clock frequency	0.8-2.1 GHz	0.2-1.4 GHz
L1 data cache	64KB/core	32KB/core
L2 cache	512KB/core	1MB/node
L3 cache	6MB /node	NA
Memory	8GB DDR3	1GB LP-DDR2
I/O bandwidth	1Gbps	100MBps

Stalls due to memory contention

CPU and I/O Overlap

- Tudor et al. [SIGMETRICS'13]
- Server workloads (Ex: memcached)

What is a good mix ?

Other Research Questions

- Queuing Delay
 - As cluster utilization increases due to faster job arrivals, the energy savings are further amplified, but the minimal response time achievable is reduced

Queuing Delay

