DEXTERJS: Robust Testing Platform for DOM-based XSS
Vulnerabilities

Inian Parameshwaran
Hung Dang

Enrico Budianto
Atul Sadhu

Shweta Shinde
Prateek Saxena

National University of Singapore, Singapore
{inian, enricob, shweta24, hungdang, atulsadh, prateeks}@comp.nus.edu.sg

ABSTRACT

DOM-based cross-site scripting (XSS) is a client-side vulnerabil-
ity that pervades JavaScript applications on the web, and has few
known practical defenses. In this paper, we introduce DEXTERJS, a
testing platform for detecting and validating DOM-based XSS vul-
nerabilities on web applications. DEXTERJS leverages source-to-
source rewriting to carry out character-precise taint tracking when
executing in the browser context — thus being able to identify vul-
nerable information flows in a web page. By scanning a web page,
DEXTERJS produces working exploits that validate DOM-based
XSS vulnerability on the page. DEXTERJS is robust, has been
tested on Alexa’s top 1000 sites, and has found a total of 820 dis-
tinct zero-day DOM-XSS confirmed exploits automatically.

Categories and Subject Descriptors

D.1.2 [Programming Techniques]: Automatic Programming; D.2.5
[Software Engineering]: Testing and Debugging; D.4.6 [Operating
Systems]: Security and Protection

Keywords
Web Security, Taint Analysis, DOM-based XSS

1. INTRODUCTION

JavaScript has become a scripting language which goes beyond
the web platform. It now powers many popular web applications,
HTMLS5-based mobile applications, and server-side scripts (e.g.,
NodelS). However, presently, applications built with JavaScript are
fraught with DOM-based XSS, a code injection vulnerability which
is known to be highly pervasive and an elusive category of vulner-
abilities for many commercial scanners to find [15]. A majority
of popular web sites including Google, Twitter and Yahoo have re-
cently been vulnerable to these attacks [1,2,4]. Nearly all available
solutions for detecting DOM-based XSS vulnerability today, in-
cluding the research proposals (e.g., FLAX [17], Lekies ef al. [15])
and commercial tools (e.g., DominatorPro [5]), are designed as
modifications to a JavaScript interpreter (implemented in a web
browser). This approach has practical limitations as the analysis

infrastructure is restricted to specific browsers or platforms which
fail to capture the massive variation in program behavior that exists
on the real end-user device/system.

In this work, we develop an end-to-end testing platform called
DEXTERJS. DEXTERJS robustly analyses and finds DOM-based
XSS vulnerabilities in client-side web applications, with the abil-
ity to produce working exploits for vulnerable applications. DEX-
TERJS instruments JavaScript of a website that client visits to carry
out character-precise taint tracking — thus guaranteeing the analy-
sis engine is browser-agnostic. Once the instrumented application
runs on the client’s browser, it dynamically analyses the portions of
tainted strings that are used in the sensitive code evaluations func-
tions. The instrumented application then records such potentially
vulnerable flows. Based on the information provided by the logs
(Section 3), DEXTERIJS then constructs candidate exploits and tests
them on the actual website to verify its exploitability. Once they
have been confirmed, the exploits are then reported to the user via
a web interface.

We carry out a large-scale scan on Alexa’s top 1000 websites to
evaluate the robustness of DEXTERJS. Our analysis of JavaScript
from 228,541 URLs suggests that there are 777,082 distinct dy-
namic code evaluation instances constructed from untrusted data
— which can potentially be exploited. Among these potentially
vulnerable flows, we find a total of 820 distinct zero-day DOM-
based XSS vulnerabilities across 89 different domains along with
sample exploits. Our practical detection of DOM-based XSS at-
tacks requires no modification of browsers or server-side code, and
does not require users to install any plug-ins or extensions to web
browsers, as compared to existing detection tools [5, 15].

2. TECHNICAL CHALLENGES

In designing DEXTERIJS, one of the key capabilities we devel-
oped is a robust source-to-source transformation engine for JS ap-
plications. DEXTERJS enables intrusive instrumentation to the Java-
Script application, specifically character-precise dynamic taint anal-
ysis, for identifying vulnerable sinks. This approach allows the in-
strumented code to execute on any number of browsers (or HTMLS5-
based) backends. Further, the analysis implementation is easy to
maintain for a variety of browser versions and can gracefully be
extended to handle future language changes without requiring re-
implementation.

Designing a robust, semantics-preserving JavaScript transforma-
tion system has been technically challenging in our experience.
Though a number of frameworks provide APIs for general-purpose
JavaScript rewriting, DEXTERJS handles a variety of practical chal-
lenges arising from many dimensions: the dynamic nature of Java-
Script, the pervasive use of reflection, unconventional or browser-
specific scoping rules, browser limitations on code size blowup,

App A
PP @ Instrumentation

o e
/ IWebApp) :
By 1
— E | it 1

. xplol ! Exploit

Website W Verification | Geanator

®
1

R

webApp) % .
Crawler’s browser

Exploit candidates

.9
/.&‘

Web Interface
(dexterjs.io)

Figure 1: Overview of DEXTERJS’s design. After receiving a URL of website 1/, DEXTERJS instruments the client-side code of the
web page (Step 1). It then instruments the client-side code and executes it on various browsers (Step 2). DEXTERJS then analyzes
vulnerable flows in the application and reports those to the exploit generator module as exploit candidates. The module then verifies
whether such flows are exploitable by constructing sample exploits and testing it against the scanned web page of W (Step 3).

and completeness in handling browser built-in objects. Handling
these features robustly by source rewriting, rather than as modifi-
cations to specific browser versions allows DEXTERJS to perform
instrumentation that can run on multiple browser backends.

3. CORE ANALYSIS ENGINE

Figure 1 illustrates the design overview of DEXTERJS’s core
analysis engine. In this section we detail two core modules of DEX-
TERJS namely the instrumentation engine and the exploit genera-
tor. A detailed description of the techniques underlying DEXTERJS
can be found in [16].

3.1 Instrumentation Engine

DOM-based XSS can be seen as an information flow problem
where portions of strings — potentially under attacker’s control
(e.g., URL, cookie value) — are being evaluated as code through
JavaScript code evaluation functions like eval () or being used in
unsafe dynamic DOM constructions, such as via document.write
or innerHTML. Therefore, taint tracking can be reliably used to
detect such vulnerabilities. DEXTERJS acts as a trusted man-in-
the-middle proxy that intercepts any HTTP(S) requests from the
browser (Figure 1 Step 1), identifies scripts in the responses, and
rewrites them to perform character-precise taint tracking. The taint
propagation logic and metadata is kept within the website’s execu-
tion context in the browser. Once the user submits the URL to be
scanned, DEXTERJS automatically crawls and instruments the ap-
plication using a selenium-based crawler (Figure 1 Step 2). We use
dynamic taint analysis to detect all flows from unsafe input sources
(i.e., can be controlled by attacker) to code execution sinks. The
list of all the sources and sinks used by DEXTERIJS is the same as
in [16].

Storage and Propagation of Taint Information. DEXTERJS stores
taint information along with each string and uses boxing to accom-
plish this as shown in Listing 1. This approach is efficient in look-
ing up taint information and does not lead to a memory blow up.
In our experience other approaches such as storing the taint infor-
mation in a separate namespace or in the global namespace is not a
scalable approach [16].

Listing 1: Conversion to Objects to track taint information.
|l var a = new String("foo"); // a is string object

2 a.taint = true;

3 console.log(a.taint); // prints true

The taint information is propagated using immediately invoked
function expressions (or IIFE [9]) as shown in Listing 2.

Listing 2: ITFE used to group taint analysis statements

1 var a = (function() {
2 var rhs = b();

3 return rhs + "foo";
4 1) 0;

3.2 Exploit Generation

Our exploit generator module utilizes input from the instrumen-
tation engine that reports potentially exploitable taint flows. This
module analyses the tainted flows and generates context-based ex-
ploits, which can be easily verified to the original vulnerable web
pages. Currently, the module supports exploit generation for URL-
based DOM-XSS, similar to what has been proposed in [15]. We
explain how this module works based on a real-world example il-
lustrated in Figure 2.

3.2.1 Flow Parser

This module accepts the logs supplied by the instrumentation
engine as its input. The logs contain all the tainted flows dis-
covered during the execution of instrumented web application by
the crawler. The flow parser extracts following information from
the logs: taintID for storing a unique ID for each tainted flow,
benignURL which is the URL of the page where the taint flow
was discovered, taintSource which contains the type of source
and the characters in the source string which are used in the sink,
taintSink which is the type of sink and the exact characters which
are controlled by the attacker. In the example shown in Figure 2,
taintSource is the function getAttribute () and taintSink is
document .write ().

3.2.2 Context Identifier

Tainted strings can exist in various parts of a web page, such
as in HTML contents and attributes (e.g., href, onload), CSS
properties, or JavaScript (e.g., <script> tag). We term parts of
a web page where the tainted string was injected as context. The
context parser is responsible for finding the context of the injection
using the taintSource and taintSink information. It generates a
HTML parse tree based on the given input. Using this parse tree
and the character-precise taint information, it figures out the exact
context in which the injection takes place (Figure 2 Step 3).

3.2.3 Exploit Generator

In order for an exploit to work, the tainted string is then replaced
with an attack vector. The attack vector to be injected must be
adjusted to the context where the attack vector is going to be in-
jected in a web page (see Section 3.2.2). This module first tries

URL to scan =
www.url.com/?lingua=IT

DexterJS I:>

Web

Interface
®

var pLang = returnItem(‘lingua’)
var oeTags = ‘<object width=“800"
height="600">"+
’<param name=“FlashVars” I$
value = “lang =' + pLang +
V7 /><\/object>’;
document.write (oceTags) ;

®

taintSource: pLang = returnltem(‘lingua’)
taintSink: document.write(oeTags)

Injection context: value of attribute “value”
Inside HTML tag “param” inside “object”

:D Exploit
Generator @

D

www.urI.com{?lingua:IT"/>‘<script>a|ert()</script>‘<param vaIue:”Iang‘ @

Breakout Attack Vector Escape Seq.

Figure 2: Overview of DEXTERJS’s exploit generation module. First, DEXTERJS receives URL of a web page to be scanned (Step 1)
and get the source code of the web page (Step 2). DEXTERJS then instruments the code and run it on various browsers. The browsers
then report any vulnerable flows found to the exploit generator module by attaching the following information: taintSource,
taintSink, and the tainted value itself. The exploit generator module then decides the context where the sample exploits must
be injected (Step 3). It then generates the final exploit URL, which will be verified to the original website (Step 4).

to break out into the JavaScript context from the context identi-
fied by the Context Identifier. This is necessary to make sure that
the attack vector is always injected in a script context. Using the
parse tree from Context Identifier, DEXTERIJS is able to generate
the required sequence to break into the JavaScript context. After
generating the breakout sequence, DEXTERJS generates browser
specific attack vectors based on the type of sink, the context infor-
mation, taintSink and taintSource. Our attack vectors are based
on publicly known strategies such as the XSS filter evasion cheat
sheet [13, 15]. To make sure that the rest of the page renders prop-
erly and our attack vector is executed, we generate escape sequence
and concatenate it to the existing exploit candidate. The final ex-
ploit URL is constructed by combining the output of the sub-modules
as follows.

Exploit = BreakOutSequence + Attack Vector + EscapeSequence

A sample of resulted exploit URL is shown in Figure 2 Step 4.
Since our focus is on DOM-based XSS carried out via URLs, the
end result of this step is a set of candidate exploit URLSs containing
the attack vector that needs to be validated.

Exploit Verifier. This module is responsible for validating whether
candidate exploit URLs successfully inject the attack code into the
scanned web page (Figure 1 Step 3). If the attack is successful, the
injected code will send out the taint|D of the tainted flow to the
exploit verifier webpage. The exploit verifier webpage stores these
taintIDs in a file. Once a web page is confirmed as exploitable, the
module sends the vulnerable URL, the exploits found in that URL,
and the different browsers in which the page is exploitable.

3.3 Noticeable Features

DEXTERIJS is designed to instrument and scan both HTTP and
HTTPS websites. DEXTERJS use mitmproxy to generate valid
certificates for the websites visited on the fly and use the analysis
engine to rewrite the scripts in these pages. DEXTERJS can scan
pages which require login by accepting valid cookies from the user.
These cookies are then passed on to the server when making the
request to get the authenticated version of the page to be scanned.

4. IMPLEMENTATION

We implement DEXTERJS as a proxy server based on mitm-
proxy [11]. We build DEXTERJS’s instrumentation engine and ex-
ploit generator modules using the Node.js platform. We implement
our source-to-source rewriting logic with 1,896 lines of JavaScript
code using Esprima [6] and Cheerio [7] node modules.

We utilize the Selenium framework [12] to implement a web
crawler and a simple GUI fuzzing tool. Our Python based crawler
is written in 808 lines of code. We have tested the crawler on main-
stream browsers such as Chrome, Firefox, Opera and Safari. It

supports Internet Explorer in only a limited manner due to the in-
stability of the existing Selenium driver. Our crawler is capable
of configuring the browser proxy, enforcing a page-load time-out,
browsing in private-mode and controlling specific browser features
like the Chrome’s XSS-auditor. It performs a wide range of in-
teractions on websites, such as extracting data from DOM nodes,
filling forms or input boxes, triggering different events — which
are necessary to dynamically analyze features in the instrumented
web application [14].

5. EVALUATION

We demonstrate the robustness of DEXTERJS by instrumenting
real-world websites and publicly-available benchmarks for DOM-
based XSS. All the experiments were conducted on an Intel Xeon®)
2.0 Ghz CPU with 64 GB RAM.

Accuracy. We test the accuracy of DEXTERJS instrumentation en-
gine against two DOM-based XSS benchmarks namely IBM Java-
Script test suite [10] and Google’s Firing Range [8]. We report that
DEXTERJS is able to detect all DOM-based XSS vulnerabilities
and has zero false negative rates with respect to these benchmarks.

Scalability. We crawl 228,541 page URLs starting from the Alexa
Top 1000. In total, DEXTERJS instruments 13,255,378 HTML and
15,769,329 JS files. Our evaluation shows that the DOM tree of the
web page remains unchanged after instrumentation after compar-
ing the DOM tree of the instrumented and non-instrumented ap-
plications using Selenium driver. This indicates that the instru-
mentation does not alter the original functionality of the client-
side applications. Of these sites, DEXTERJS automatically gen-
erates working exploits for 820 vulnerable points of web pages on
89 different domains, meaning that there are 820 exploitable web
pages. These domains include many high-profile websites such as
comodo.com and washingtonpost.com. The majority of the vulner-
able flows come from a source-sink pair location.href and
document . write, which accounts for 55% of the observed vul-
nerabilities.

Robustness. The browser-agnostic nature of DEXTERJS allows us
to measure browser-specific taint flows, i.e., taint flows that exhibit
only on some browsers. We collect a random sample of 100 taint
flows and found 3 instances of flows that exhibit only on Firefox
and 2 only on Chrome, out of those 100 flows. Browser-specific
taint flows justifies the need for browser-agnostic testing platform
like DEXTERIJS.

6. TOOL AVAILABILITY

We deploy DEXTERJS as a web service located at https://
dexterjs. io. This service is accessible to user after completing
registration process. During the registration process, user needs to
supply her e-mail address which will later be used. Once logged in,

== || Dashboard

https:/public-firing-range.appspot.com

SCAN BEHIND LOGIN

(a) (b)

Scanning https://public-firing-range.appspot.com/address/location. hash/eval
Stage 1 - Fetching the webpage

Stage 2 - Analysing the webpage

Stage 3 - Generating exploits

Stage 4 - Validating exploits

(c)

Figure 3: Screenshot DEXTERJS Web Interface. (a) Record of
previous scans. (b) Interface to scan a web page. (c) Analysis
result, including source-sink distribution, generated exploits,
and validated exploits.

users can simply enter the URL of a web page that they would like
to scan, as shown in Figure 3. Once completed, a report of the vul-
nerable DOM-based XSS flows and a URL containing exploits of
the scanned web page will be shown to the user. We release a video
demonstrating step-by-step guideline of using DEXTERJS [3]. The
website has been running since February 2015 and garnered 2,872
pageviews (according to Google Analytics) and 88 registered users.

7. RELATED WORK

Dynamic taint tracking has been employed to perform informa-
tion flow analysis of JavaScript-based applications. The closest
study on JS dynamic analysis to our work are FLAX [17] and
Jalangi [18]. FLAX uses character level taint tracking for dynamic
analysis in JavaScript applications. Jalangi employs a technique to
record and replay a user-selected part of the program in their dy-
namic analysis tool called Jalangi. Unlike our technique, FLAX
and Jalangi perform dynamic analysis after the actual program has
finished execution. Our technique encompasses in-situ dynamic
analysis to give immediate results. In order to achieve this, we
implement character-level taint tracking as opposed to FLAX and
complete code instrumentation as opposed to partial instrumenta-
tion carried out by Jalangi.

Even though DOM-based XSS was first mentioned nearly a decade

ago [14] and is very much prevalent, there are not many studies
proposing solution to detect such vulnerabilities. Lekies et al. [15]
proposed an approach which automatically detects and validates
DOM-based XSS vulnerabilities similar to DOMinatorPRO [5], a
commercial tool. Both these tools modify specific browser ver-
sions to achieve their purpose. DEXTERJS, on the other hand, is
browser-agnostic and can be directly adopted to perform web secu-
rity testing without installing additional software or plug-ins.

8. CONCLUSION

We presented DEXTERJS, a web security testing platform for
finding DOM-based XSS vulnerabilities in web applications, as
well as generating working exploits for vulnerable web pages of
the applications. DEXTERJS features character-precise taint track-
ing that is of wide interest in many security analyses. Our tool is
robust and scales to the Alexa Top 1000 sites on multiple browser
backends. Using DEXTERJS, we find hundreds of zero-day DOM-
based XSS exploits. DEXTERIJS is available through a web inter-
face at https://dexterjs.io/

9. ACKNOWLEDGEMENT

We thank Abhinit Ambastha for his assistance. This research
is supported in part by the National Research Foundation, Prime
Minister’s Office, Singapore under its National Cybersecurity R&D
Program (Award No. NRF2014NCR-NCRO0O01-21) and adminis-
tered by the National Cybersecurity R&D Directorate. This work
is also supported in part by a university research grant from Intel.

10. REFERENCES

[1] A Twitter DomXSS, a wrong fix and something more.
http://goo.gl/dHF457.

[2] Analyzing a Dom-Based XSS in Yahoo!
http://goo.gl/yXKtf4.

[3] Dexter]S Video Demo. https:
//www.youtube.com/watch?v=73BsDij5Fu4/.

[4] DOM XSS on Google Plus One Button.
http://goo.gl/ohRAkKM.

[5] DominatorPro: Securing Next Generation of Web
Applications.
https://dominator.mindedsecurity.com/.

[6] ECMAScript Parsing Infrastructure for Multipurpose
Analysis. http://esprima.org/.

[7] Fast, Flexible, and Lean Implementation of Core jQuery
Designed Specifically for the Server.
https://github.com/cheeriojs/cheerio.

[8] Firing Range.
http://public-firing-range.appspot.com/.

[9] Immediately-invoked Function Expression.
http://benalman.com/news/2010/11/
immediately-invoked-function-expression/.

[10] LaBaSec: Language-based Security. http:
//researcher.watson.ibm.com/researcher/
view_group_subpage.php?id=1598.

[11] Mitmproxy: a man-in-the-middle proxy.
http://mitmproxy.org/.

[12] SeleniumHQ Browser Automation.
http://seleniumhqg.org/.

[13] XSS Filter Evasion Cheat Sheet.
https://www.owasp.org/index.php/XSS_
Filter_FEvasion_Cheat_Sheet.

[14] A.Klein. DOM Based Cross Site Scripting or XSS of the
Third Kind. Web Application Security Consortium, 2005.

[15] S. Lekies, B. Stock, and M. Johns. 25 Million Flows Later -
Large-scale Detection of DOM-based XSS. In 2013 ACM
SIGSAC Conference on Computer and Communications
Security, Berlin, Germany, November 4-8. ACM, 2013.

[16] I Parameshwaran, E. Budianto, S. Shinde, H. Dang,

A. Sadhu, and P. Saxena. Auto-Patching DOM-Based XSS at
Scale. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 2015.

[17] P. Saxena, S. Hanna, P. Poosankam, and D. Song. FLAX:
Systematic Discovery of Client-side Validation
Vulnerabilities in Rich Web Applications. In Network and
Distributed System Security Symposium, NDSS 2010, San
Diego, California, USA, 2010, 2010.

[18] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A
Selective Record-replay and Dynamic Analysis Framework
for JavaScript. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pages 488—498.
ACM, 2013.

