Efficient Detection and Exploitation of Infeasible Paths
for Software Timing Analysis

Vivy Suhendra, Tulika Mitra, Abhik Roychoudhury, and Ting Chen
Department of Computer Science, National University of Singapore

{vivy, tulika, abhik, chent} @ comp.nus.edu.sg

ABSTRACT

Accurate estimation of the worst-case execution time (WCET)
of a program is important for real-time embedded software.
Static WCET estimation involves program path analysis and
architectural modeling. Path analysis is complex due to
the inherent difficulty in detecting and exploiting infeasible
paths in a program’s control flow graph. In this paper, we
propose an efficient method to exploit infeasible path infor-
mation for WCET estimation without resorting to exhaus-
tive path enumeration. We demonstrate the efficiency of our
approach for some real-life control-intensive applications.

Categories and Subject Descriptors

C.3 [Special-purpose and Application-based Systems]:
Real-time and embedded systems; D.2.8 [Software Engi-
neering]: Metrics—performance measures

General Terms

Measurement, Performance

Keywords
WCET analysis, infeasible path detection

1. INTRODUCTION

Estimating the Worst Case Ezecution Time (WCET) of
a program is an important problem in embedded system
design. WCET analysis computes an upper bound on the
program’s execution time on a particular processor for all
possible inputs. The immediate motivation of this problem
lies in schedulability analysis of real-time embedded systems.
Many embedded systems are safety critical (e.g., automo-
tive electronics) and have timing constraints. These timing
constraints impose hard deadlines on the execution time of
embedded software. WCET analysis of a program can guar-
antee that such deadlines are met.

Static WCET analysis of a program typically consists of
three phases: flow analysis to identify loop bounds and in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2006, July 24-28, 2006, San Francisco, California, USA.

Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

feasible flows through the program; architectural modeling
to determine the effects of pipeline, cache, branch predic-
tion etc. on the execution time; and finally calculation to
find an upper bound on the WCET given the results of the
flow analysis and the architectural modeling. In this paper,
we concentrate on the infeasible path detection and WCET
calculation. We note that different WCET analysis tech-
niques typically combine the results of program flow analysis
and micro-architectural modeling via a separated approach.
In this approach, the micro-architectural modeling is used
to get an estimate of the WCET of each basic block of the
program. These basic block WCET estimates are combined
with flow analysis results to produce the program’s WCET
estimate. Our WCET analysis can also be similarly inte-
grated with micro-architectural modeling.

There exist mainly three different approaches for WCET
calculation — tree-based, path-based, and implicit path enu-
meration. The tree-based approach estimates the WCET
of a program through a bottom-up traversal of its syntax
tree and applying different timing rules at the nodes (called
“timing schema”) [12]. This method is quite simple and ef-
ficient. But it is difficult to exploit infeasible paths in this
approach as the timing rules are local to a program state-
ment. Implicit path enumeration techniques [10] represent
the program flows as linear equations or constraints and at-
tempt to maximize the execution time of the entire program
under these constraints. This is done via an Integer Linear
Programming (ILP) solver. Path-based techniques estimate
the WCET by computing execution time for the feasible
paths in the program and then searching for the one with
the longest execution time. Naturally, they can handle var-
ious flow information, but they enumerate a huge number
of paths. Recent works [15] have sought to reduce this ex-
pensive path enumeration by removing infeasible paths from
the flow graph.

In this paper, we present a technique for finding the WCET
of a program in the presence of infeasible paths without
performing exhaustive path enumeration. We focus on the
path-based technique because it generates the worst-case
execution path, which is required for various compiler opti-
mization techniques that attempt to reduce the WCET (e.g.,
[18, 16]). Our technique traverses the control flow graph to
find the longest path, but avoids the high cost of path enu-
merations by keeping track of more information than just
the heaviest path during traversal. We pre-compute possible
“conflict relations” or sources of infeasibility and maintain
the heaviest path for each such source of infeasibility. As a
result, even when we find that the “heaviest” path is infea-

sible, we do not backtrack to find alternative paths. This
indeed is the key idea of the approach. In the rest of the
paper, we outline our definition of conflict relations, how
this information is used in the WCET calculation, and the
experimental results.

2. RELATED WORK

One of the earliest works on programming language level
timing analysis is the timing schema approach [14]. It is a
bottom-up compositional technique which finds the worst-
case execution time of a program fragment without con-
sidering the contexts in which it is executed. Techniques
to extend the timing schema approach with infeasible path
information have been reported in [12]. In this work, the
infeasible path patterns are user-provided.

Among other works in WCET calculation, [2] searches
for infeasible paths in a control flow graph via branch-and-
bound search. Lundqvist and Stenstrom [11] provide an
extended simulation method (which can proceed in the pres-
ence of unknown data values and allows path merging) for
detection/elimination of infeasible paths. Infeasible path
detection/exploitation in ILP-based WCET calculation has
also been investigated. Recently, many diverse kinds of flow
information have been successfully integrated into ILP [4,
13], making ILP-based WCET calculation quite popular.

Among path-based WCET calculation methods, the work
of Stappert et. al. [15] cuts complexity by (a) finding the
longest program path m, (b) checking for the feasibility of
m, and (c) removing 7 from control flow graph followed by
the search for a new longest path if 7w is infeasible. This
technique is a substantial improvement over exhaustive path
enumeration. However, if the feasible paths in the program
have relatively low execution times, then this approach still
has to examine many paths. We present experiments to
compare [15] with our method (see Section 6).

Ermedahl and Gustafson [5] use dataflow analysis to de-
rive (and exploit) infeasible paths using program semantics;
a nice feature of this work is that it also automatically de-
rives minimum and maximum loop bounds in a program.
Healy and Whalley detect and exploit branch constraints
within the framework of the path-based technique [7]. The
key idea here is to compute the effect of any assignment or
a branch on other branch outcomes; this is an efficient way
of computing many common infeasible path patterns. The-
matically, [7] is somewhat related to our work because we
also maintain/exploit pairwise conflicts between branches
and assignments. However, our WCET calculation includes
an in-built machinery to perform an accurate path-sensitive
search and yet avoid enumeration of acyclic paths in a loop.

Elimination of infeasible paths has also been studied in
the context of software model checking [8]. These works
abstract data values via a finite number of propositions and
eliminate infeasible paths by invoking an external theorem
prover. Our analysis works directly on the control flow graph
(data values are not considered at all) but removes the need
for external theorem provers by detecting and exploiting a
limited notion of infeasibility.

3. INFEASIBLE PATH INFORMATION

In this section, we describe the inferencing of infeasible
path information that is exploited in our WCET calcula-
tion method. For efficient analysis, we only detect/exploit

infeasible path information within a loop body, that is, we
do not detect infeasible paths spanning across loop itera-
tions. Thus, in the following, we consider the control flow
graph (CFQG) to be a directed acyclic graph (DAG), repre-
senting the body of a loop. Further, we only keep track of
pairwise “conflicts” between branches/assignments, which
can be Assignment-Branch (AB) conflicts or Branch-Branch
(BB) conflicts.

DEFINITION 3.1. The effect constraint of an assignment
var = expression is var == expression. The effect con-
straint of a branch-edge e in the CFG for a branch condition
¢ is ¢ (—c) if e denotes that the branch is taken (not taken).

DEFINITION 3.2. A branch-edge (or assignment) x has BB
(AB) conflict with a subsequent' branch-edge e if and only
if

e Conjunction of the effect constraints of x and e is un-
satisfiable, and

o There exists at least one path from x to e in the CFG
that does mot modify the variables appearing in their
effect constraints.

Given a program’s CFG, we compute the binary relations
BB_Conflict and AB_Conflict. We represent BB_Con flict
between edges e’ and e by the tuple (¢,), and AB_Con flict
between assignment x and edge e by the tuple (u,e) where
u is the basic block containing assignment x.

Restrictions. Since our definition of BB and AB conflicts
captures only pairwise conflicts, we cannot detect (and ex-
ploit) arbitrary infeasible path information. For example,

y=2; z=1y; if(z>3){..

denotes an infeasible path, but it will not be captured in
the (restricted) notion of pairwise conflicts. Note that the
right-hand-side of an assignment statement can only be a
variable or an expression. To avoid the need for expensive
data flow analysis, our infeasible path detection technique
handles only branch conditions and assignments with con-
stants as their right-hand-side expressions. In other words,
the only conditional branches whose edges appear in our
BB_Conflict and AB_Conflict relations are of the form

variable relational_operator constant

Similarly, the only assignments which appear in A B_Conflict
are of the form variable := constant. However, this is not
a restriction on the programs we can handle; we simply ig-
nore more complicated branches/assignments during path
analysis. Moreover, we observe that this simple definition of
conflict relations is sufficient for our purposes as we perform
the analysis at assembly language level where each individ-
ual assignment/branch condition cannot be complex.

EXAMPLE 3.1. Figure 1 shows a program and its corre-
sponding CFG. Here, branch-edge B1 — B2 and branch-
edge BT — B8 have BB conflict; branch-edge B1 — B3 does
not have any conflict with either BT — B8 or BT — B9.
Similarly, the assignment v = 1 has AB conflict with the
edge BT — B9 but not with BT — BS.

1 Subsequent in the sense of the topological order of the con-
trol flow DAG

int P1(int flag,x,y,z)
{
if(x > 3)
z + 1;

z =
else

x = flag;
if(y ==4)

vy=y +1
else

x = 1;
if(x < 2)

z =12z /2
else

z =2z - 1;
Yy =Yy +x7~z;
if(y >0)

Z =X+ Y;
else

z = ~1;
return z;

return z | B13

Figure 1: An example program and its CFG

Algorithm 1 describes our technique for deriving infeasi-
ble path information in a program. As shown, procedures
are treated individually; thus the infeasible path information
does not account for procedure call contexts or infeasibility
across procedures. Within a procedure, each loop is in turn
considered separately, thus not capturing infeasible paths
across loops. However, we take note of assignments within
the nested loop or called procedure (lines 6-7) that may can-
cel the effect of earlier assignments or branch-edges, so that
we do not falsely identify conflicts. The method essentially
takes each branch-edge e = u — v (line 8) and performs a
backward breadth-first traversal of the CFG starting from
node u. The traversal along a path terminates when we en-
counter either an assignment (conflicting or otherwise) to
the variable involved in the effect constraint of e (lines 13—
14) or a conflicting branch-edge (lines 16-17).

The computation of the AB_Con flict and BB_Conflict
relations can be accomplished in O((|[V| + |E|) * |E|) time
for each procedure where |V|,|E| are the number of nodes
and the number of edges in the CFG of the procedure. This
is because each branch-edge is tested for conflict against all
the ancestor nodes and branch-edges in the worst case.

4. WCET CALCULATION ALGORITHM

In this section, we present our WCET calculation algo-
rithm that exploits the pre-computed conflict relations. In
the next section, we illustrate the method with an example.
The main feature of our technique is that it avoids enumer-
ation of large number of possible execution paths, which is
typical in medium to large control-intensive programs.

Algorithm 2 estimates the WCET of a program given the
conflict relations. It calculates the WCET for each indi-
vidual procedure (lines 1-6) and accounts for this cost at
the call sites of the procedure (line 9). We assume that
there is no recursive procedure call. Within a procedure,
the WCET of each loop is calculated separately and nested
loops are analyzed starting with the innermost loop (line 2).

To estimate the WCET of a loop, we find the heaviest
acyclic path in the loop. An acyclic path is a possible path
in a loop iteration, i.e., a path in the loop’s control flow

DAG from source to sink. If the estimated execution time
of the heaviest acyclic path is ¢ and the loop bound is Ib,
then the loop’s estimated WCET is [b % ¢ (line 4 of Algo-
rithm 2). Our algorithm traverses the loop’s control flow
DAG from sink to source (lines 12-20). This traversal con-
stitutes the heart of our method. For a basic block u in
the the loop, we keep paths(u), a subset of possible execu-
tion paths in the subgraph rooted at uw that may be part
of the overall WCET path. To take into account the infea-
sible path information, we cannot afford to remember only
the “heaviest path so far” at the control flow merge points.
This is because the heaviest partial path may have conflicts
with earlier branch-edges or assignment instructions result-
ing in costly backtracking. For each path p € paths(u) we
also maintain a conflictList, which contains the branch-
edges of p that participate in conflict with ancestor nodes
and edges of u.

Now let us consider a single step backward traversal from
v to u along the edge u — v (lines 14-18). We construct
paths(u) from partial paths in paths(v) that do not have a
conflict with edge u — v or an assignment in u (line 16) by
adding node u at the beginning of each of these partial paths
(line 17). The conflictList of this extended path contains
exactly the edges (a) whose conflicts have not “expired”
due to assignments and (b) whose corresponding conflicting
branch-edges/assignments have not been visited (line 18).

We notice that a partial path p € paths(u) has no chance
of becoming the WCET path if there is another path p’ €
paths(u) with strictly greater cost and less potential conflict
(that is, its conflictList is subsumed by p’s conflictList).
In that case, p can be removed from the set (lines 19-20).
This implies that if the con flictList of a path p € paths(u)
becomes empty and p is the heaviest path in paths(u), we
assign the singleton set {p} to paths(u).

In the worst case, the complexity of our algorithm is ex-
ponential in |V, the number of nodes in the CFG. This is
because the size of paths(u) for some node u may be O(2/"'1)
due to different decisions in the branches following u. In
practice, this exponential blow-up is not encountered be-
cause (a) branch-edges that do not participate in any conflict
are not kept track of, and (b) a branch-edge that conflicts
with other branch-edges/assignments is not remembered af-
ter we encounter those conflicting branch-edges/assignments
during traversal.

S. AN EXAMPLE

In this section, we illustrate our WCET calculation by
employing it on the control flow DAG of Figure 1. The
conflicting pairs detected are

BB_Conflict = {(B1 — B2, B7 — B8)}
AB_Conflict = {(B6, BT — B9)}

We traverse the DAG from sink (node B13) to source
(node B1) and maintain a set of paths paths(u) at each
visited node u. For each path p € paths(u), we maintain
con flictList — a subset of branch-edges drawn from branch
decisions made so far. Thus each path in paths(u) is written
in the form

(Sequence of basic blocks starting with ©)con frictList

Starting from node B13 in Figure 1, our traversal is rou-
tine till we reach node B10 (¢ denotes empty set).

1 AB_Conflict :==0; BB_Conflict := (;

2 foreach procedure P € pgm do

3 foreach loop L € P do

4 | Let G be the DAG capturing the control flow in L without the back edge; Detect_Conflicts(G);

/* Process P by treating loops and procedure calls inside P as black boxes */
5 Let G’ be the DAG capturing the control flow in P; Detect_Conflicts(G');

Function Detect_Conflicts(G)
6 Replace each loop L in G by a dummy node containing all assignments occuring in L;
7 Replace each call site of procedure P € G by a dummy node containing all non-local assignments in P;
8 foreach branch-edge (e = u — v) € G do

9 Let var be the variable appearing in the effect constraint of e;
10 queue := (); enqueue u to queue;
11 while queue # 0 do
12 dequeue the first node g from queue;
13 if ¢ contains an assignment to var then
14 | if last assignment to var in q conflicts with e then add (g, e) to AB_Conflict;
15 else
e foreach predecessor p of ¢ in G do
ik L | if (p — q) conflicts with e then add (p — ¢,e) to BB_Conflict; else enqueue p to queue;

Algorithm 1: Infeasible Path Detection in a Program pgm

=

foreach procedure P € pgm by reverse topological order in procedure call graph do
/* process innermost loops first */

2 foreach loop L € P in decreasing order of nesting depth do

Let G be the DAG capturing the control flow in L without the back edge;

4 L.cost := L.loopbound x WCET_Estimate(G);

w

/* Process P by treating loops and procedure calls inside P as black boxes */
5 Let G’ be the DAG capturing the control flow in P;
| P.cost := WCET_Estimate(G’);

Let M be the main procedure in pgm; return M.cost;

~

Function WCET Estimate (G)

Replace each loop L € G by a dummy node with cost L.cost and containing all assignments occuring in L;

Replace each call site of procedure P € G by a dummy node with cost P.cost and containing all non-local assignments in P;
1o foreach node u € G do visited(u) := FALSE;

11 paths(G.sink) := {(G.sink)}; (G.sink).conflictList :=(; wvisited(G.sink) := TRUE;

/* Traverse from sink to source */

12 foreach node u € (G — G.sink) in reverse topologically sorted order do

13 visited(u) := TRUE; paths(u) := 0;

© ®

[y

14 foreach immediate successor v of u do
15 foreach partial path p in paths(v) do
/* Augment the partial path p with node w if there is no conflict */
16 if e € p.conflictList s.t. ((u — v,e) € BB_Conflict V (u,e) € AB_Conflict) then
7 p = (u)op; p'.cost:= p.cost+ u.cost; paths(u):= paths(u)U {p'};
/* Augment con flictList while removing expired elements */
18 p’.conflictList := p.conflictList U{u — v | u — v appears in AB_Conflict or BB_Conflict}
— {e | e € p.conflictList and u contains an assignment to the variable appearing in e’s effect constraint }
— {e | e € p.conflictList and fz s.t. ~wisited(z) A ((z,e) € AB_ConflictV (x — y,e) € BB_Conflict)};

/* remove partial paths that clearly cannot lead to the WCET path */
9 foreach partial path p € paths(u) do
20 | if 3p’ € paths(u) s.t. p’.conflictList C p.conflictList \ p'.cost > p.cost then paths(u) := paths(u) — {p};

21 Let p € paths(G.source) be the path with maximum cost; return p.cost;

Algorithm 2: Estimating WCET of a program pgm given infeasible path information.

Table 1: Efficiency of our WCET calculation method

Benchmark [# Basic # Conflicts # Paths Runtime Stappert’s Method
Blocks | AB | BB | Traced Total Feasible | Traced (ms) | # Expl. Paths Runtime
adpcm 32 2 5 2 1,536 288 2 0.20 5 0.42 ms
display 37| 13 0 2 96 42 2 0.21 7 0.61 ms
statemate 334 | 74| 15 15 | 6.55 x 10'° | 1.09 x 10" 738 | 853.52 > 2000 | > 36 mins
susan_thin 93| 15| 13 3 | 146,189,962 33,820 12 1.06 > 2000 | > 24 mins
compress 213 9 3 2 110 45 4 1.18 27 3.72 ms
paths(B13) = {(B13)s} from MPEG-2. compress is a data compression program,
paths(B12) = {(B12, B13),} while statemate is a car window controller automatically
paths(B11) = {(B11, B13)s} generated from a statechart specification; both are taken
At node B10, we have two potential paths. However, from C-Lab [17]. susan_thin from MiBench’s automotive

all branch-edges in these paths, B10 — Bll and B10 —
B12, do not participate in any conflict relation, hence both
paths have empty con flict List. Therefore, we only carry the
heaviest of the two paths (assuming Bll.cost > B12.cost).

paths(B10) = {(B10, B11, B13),}
paths(B9) = {(B9, B10, B11, B13),}
paths(B8) = {(B8, B10, B11, B13),}

Node B7 again has two potential paths, and both of its
outgoing edges appear in conflict relations. Until we visit
the corresponding conflicting edges or nodes, we cannot de-
termine the feasibility of the partial paths. Consequently, we
maintain both paths along with the potentially conflicting
edges in the set con flictList associated with each path.

paths(BT) = { (BT, B8, B10, B11, B13) 57 . ps},
(B7, B9, B10, B11, B13) (57 _. po} }

Moving on to node B6, we find that the assignment in
node B6 conflicts with B7 — B9 rendering the path

(B6, BT, B9, B10, B11, B13)
infeasible. Thus we only extend one path leading to
paths(B6) = {(B6, B7, B8, B10, B11, B13)4}

We drop B7 — B8 from the conflictList as we have en-
countered an assignment to program variable x in B6. The
assignment implies that the conflict between B7 — B8 and
B1 — B2 has “expired” along this partial path.

Indeed, these last two steps show the key source of ef-
ficiency in our method. Since we have kept track of both
possibilities in which branch at node B7 can be resolved,
we do not need to backtrack when we find that the branch
decision B7 — B9 can lead to infeasibility. Also, we do not
store paths corresponding to the decision of every branch,
but only those involved in conflicts. Furthermore, once we
have encountered an assignment to the variable involved in a
conflict, we need not keep track of that conflict any further.

Continuing in this way we reach node Bl; we omit the
details for the rest of the traversal. Note that the control
flow DAG of Figure 1 has four branches and 2* = 16 paths.
However, when we visit any basic block u of the control flow
DAG, paths(u) contains at most two paths (i.e., exponential
blow-up is avoided in this example).

6. EXPERIMENTS

We apply the WCET estimation method on several bench-
mark programs. adpcm is the ADPCM coder taken from
Mediabench [9]. display is an image dithering kernel taken

application suite is a kernel performing edge thinning [6].

We use SimpleScalar toolset [3] for the experiments. The
programs are compiled using gcc 2.7.2.3 targeted for Sim-
pleScalar. As our focus is on infeasible program paths, we
assume a simple embedded processor with single-issue in-
order pipeline, perfect instruction cache and branch predic-
tion. The execution time corresponding to each basic block
is thus easily estimated for this simple architecture. For
more complex micro-architectures, we can use state-of-the-
art WCET estimation tools such as aiT [1]. We assume that
loop bounds required for WCET calculation are provided
via manual annotation. All experiments are performed on
3.0GHz P4 CPU with 1MB cache and 2GB memory.

The total number of basic blocks, BB conflicts and AB
conflicts detected for each benchmark are shown in Table 1.
The column # Conflicts Traced gives the maximum length
of conflictList maintained during computation, which is
very few in all cases. The next two columns give the to-
tal number of paths and the number of feasible paths for
each benchmark. statemate and susan_thin in particular
have huge numbers of infeasible paths, despite the limited
conflict detection applied. The statemate code, being au-
tomatically generated from a statechart, contains a lot of
repetitive checks which give rise to many infeasible paths.
susan_thin applies different computations based on a single
value that is checked at multiple points; thus the entrance
of a computation block renders all partial paths within the
other computation blocks infeasible. A general observation
is that unoptimized programming practices contribute sub-
stantially to infeasible program paths.

The column # Paths Traced in Table 1 shows the maxi-
mum number of paths maintained by our technique at any
point of time. It is encouraging to note that we only need
to keep track of at most 738 partial paths at any time for
our benchmarks. This figure depends heavily on the num-
ber of conflicting pairs and the distance between the pair-
wise conflicts. Most of the conflicting pairs are localized;
thus they expire quickly and need not be kept track of fur-
ther. In statemate, some conflicting pairs have long “con-
flict windows”, that is, the assignment/branch conditions of
a conflicting pair appear far apart in the CFG; this makes it
necessary to maintain more partial paths at each node. The
number of paths maintained in turn affects the runtime of
the algorithm. The Runtime column in Table 1 shows that
our technique requires less than 1 second for any benchmark.
Even for programs with long “conflict windows”, our algo-
rithm performs far better than maintaining a single heaviest
path throughout the CFG traversal (and backtracking when
this path turns out to be infeasible).

Table 2: Comparison of observed WCET, WCET estimation with and without infeasibility information

Benchmark Est. WCET (cycles) Improvement | Obs. WCET Estimated/Observed
with infeas. | w/o infeas. (cycles) | with infeas. | w/o infeas.
adpcm 896,286 907,286 1.21% 717,201 1.25 1.27
display 244,187,271 | 257,556,615 5.19% | 229,755,271 1.06 1.12
statemate 41,578 44,938 7.48% 31,636 1.31 1.42
susan_thin | 293,989,241 | 485,328,185 39.42% | 173,769,229 1.69 2.79
compress 312,904 383,329 18.37% 25,819 12.12 14.85

We compare the performance of our method with Stap-
pert’s approach [15] which iteratively searches for a longest
path, tests its feasibility, and removes the path if it is infeasi-
ble. We provide both methods with the same execution time
for basic blocks and infeasibility information (see Section
3); thus both yield the same WCET path for each bench-
mark. The last two columns of Table 1 give the number of
paths examined by Stappert’s method and the runtime of
the method. We observe that the huge number of infeasible
paths in statemate and susan_thin are the heaviest paths
as well. So, in these two benchmarks, we have to terminate
the run of Stappert’s algorithm after examining 2000 paths
without finding a feasible path. The overestimation of the
last examined infeasible path (by Stappert’s method) com-
pared to the feasible WCET value obtained by our approach
is as much as 60% for susan_thin.

Table 2 gives the results of our WCET estimation algo-
rithm on the benchmarks, taking into account infeasibility
information. These are compared with the results of WCET
estimation on the same benchmarks by assuming all paths
are feasible. The Improvement column shows the reduction
in the estimated WCET value when infeasibility is consid-
ered. As expected, the WCET estimation yields a tighter
value when infeasibility is taken into account. Finally, the
column Estimated/Observed of Table 2 shows the ratio of
the estimated WCET values, with and without infeasibility
detection, to the observed WCET values obtained via simu-
lation: the closer the ratio to 1, the tighter the estimation.
Our analysis gives tight estimates in all the benchmarks ex-
cept compress; the result for compress can only be improved
by considering infeasibility across loop iterations.

7. DISCUSSION

In this paper, we have proposed and evaluated a method
for estimating the WCET of a program. We accurately es-
timate the WCET by taking into account (limited) infeasi-
ble path information without resorting to exhaustive path
enumeration. The utility of our technique has been demon-
strated on a number of benchmarks.

We envision that our approach will be useful for WCET
analysis of control-intensive applications. Oftentimes the
program code corresponding to these applications are auto-
matically generated from high-level specifications, such as
Statecharts. Such controller applications from automotive
industry (see statemate in Table 1) often have very large
number of possible execution paths. Our approach main-
tains only a handful of these paths and completes WCET
calculation in less than 1 second.

Acknowledgments

This work was supported by NUS project R252-000-171-112
and an ICITI project.

8. REFERENCES

[1] AbsInt. aiT: Worst case execution time analyzer,
2004. http://www.absint.com/ait/.

[2] P. Altenbernd. On the false path problem in hard
real-time programs. In ECRTS, 1996.

[3] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
infrastructure for computer system modeling. IEEE
Computer, 35(2), 2002.

[4] A. Ermedahl and J. Engblom. Modeling complex flows
for worst-case execution time analysis. In RT'SS, 2000.

[5] A. Ermedahl and J. Gustafsson. Deriving annotations
for tight calculation of execution time. In EUROPAR,
1997.

[6] M. R. Guthaus et al. Mibench: A free, commercially
representative embedded benchmark suite. In IEEE
Workshop on Workload Characterization, 2001.

[7] C. Healy and D. Whalley. Automatic detection and
exploitation of branch constraints for timing analysis.
IEEE Trans. on Software Engineering, 28(8), 2002.

[8] T. Henzinger, R. Jhala, R. Majumder, and G. Sutre.
Lazy abstraction. In POPL, 2002.

[9] C. Lee et al. Mediabench: a tool for evaluating and
synthesizing multimedia and communicatons systems.
In MICRO, 1997.

[10] Y.-T. S. Li and S. Malik. Performance analysis of
embedded software using implicit path enumeration.
In LCTES, 1995.

[11] T. Lundqvist and P. Stenstrom. Integrating path and
timing analysis using instruction-level simulation
techniques. In LCTES, 1998.

[12] C. Y. Park. Predicting program execution times by
analyzing static and dynamic program paths. Real
Time Systems, 5(1):31-62, 1993.

[13] P. Puschner and A. Schedl. Computing maximum task
execution times - a graph based approach. Real Time
Systems, 13(1), 1997.

[14] A. Shaw. Reasoning about time in higher level
language software. IEEE Transactions on Software
Engineering, 1(2), 1989.

[15] F. Stappert, A. Ermedahl, and J. Engblom. Efficient
longest executable path search for programs with
complex flows and pipeline effects. In CASES, 2001.

[16] V. Suhendra, T. Mitra, A. Roychoudhury, and
T. Chen. WCET centric data allocation to scratchpad
memory. In RTSS, 2005.

[17] WCET benchmarks, 2004.
http://www.c-lab.de/home/en/download.html.

[18] W. Zhao, D. Whalley, C. Healy, and F. Mueller.
WCET code positioning. In RTSS, 2004.

