
Thirteen New Players in the Team:
A Ferry-based LINQ to SQL Provider

Tom Schreiber Simone Bonetti Torsten Grust Manuel Mayr Jan Rittinger
WSI, Universität Tübingen

Tübingen, Germany〈firstname.lastname〉@uni-tuebingen.de

ABSTRACT
We demonstrate an efficient LINQ to SQL provider and
its significant impact on the runtime performance of LINQ
programs that process large data volumes. This alterna-
tive provider is based on Ferry, compilation technology
that lets relational database systems participate in the eval-
uation of first-order functional programs over nested, or-
dered data structures. The Ferry-based provider seamlessly
hooks into the .NET LINQ framework and generates SQL
code that strictly adheres to the semantics of the LINQ data
model. Ferry comes with strong code size guarantees and
complete support for the LINQ Standard Query Operator
family, enabling a truly interactive and compelling LINQ
demonstration. A variety of inspection holes may be opened
to learn about the internals of the Ferry-based LINQ to
SQL provider.

1. SINGLE-LINE CHANGE—BIG IMPACT
“Will we be able to defeat the Bs this time?” This can be a
pressing question if you are the coach of team A. You peer
at the large players table of this year’s Basketball season

players
team name pos eff
: : : :
A Aaron C 30
A Andor C 33
A Arndt F 20
A Allan F 22
A Andre F 21
A Artur G 15
A Anton G 16
: : : :
B Benny C 35
B Bobby F 19
B Boris F 24
B Brian G 18
B Bruno G 23
B Baldo G 16
: : : :

Table 1: Players.

(Table 1), featuring the player data
of all teams. A list of the individual
team rosters and a classification of
a team’s players by their position—
center, forward, or guard—would be
more helpful now. You reach for
your laptop computer to start the
C# development environment. A
brief program, formulated using the
.NET Framework’s Language Inte-
grated Query facility (LINQ), will
do the job. You quickly create a
data context, a LINQ abstraction
that represents (1) a connection to a
relational database back-end as well
as (2) selected tables hosted by this
back-end (including table players).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

1 var rosters =
2 from p in db.players
3 group p by p.team into team
4 let posn = from tp in team
5 group new { name = tp.name,
6 eff = tp.eff } by tp.pos
7 select new {
8 team = team.Key,
9 centers = Single(Where(posn, pos => pos.Key == "C"))

10 forwards = Single(Where(posn, pos => pos.Key == "F"))
11 guards = Single(Where(posn, pos => pos.Key == "G")) };

Figure 1: The coach’s program: Compute team rosters, clas-
sify players by position, record player names and efficiency.

Once the data context is assigned to variable db, you en-
ter the LINQ program of Figure 1.1 The program groups
players by team and partitions its players according to the
position they assume within the team (encoded by C, F, G
in column pos). Since this program operates over relational
data, the C# runtime relies on the LINQ to SQL provider in
charge to transform the query expression of lines 2–12 into
a sequence of SQL statements.

As you execute the program, the hard disk starts grind-
ing. You wait—and then check the query log of the con-
nected database back-end: a continuous flood of SQL query
statements, initiated by the LINQ to SQL provider, hits the
database. This will not end in time. . . The match’s first
quarter is already close as you interrupt execution and turn
back to the C# editor. A single-line change to the data con-
text creation effects a switch from the .NET-supplied LINQ
to SQL provider to the alternative Ferry-based LINQ to
SQL provider. You compile and execute again. The query
log reports the execution of exactly four SQL queries before
the program’s result (Figure 3) is printed instantly. With
the rosters available in this form, it is straightforward to plan
a lineup of A that can effectively confront team B—Section 3
will show how.

You close the lid of your laptop and watch team A win the
match with a buzzer beater.

2. THE FERRY LINQ to SQL PROVIDER
A LINQ to SQL provider implements a SQL code genera-

tion and evaluation facility that is invoked whenever a C#

(or Visual Basic) host program starts to enumerate the re-
sult of an embedded LINQ query expression over relational

1Instead of the customary e1.f(e2,...,en), we use C#’s
static method syntax c.f(e1,e2,...,en) to invoke the ex-
tension method f . For brevity, we omit the c. class prefix.

1549

League Size .NET LINQ Ferry-based LINQ

#teams #queries � (sec) #queries � (sec)

100 601 0.406 4 0.140
1 000 6 001 20.265 4 0.438

10 000 60 001 > 30 mins 4 3.200
100 000 600 001 dnf 4 33.810

Table 2: Number of SQL queries emitted by the LINQ to SQL
providers in dependence of the league size (20 players/team
on average) and observed wall-clock execution times (average
of 10 runs; dnf: did not finish within 16 hours).

data. The provider compiles the embedded LINQ query—
represented in terms of a chain of Standard Query Opera-
tor (SQO) invocations—into a sequence of SQL statements
that jointly implement the LINQ query’s semantics. These
providers thus are instrumental in realizing the potential of
the Language Integrated Query idea. LINQ is widely per-
ceived as a major step towards a true integration of database
and programming languages [1].

We demonstrate a new LINQ to SQL provider that is
based on Ferry, query compilation technology that has
been specifically designed to let relational database systems
support the evaluation of first-order functional programs
over ordered, nested list data structures. Ferry uses an
algebraic compilation strategy, coined loop lifting [3], to
translate the side-effect-free iteration embodied by LINQ’s
central from–in comprehension construct [2, 6]. The ab-
sence of side effects yields a critical amount of independent
work that loop lifting can turn into efficient bulk operations.
Any SQL:1999-capable back-end may execute the resulting
queries—Ferry’s code generator is not tied to SQL Server,
in particular [3].

Query avalanche safety. The switch from the .NET-supplied
LINQ to SQL provider to its Ferry-based variant brings
with it a number of user-facing enhancements and exten-
sions (Section 3). More fundamentally, we further obtain
the guarantee that the number of SQL queries issued to im-
plement a given LINQ query expression is exclusively de-
termined by the expression’s static type: each occurrence
of a list type constructor [t] accounts for exactly one SQL
query [4]. The query of Figure 1 and its result type of shape
[[·][·][·]]2, thus led to the bundle of four SQL queries which
the coach observed in Section 1.

This marks a significant deviation from the LINQ to SQL
provider that comes enclosed with .NET: here, the length
of the SQL statement sequence can reflect the database in-
stance size. (Note that .NET LINQ to SQL’s deferred load-
ing feature makes no difference for the coach’s single-table
query.) The ultimate result is an avalanche of queries that
may very well overwhelm the relational database back-end
(Section 1)—one example of the infamous 1+n Query Prob-
lem experienced by many object-relational mappers.

Ferry’s approach to LINQ compilation gains a significant
performance benefit. Table 2 reports on the SQL statement
execution times for varying database instance sizes (i.e.,
number of teams in the league), recorded on a contemporary
Intel Core 2 Duo computer hosting .NET Framework 4. The
avalanche effect quickly results in an overall query workload

2In this type shape, we consider list type constructors [t]
(abbreviating the C# type IQueryable<t>) only.

Q1

team centers forwards guards
: : : :
A @0 @2 @4
B @1 @3 @5
: : : :

Q2

ref name eff
: : :
@0 Aaron 30
@0 Andor 33
@1 Benny 35
: : :

Q3

ref name eff
: : :
@2 Arndt 20
@2 Allan 22
@2 Andre 21
@3 Bobby 19
@3 Boris 24
: : :

Q4

ref name eff
: : :
@4 Artur 15
@4 Anton 16
@5 Brian 18
@5 Bruno 23
@5 Baldo 16
: : :

Figure 2: Result of the four-query bundle Q1–4: tabular en-
coding of a nested list of type [[·] [·] [·]].

[. . .,
{ team = "A", centers = [{ name = "Aaron", eff = 30 },

{ name = "Andor", eff = 33 }],
forwards = [{ name = "Arndt", eff = 20 },

{ name = "Allan", eff = 22 },
{ name = "Andre", eff = 21 }],

guards = [{ name = "Artur", eff = 15 },
{ name = "Anton", eff = 16 }] },

. . .,
{ team = "B", . . . },
. . .]

Figure 3: Excerpt of the nested result of the coach’s program,
bound to the C# variable rosters.

that prohibits timely completion, let alone interactive use.

Query bundles and partial execution. Ferry employs a non-
parametric LINQ data model encoding that (1) uses an in-
line representation for atomic values and (2) relies on foreign
surrogate keys—much like NF2 databases [8]—to represent
embedded lists. The four-query bundle of Section 1, for
example, computes four tables Q1–4 which collectively en-
code the coach’s query result (Figures 2 and 3). A bundle’s
queries are independent and may be evaluated in any order
or even concurrently. This is contrast to the just mentioned
avalanches whose queries are executed in a serial, iterative
fashion [4]. The independence of its constituent queries fur-
ther enables the partial execution of a bundle. Consider a
LINQ host program that projects variable rosters onto a
value of type [[·]]:

1 foreach (var r in rosters) {
2 Console.WriteLine("Team {0} has {1} forwards.",
3 r.team, Count(r.forwards)) };

With the Ferry-based LINQ to SQL provider in place, the
C# runtime evaluates the queries Q1 and Q3 only—the va-
nilla .NET provider still submits the entire query avalanche
for execution.

3. THIRTEEN NEW SQOS AND BEYOND
The Ferry-based provider has been designed to strictly

play by the rules of the LINQ semantics, enabling a new
bona fide LINQ to SQL experience.

Preservation of list order. List order is inherent to the LINQ
data model [2] and Ferry’s compiler derives and, where re-
quired, propagates a query-accessible representation of or-
der [3] when it processes base tables like players. Order
preservation (1) brings into reach a group of order-sensitive

1550

1 var homeFwds =
2 Take(from r in rosters
3 where r.team == "A"
4 from p in r.forwards
5 order by p.eff descending
6 select p),
7 n);

var awayFwds =
Take(from r in rosters

where r.team == "B"
from p in r.forwards
order by p.eff descending
select p),
n);

Figure 4: The n most efficient forwards of teams A and B.

[{ h = { name = "Allan", eff = 22 },
a = { name = "Boris", eff = 24 } },

{ h = { name = "Andre", eff = 21 },
a = { name = "Bobby", eff = 19 } }]

Figure 5: A lineup reflecting relative player efficiency, bound
to C# variable lineup.

SQOs that received no or only partial support before, and
(2) establishes basic laws like

Concat(Take(e,n), Skip(e,n)) = e , (?)

that make order-dependent LINQ programs practical. With-
out a runtime representation of list order, the .NET-supplied
LINQ to SQL implementations of the order-sensitive SQOs
operate based on some row ordering prescribed by the rela-
tional back-end and cannot guarantee (?).

To illustrate the value of order in the LINQ data model,
consider a lineup of the forwards of teams A and B in which
players of the same relative efficiency (eff) shall oppose each
other. Given the ordered lists containing the most efficient
forwards of both teams (see homeFwds, awayFwds in Fig-
ure 4), the lineup is quickly computed by a Zip, a posi-
tional join that moves a “slider” function across two lists in
synchronization:

1 var lineup =
2 Zip(homeFwds, awayFwds, (h, a) => new { h, a });

Figure 5 shows the resulting lineup in which the four best
forwards confront as desired. An attempt to simulate this
use of the order-sensitive Zip SQO in absence of Ferry’s
built-in support quickly turns the above one-liner into an
unwieldy composition of Join with nested Selects.

Order preservation on a relational back-end does not come
for free and Ferry’s algebraic compiler and optimizer go
a long way to derive that the semantics of a given query
(sub-)expression does not depend on order [5]. In such cases,
order derivation and propagation effort will be judiciously
removed from the issued SQL query code.

Faithful support for the SQO family. Ferry faithfully im-
plements LINQ’s order-sensitive operators, e.g., ElementAt,
Reverse, positional mapping via Select((v,p) => ...), or
Zip as introduced with .NET 4.0 (see Table 3). These
thirteen SQOs now join the rest of the family of admis-
sible operators in LINQ to SQL programs. This makes
Ferry’s support complete for all SQOs applicable to ob-
jects of type IQueryable<t>. In addition to the IQueryable

SQOs, Ferry can embrace the IEnumerable interface, most
notably ToLookup and the related associative indexing op-
eration e1[e2], which allow a particularly elegant and even
shorter formulation of the coach’s query (Figure 6).

Loop lifting, an efficient non-parametric value representa-
tion, and order preservation open the door towards a con-
siderably richer set of built-ins beyond the Standard Query
Operators defined by LINQ. Examples include a versatile

Ferry Standard Query Operators .NET

faithful

Aggregate, All, Any, Average, Count,
Contains, DefaultIfEmpty, Distinct,
Except, Intersect, GroupBy, GroupJoin,
Join, Max, Min, OrderBy[Descending],
ThenBy[Descending], Select(v => ...),
SelectMany(v => ...), SequenceEqual,
Single[OrDefault], Sum, Where(v => ...),

faithful

partial
Concat, First[OrDefault],
Skip, Take, Union,

ElementAt[OrDefault], Last[OrDefault],
Reverse, Select((v,p) => ...),
SelectMany((v,p) => ...), SkipWhile,
TakeWhile, Where((v,p) => ...)), Zip,
Empty∗, Range∗, Repeat∗, ToLookup∗

none

Table 3: Levels of database support for the SQO family in
the Ferry-based and .NET-supplied LINQ providers (SQOs
marked with ∗ operate on objects of type IEnumerable<t>).

1 var rosters =
2 from p in db.players
3 group p by p.team into team
4 let posn = ToLookup(team, tp => tp.pos,
5 tp => new { name = tp.name,
6 eff = tp.eff })
7 select new {
8 team = team.Key,
9 centers = posn["C"],

10 forwards = posn["F"],
11 guards = posn["G"] };

Figure 6: A variant of the coach’s query, using the ToLookup

SQO supported by the Ferry LINQ to SQL provider.

list-based grouping primitive inspired by Haskell’s list com-
prehensions [3, 6], Zip’s complement UnZip, or the (local)
announcement of order indifference (Unordered, [5]). Query
expressions written in such an extended dialect of LINQ
come close to list-processing programs written in first-order
functional programming languages.

4. DEMONSTRATION SETUP
The demonstration (Figure 7) will come packaged with

both, authentic National Basketball Association (NBA) re-
lational box score and player data as well as TPC-H bench-
mark instances of varying scale factors. A series of C# pro-
grams plus embedded LINQ fragments are prepared to ex-
plore these data sets.

The Ferry-based LINQ to SQL provider has been con-
structed as a drop-in replacement for the query functional-
ity of the .NET-supplied original.3 A single-line change to
the data context declaration suffices to make the demonstra-
tion switch from the .NET-enclosed provider to the Ferry
variant and back (recall Section 1 and see Figure 8).

Users may challenge the Ferry provider via ad-hoc LINQ
query expressions that will be compiled and executed on
the click of a button (the demonstration is based on the
Microsoft® Visual Studio .NET development environment).
With Ferry’s implementation of the SQO family and sup-
port for further list-processing primitives, the demonstration
can cope

3LINQ’s update tracking has not yet been incorporated into
the Ferry-based provider.

1551

1

2

3
4

5

Figure 7: Demonstration setup: C# editor, rendered LINQ expression trees and graphical representation of algebraic query
plan bundles, SQL query logs and code (Ferry on the right-hand side). Numbers in refer to the provider stages of Figure 9.

(a) Switching between the .NET LINQ provider and . . .

(b) . . . the Ferry-based LINQ to SQL provider requires a
single line of change (here: insert/delete the Ferry names-
pace prefix in line 42).

Figure 8: The Ferry-based LINQ provider hooks seamlessly
into the .NET framework. During the demonstration, the
provider in charge may be toggled arbitrarily.

(1) with “relational style” programs that extract, connect,
filter, group, and aggregate tabular data, and

(2) with programs that follow a compositional first-order4

“functional style” to process ordered—and potentially
deeply nested—lists.

A mix of both styles, allowing complex yet compact queries
over relational source data, leads to a unique and compelling
experience of writing data-intensive programs.

Under the hood, the Ferry provider is organized in a series
of stages (Figure 9). In preparation of SQL code genera-
tion, the provider relies on an extensive data flow analysis to
simplify and (drastically) reshape the initial algebraic query
bundles. To learn about these internals, the demonstration
opens a number of inspection holes (Figure 7) that give in-
sight into Ferry’s algebraic compilation strategy, loop lift-
ing in particular. Users may flip through the rendered out-
put of all relevant stages, e.g., LINQ expression trees or
algebraic query plan bundles before and after optimization.

4As we write this, Ferry is extended to support closures
and higher-order functions [7].

LINQ
expression

tree

Mangled
expression

tree

Algebraic
program

SQL:1999
queries

Tabular
result

Result on
C# heap

1 2

4

6
5

3

Figure 9: Stages in the Ferry-based LINQ provider.

Finally, the demonstration setup incorporates (extracts of)
the back-end’s SQL query logs. A peek into these logs—just
like team A’s coach did in Section 1—manifests the signifi-
cant impact of Ferry’s query avalanche safety feature.

Acknowledgments. This research has been supported by the
German Research Foundation (DFG), Grant GR 2036/3-1.

Additional information on Ferry is available on the Web
at www.ferry-lang.org.

5. REFERENCES
[1] R. Agrawal et al. The Claremont Report on Database

Research. CACM, 52(6), 2009.
[2] G. M. Bierman, E. Meijer, and M. Torgersen. Lost In

Translation: Formalizing Proposed Extensions to C#.
In Proc. OOPSLA, 2007.

[3] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber.
Ferry: Database-Supported Program Execution. In
Proc. SIGMOD, 2009.

[4] T. Grust, J. Rittinger, and T. Schreiber.
Avalanche-Safe LINQ Compilation. In Proc. VLDB,
2010.

[5] T. Grust, J. Rittinger, and J. Teubner. eXrQuy: Order
Indifference in XQuery. In Proc. ICDE, 2007.

[6] S. P. Jones and P. Wadler. Comprehensive
Comprehensions: Comprehensions with “Order by” and
“Group by”. In Proc. Haskell Workshop, 2007.

[7] J. Reynolds. Definitional Interpreters for Higher-Order
Programming Languages. Higher-Order and Symbolic
Computation, 11(4), 1998.

[8] H. J. Schek and M. H. Scholl. The Relational Model
with Relation-Valued Attributes. Information Systems,
11(2), 1986.

1552

