
ROXXI: Reviving witness dOcuments to eXplore eXtracted
Information

Shady Elbassuoni
Max-Planck Institute for Informatics

Saarbrücken, Germany

elbass@mpi-inf.mpg.de

Katja Hose
Max-Planck Institute for Informatics

Saarbrücken, Germany

hose@mpi-inf.mpg.de
Steffen Metzger

Max-Planck Institute for Informatics
Saarbrücken, Germany

smetzger@mpi-inf.mpg.de

Ralf Schenkel
Saarland University and MPI for Informatics

Saarbrücken, Germany

schenkel@mmci.uni-saarland.de

ABSTRACT
In recent years, there has been considerable research on informa-
tion extraction and constructing RDF knowledge bases. In general,
the goal is to extract all relevant information from a corpus of doc-
uments, store it into an ontology, and answer future queries based
only on the created knowledge base. Thus, the original documents
become dispensable. On the one hand, an ontology is a conve-
nient and non-redundant structured source of information, based
on which specific queries can be answered efficiently. On the other
hand, many users doubt the correctness of facts and ontology sub-
graphs presented to them as query results without proof. Instead,
users often wish to verify the obtained facts or subgraphs by read-
ing about them in context, i.e., in a document relating the facts
and providing background information. In this demo, we present
ROXXI, a system operating on top of an existing knowledge base
and reviving the abandoned witness documents. In doing so, it goes
the opposite way of information extraction approaches – starting
with ontological facts and tracing their way back to the documents
they were extracted from. ROXXI offers interfaces for expert users
(SPARQL) as well as for non-experts (ontology browser) and pro-
vides a ranked list of documents each associated with a content
snippet highlighting the queried facts in context. At the demon-
stration site, we will show the advantages of this novel approach
towards document retrieval and illustrate the benefits of reviving
the documents that information extraction approaches neglect.

1. INTRODUCTION
The success of knowledge-sharing communities like Wikipedia,

IMDB, etc. and the advances in automatic information extraction
from textual and Web sources have made it possible to build large
“knowledge repositories” such as DBpedia [1], Freebase [5], and
YAGO [8]. Information is extracted as facts from structured parts
such as infoboxes in Wikipedia but also from unstructured text
using textual patterns [3, 4, 9]. A textual pattern is a sequence of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

words in natural language text that expresses a certain relation
between entities, e.g., “Quentin Tarantino was one of the pro-
ducers of ‘From Dusk till Dawn’” matches the pattern “X was
one of the producers of Y” and corresponds to the abstract fact
<Quentin Tarantino produced From Dusk till Dawn>,
where Quentin Tarantino and From Dusk till Dawn refer to
entities and produced is a binary predicate representing a relation.

Knowledge bases enable users to search for explicit knowledge
by exploiting semantic structures based on entities and relations;
a task often impossible to achieve with standard keyword-based
search engines. As an example, consider the following query:
“movies created and acted in by the same person”. First, it is nearly
impossible to formulate this query using keywords only. And sec-
ond, it might be necessary to combine information from different
pages to answer it. In fact, posing this query to any of the ma-
jor search engines returns no relevant answer in the first ten results.
Such queries, however, can be answered precisely using knowledge
bases and referring to binary predicates. For example, the follow-
ing two facts would answer the above query:
<Quentin Tarantino created From Dusk till Dawn> and
<Quentin Tarantino actedIn From Dusk till Dawn>.

Still, this approach is limited in several ways. First, a user cannot
look up information that has not been extracted before, i.e., avail-
able knowledge is restricted to predicates and patterns that have
been identified as being relevant beforehand. Second, users tend to
doubt the correctness of facts obtained from a knowledge base and
presented out of context, i.e., users prefer to verify presented facts
by accessing the documents they were extracted from. Moreover,
users often like to learn more details and background knowledge
about extracted facts.

Knowledge bases do not only lack background information about
facts but are also restricted to the most common relations and pat-
terns expressible with binary relations. For example, when looking
for detailed information about the movie ‘From Dusk till Dawn’,
we can query a knowledge base and find the information that
Quentin Tarantino wrote, produced, and acted in this movie. But
we cannot find information such as the movie plot, tag lines, or
user ratings, because they cannot be expressed with binary rela-
tions. Another piece of information that we will not find in a knowl-
edge base, even though available in the original documents, is that
Quentin Tarantino was originally set to direct the movie, but in the
end decided against it so that he could focus more on his tasks as
actor and screenplay writer; knowledge bases do not consider “po-
tential” facts and explanations.

1589

With ROXXI we present a system that enables information ex-
ploration on top of RDF knowledge bases. It does not rely on enti-
ties only [2] but instead combines the benefits of document retrieval
and structured search in knowledge bases by relating automatically
extracted information (facts) to its witnesses, i.e., the documents
the information originates from. The information about the connec-
tions between facts and documents can either be collected during
the information extraction process or added later on. In addition,
ROXXI also preserves information about which textual pattern was
involved in a particular fact occurrence in a witness document.

ROXXI presents the extracted information in context giving the
user the opportunity to verify extracted facts as well as to relate and
connect different pieces of information. Furthermore, this provides
the user with additional information that cannot be represented in
a knowledge base, information that the user was not sure she was
looking for when issuing the query, or information for which no
extraction rules in the form of patterns and relations exist.

In particular, ROXXI’s main contributions are:

• fact-based document retrieval – retrieving documents based
on a set of facts,
• document ranking utilizing fact occurrences – applying a

ranking model based on statistical language models,
• content snippet generation – generating meaningful content

snippets for each document in the result set, and
• providing context for extracted facts – a document browser

allows the user to verify extracted facts and to read about
non-extracted background information.

Section 2 provides more details on using the system while Section 3
illustrates the system architecture and implementation issues. Fi-
nally, Section 4 outlines what we will present at the demonstration
site.

2. WORKING WITH ROXXI
As mentioned in the introduction, ROXXI operates on top

of an RDF knowledge base. RDF knowledge bases consist
of facts in the form of subject-property-object (SPO) triples
of the Semantic Web data model RDF. For example, the fact
<Quentin Tarantino actedIn From Dusk Till Dawn> is an
RDF triple with subject Quentin Tarantino, predicate actedIn
and object From Dusk till Dawn. An RDF knowledge base can
be conceptually viewed as a large graph with nodes corresponding
to entities (subjects and objects) and edges denoting relationships
or predicates, which we refer to as an RDF graph.

To start information exploration with ROXXI, a user first iden-
tifies a set of facts she is interested in, which we refer to as an
RDF subgraph. Note that this subgraph does not need to be con-
nected. ROXXI offers two ways to provide RDF subgraphs, one
for users acquainted with SPARQL and the other for unexperi-
enced users. The first allows users to retrieve RDF subgraphs via
SPARQL queries whereas the second allows them to search for en-
tities in the knowledge base. A SPARQL query and a correspond-
ing result for the example about Quentin Tarantino writing and act-
ing in the same movie are shown as step 1b in Figure 1. Step 1a
in Figure 1 shows the results when performing an entity search for
“Tarantino”. Once the user clicks on either “send result to ROXXI”
below a result in the SPARQL interface or on an entity, the Explo-
ration Page opens.

The Exploration Page offers two interconnected ways to learn
more about a certain RDF triple or subgraph, a graphical Ontology
Browser and the Witness List, the latter being a textual interface
that lists the witnesses for a chosen RDF subgraph.

The Ontology Browser allows users to easily navigate through
the RDF graph by selecting or deselecting facts in the underlying
graph and thus defining the RDF subgraph to be explored. The Wit-
ness List shows a ranked list of witnesses containing (some of) the
knowledge expressed by the chosen subgraph. For each listed doc-
ument, a snippet from the document’s content is shown. The snip-
pet shows occurrences for some of the facts in the RDF subgraph
inside the document. Step 2 in Figure 1 illustrates this for the RDF
subgraph representing the facts that Quentin Tarantino wrote and
acted in From Dusk Till Dawn (see highlighted text in Witness List
frame in Figure 1).

Once witnesses are listed, the user can view a local copy of the
document taken at extraction time by clicking on its title. Alter-
natively, the current version of the document can be viewed by fol-
lowing the URI shown below the snippet. When exploring the local
copy, word combinations which the facts of interest have been ex-
tracted from are highlighted using the same colors as used in the
Witness List. Furthermore, word combinations associated with any
other fact are highlighted in a different color (green) as shown in
step 3 in Figure 1.

In addition to exploring witnesses from which facts were ex-
tracted, ROXXI enables users to find complementary witness doc-
uments that were not identified during information extraction.
When exploring an RDF subgraph, a keyword search for fur-
ther witnesses can be issued. In particular, for each fact in-
dependent keyword queries are generated based on the textual
patterns used to extract the corresponding fact. For example,
consider the pattern “X was one of the producers of Y”, which
is used to extract facts for the relation produced. This pat-
tern can be used to generate a keyword query to retrieve ad-
ditional witnesses for the fact <Quentin Tarantino produced

From Dusk Till Dawn>. Precisely, the issued query would be
“Quentin Tarantino was one of the producers of From Dusk Till
Dawn”. By using each pattern known to the extraction system in
this fashion and aggregating the retrieved results, ROXXI can spare
users from formulating these (or similar) queries manually. This is
also a powerful tool to expand or augment the set of source docu-
ments for the facts present in the knowledge base.

3. ARCHITECTURE
ROXXI’s system architecture is depicted in Figure 2. It consists

of 3 main components: the Data Manager, the Query Engine and a
User Interface. We now describe each component in more detail in
the following subsections.

3.1 Data Manager
The Data Manager manages the data ROXXI operates on. This

data consists of the knowledge base stored as an RDF Database.
As mentioned earlier, facts were automatically extracted from Web
sources by exploiting different knowledge acquisition and infor-
mation extraction techniques. Most of these information extraction
systems are based on patterns (e.g. SOFIE [9]). These patterns are
either textual patterns that usually appear in text, like “X was one
of the producers of Y” or mappings for structured data, e.g. prop-
erty tables in Wikipedia. A pattern is associated with a confidence
value reflecting its accuracy. For example, Wikipedia property ta-
bles should have a higher confidence value than textual patterns.

We store the patterns and their confidence values as Extraction
Metadata. In addition, for each one of these patterns, we store the
set of witness documents it occurred in and the start and end posi-
tion of the pattern in the document. This is later used to retrieve the
witnesses for a given RDF subgraph, which we annotate with the
corresponding pattern occurrences before presenting it to the user.

1590

Figure 1: Example Workflow

3.2 Query Engine
The query engine consists of 4 subcomponents, which we de-

scribe separately in the following.

Graph Explorer. The graph explorer takes an RDF subgraph as
input. An RDF subgraph can either be an entity, an RDF triple, or a
set of RDF triples. The graph explorer expands this subgraph by re-
trieving additional neighboring triples from the RDF database and
returns an extended graph that can be explored by the user using
the Ontology Browser.

SPARQL Query Engine. It takes a SPARQL query as input
and returns a ranked list of results matching the given SPARQL
query. We rely on the NAGA search engine [6] as the SPARQL
query engine in our system.

Witness Retrieval Engine. It is responsible for retrieving and
ranking the witnesses for a given RDF subgraph. Our ranking
model is based on statistical language models [7]. The witnesses
are ranked based on the probability of being the source of the given
RDF subgraph g = {t1, t2, ..., tn}, which we denote as P (d|g).
Applying Bayes’ rule and ignoring P (g) as it is witness indepen-
dent, we have:

P (d|g) ∝ P (g|d)P (d)

P (d) is a prior probability that a witness d is the source of any
RDF subgraph. This probability can be estimated in various ways,
and in our case we estimate it using the static authority of the page
or pagerank.

The probability P (g|d) is the probability that the given RDF
subgraph g = {t1, t2, ..., tn} was extracted from witness d. We
assume independence between the triples or facts in g for compu-
tational tractability (in-line with most traditional keyword ranking
models). In addition, we apply smoothing with the collection back-
ground model (Col) to avoid overfitting. Thus,

P (g|d) =

nY
i=1

[αP (ti|d) + (1− α)P (ti|Col)]

Recall that each triple ti was extracted from witnesses using a
set of patterns r1, r2, ..., rm. Each pattern rj is associated with a
certain confidence value conf(rj). Thus, the probabilities P (ti|d)
and P (ti|col) are estimated as follows

P (ti|x) = Σm
j=1p(ti|rj)P (rj |x)

The first component P (ti|rj) is the probability of extracting
triple ti using pattern rj . It is estimated using the confidence value
conf(rj). The second component P (rj |x) is the probability of
pattern rj occurring in x where x ∈ {d,Col}. It is estimated using

1591

Figure 2: Architecture

a Maximum-Likelihood estimator as follows:

P (rj |x) =
c(rj ;x)

Σrc(r;x)

where c(rj ;x) denotes the frequency of pattern rj in x.

Snippet Generator. The snippet generator is responsible for
generating a snippet for each retrieved witness. Similar to most
state-of-the-art search engines, we generate a query-biased snippet.
The snippet contains (some of) the pattern occurrences in the wit-
nesses retrieved by the Witness Retrieval Engine. For snippet gen-
eration in ROXXI, we use the simple technique of presenting the
sentences that highly match the user query from [10]. Adapting the
aforementioned technique to work with RDF subgraphs and pre-
senting patterns instead of sentences is similar in spirit to our wit-
ness retrieval model described earlier, and we omit it due to space
limitations.

3.3 User Interface
The user interface contains facilities for both the casual as well as

the expert user. The expert users can utilize the SPARQL Frontend
to issue SPARQL queries and retrieve matching RDF subgraphs.
On the other hand, the less advanced users can navigate directly to
the exploration page described in Section 2 by performing entity
search.

The knowledge base can be browsed using the Ontology Browser
which renders a hyperbolic visualization of the RDF graph. Our
ontology browser is based on the Prefuse visualization tool 1. Fur-
thermore, the user can navigate through the RDF graph as desired
and select or deselect facts to retrieve witnesses.

The Witness List Presenter displays a set of ranked witnesses for
the currently selected RDF subgraph in the ontology browser. Fi-
nally, the Witness Browser utilizes a Web Browser plug-in to high-
light any extracted facts in the currently viewed witness.

4. DEMO OUTLINE
We will demonstrate the features of ROXXI using a knowledge

base with facts from the movie domain, based on information from
YAGO [8] and IMDB. Additional facts will be extracted using the
SOFIE extraction framework [9] from movie-related documents in

1http://prefuse.org

Wikipedia and in the ClueWeb09 dataset2. This provides a huge
knowledge graph that can be explored by attendees. To further
demonstrate the document ranking capabilities of ROXXI, we will
preselect a set of entities and facts, for which we will retrieve fur-
ther documents from the Web using ROXXI’s query generation fea-
ture (Section 2); these documents will then be run through SOFIE
to find fact occurrences in them.

At the demonstration site, we will give conference attendees
the opportunity to experience first-hand and interactively ROXXI’s
benefits. We will show attendees how to use ROXXI to explore
all the interesting details and background stories about their fa-
vorite movies. Furthermore, attendees are given the opportunity
to explore documents relating interesting sets of facts and to learn
how these facts relate. Finally, attendees can also observe how
the ranked list of relevant documents changes when a single fact
is added to or removed from the input.

The demo will run on a notebook with all data stored locally.
Internet connectivity is needed only to demonstrate ROXXI’s query
generation feature.

5. ACKNOWLEDGMENTS
This work was partially supported by the BMBF project ‘Wis-

NetGrid’, FKZ 01 IG 09008E, and by the Cluster of Excellence

”Multimodal Computing and Interaction“ (funded by the German
Science Foundation).

6. REFERENCES
[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and Z. Ives.

DBpedia: A Nucleus for a Web of Open Data. In
ISWC/ASWC, pages 11–15, 2007.

[2] F. Brauer, W. Barczynski, G. Hackenbroich, M. Schramm,
A. Mocan, and F. Förster. RankIE: document retrieval on
ranked entity graphs. Proc. VLDB Endow., 2(2):1578–1581,
2009.

[3] S. Brin. Extracting Patterns and Relations from the World
Wide Web. In WebDB, pages 172–183, 1999.

[4] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M.
Popescu, T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Web-Scale Information Extraction in KnowItAll:
(Preliminary Results). In WWW, pages 100–110, 2004.

[5] Freebase: A social database about things you know and love.
www.w3.org/RDF/.

[6] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and
G. Weikum. NAGA: Searching and Ranking Knowledge. In
ICDE, pages 953–962, 2008.

[7] X. Liu and W. B. Croft. Statistical language modeling for
information retrieval. The Annual Review of Information
Science and Technology, 39:3–31, 2004.

[8] F. Suchanek, G. Kasneci, and G. Weikum. YAGO – A Large
Ontology from Wikipedia and WordNet. Journal of Web
Semantics, 6(3):203–217, 2008.

[9] F. M. Suchanek, M. Sozio, and G. Weikum. SOFIE: A
Self-Organizing Framework for Information Extraction. In
WWW, pages 631–640, 2009.

[10] R. W. White, I. Ruthven, and J. M. Jose. Finding relevant
documents using top ranking sentences: an evaluation of two
alternative schemes. In SIGIR, pages 57–64, 2002.

2http://boston.lti.cs.cmu.edu/Data/
clueweb09/

1592

