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ABSTRACT
The area of cluster-level energy management has attracted signifi-
cant research attention over the past few years. One class of tech-
niques to reduce the energy consumption of clusters is to selectively
power down nodes during periods of low utilization to increase en-
ergy efficiency. One can think of a number of ways of selectively
powering down nodes, each with varying impact on the workload
response time and overall energy consumption. Since the MapRe-
duce framework is becoming “ubiquitous”, the focus of this paper
is on developing a framework for systematically considering vari-
ous MapReduce node power down strategies, and their impact on
the overall energy consumption and workload response time.

We closely examine two extreme techniques that can be accom-
modated in this framework. The first is based on a recently pro-
posed technique called “Covering Set” (CS) that keeps only a small
fraction of the nodes powered up during periods of low utilization.
At the other extreme is a technique that we propose in this paper,
called the All-In Strategy (AIS). AIS uses all the nodes in the clus-
ter to run a workload and then powers down the entire cluster. Us-
ing both actual evaluation and analytical modeling we bring out the
differences between these two extreme techniques and show that
AIS is often the right energy saving strategy.

1. INTRODUCTION
Direct monthly energy costs for data centers make up around

23% of the total amortized monthly operating costs [17]. This cost
does not include functionally related energy costs such as power
distribution and cooling infrastructure, which Hamilton states will
increase the energy costs to 42% of the total monthly operating
costs. If we also consider that server costs are consistently falling,
then it is estimated that this year, the three year cost of electricity
per server will exceed the initial cost of the server itself [9]. Trends
show that processor performance doubles (in number of cores) ev-
ery 18 months while the performance per Watt only doubles every
two years [6]. Thus, it should be no surprise that an early EPA
study estimates that servers will make up 3% of the total energy
consumption in the U.S. in 2011 [4].

One reason contributing to the high server energy costs is that
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server nodes in cluster environments are typically only 20-30% uti-
lized, and energy efficiency in this range is under 50% [5]. This
suggests that 42% of the total monthly operating cost stemming
from power [17] can be reduced if we increase energy efficiency of
the cluster nodes during low utilization periods.

This paper aims to improve the energy efficiency of the pop-
ular MapReduce (MR) clusters to exploit low utilization periods.
Our methods can easily be generalized to other cluster manage-
ment strategies, such as for Dryad, but to keep the discussion fo-
cused and better connected to prior work, we cast the discussion
within the MapReduce framework.

Recently, the Covering Set (CS) method was proposed for clus-
ter energy management [22]. The CS strategy exploits the repli-
cation that is provided by a distributed file systems (DFS), which
keeps multiple copies of each data block spread across nodes in the
cluster. The CS strategy designates some nodes in the system as
special nodes, called the CS nodes, and keeps at least one copy of
each unique data block on these nodes. Thus, by altering the data
placement policy of the underlying DFS, during periods of low uti-
lization, some or all of the non-CS nodes can now be powered down
to save energy. For example, if 33% of the nodes are CS nodes, then
at 33% utilization only the CS nodes are online. CS is general and
allows the CS nodes to be an arbitrary fraction of the total nodes,
and also allows for part of the non-CS nodes to stay online.

With CS, the workloads take longer to run when the cluster is
partially powered down, as fewer nodes are available to run the
workload. Other downsides to CS include significant overprovi-
sioning of space on the CS nodes as well as requiring code modifi-
cations in the underlying DFS software (see Section 4.5).

In this paper, we propose an alternative cluster energy manage-
ment strategy, called the All-In Strategy (AIS). In AIS, rather than
increasing the response time of a workload as in the CS strategy,
we run the workload (or a batch of workloads) on all the nodes
in the cluster. Then, when we are in a low utilization period and
the cluster is idle, the cluster is transitioned to a low power state.
Thus, in AIS, rather than selectively powering down the nodes as
in CS, the cluster essentially wakes up, runs as fast as it can, and
then powers down again. One advantage of AIS is that there is a
very predictable degradation in the workload response time. This
degradation is based on the time it takes for the hardware and the
OS to power up and down nodes from deep power saving modes,
and efforts such as [24] are pushing to reduce this cost dramatically.

In fact, both AIS and CS can be thought of as two ends in a
range of solutions for selectively powering down/up MR nodes to
deal with low utilization periods. In this paper we present a frame-
work for this general mechanism, and explore the effect of such a
mechanism on the workload response time and overall cluster en-
ergy consumption.
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Using our framework we expose two key parameters that con-
tribute to the effectiveness of the MR energy management solu-
tions. These parameters are: a) The response time degradation of a
workload when running with fewer resources, and b) The (relative)
time it takes to transition servers to and from deep power saving
modes, compared to the time it takes to run the workload.

Our experimental results show that in many cases, AIS results in
lower energy consumption than CS. For example, running TeraSort
on a relatively small 77GB dataset on a 24 node cluster at 33%
utilization is always 11% more energy efficient with AIS than with
CS, and 60% more efficient than an unmanaged cluster. Perhaps
more importantly, CS also incurs a 3.6X increase in response time
while AIS suffers only a 12% response time degradation. With
larger complex workloads, we show these energy gains of AIS over
CS improve rapidly, and factors of 2X improvement in energy or
more over CS are easily possible.

The key contributions of this paper are:

• We present a framework for designing and evaluating meth-
ods that selectively power down MR nodes to save energy.
Within this framework, we focus on two extreme techniques
– a recently proposed technique called Covering Set (CS),
and a new technique called All-In Strategy (AIS).

• Using our framework, we systematically explore factors that
benefit each approach, and show that the (simpler) AIS tech-
nique is often more effective than the CS technique in reduc-
ing energy consumption. During long and computationally
complex MR jobs, AIS overcomes its high cluster transition-
ing costs and provides better response time and energy sav-
ings than CS. AIS also does not require storage overprovi-
sioning as is needed for CS, or require modifying the DFS
code, and hence can directly be used with existing systems.

• Our work explores the impact of powering down MR nodes
on the workload response time (which increases as nodes are
powered down). Our analysis brings out the effect of the in-
teraction between the total cluster energy consumption, the
computational complexity of the workload, and a key hard-
ware parameter – namely, the relative time it takes to power
up and down a server node with respect to the workload re-
sponse time. As a consequence, our framework points to the
tremendous benefits of research that can improve hardware
and software mechanisms to improve power up/down costs
(e.g., fast deep hibernation by using PCM [26] and/or build-
ing data centers using mobile/nettop computing hardware).

The remainder of this paper is organized as follows: Section 2
presents our framework. Section 3 discusses CS and AIS. Results
evaluating CS and AIS are presented in Section 4. Related work
and conclusions are discussed in Section 5 and Section 6.

2. ENERGY MANAGEMENT FRAMEWORK
This section describes a framework for cluster energy manage-

ment. This framework targets techniques that turn off nodes to
reduce the energy consumption when the overall system utiliza-
tion drops (and vice versa). The framework considers the impact
of workload characteristics, hardware characteristics, and perfor-
mance targets (e.g., response time goals) to bring out the interac-
tions between these factors and the cluster energy consumption.

We present a mathematical model for the energy consumption of
a MapReduce cluster during a specified time windowυ, when run-
ning a workloadω using a cluster with hardware characteristicsη.
For simplicity, the workload characteristics (ω) and hardware char-
acteristics (η) are considered as abstract meta-models in our model.

N total # nodes in the cluster Ttr total transitioning time inυ
n # online nodes running the job Tw workload runtime
n̄ N -n, # offline nodes Ptr average transitioning

during job processing power

m # online nodes P
[n,n̄]
w on/off-line

in the idle period workload power
m̄ N -m, # offline nodes Tidle idle time

during the idle period P
[n,n̄]
idle on/off-line idle power

Table 1: List of Variables in our Framework

More detailed models for capturing these can be plugged into our
model. The workload characteristics model describes the job char-
acteristics, such as an expected resource consumption, performance
goals, computational complexity, etc. The hardware characteristics
describes aspects such as the average power consumption of the
hardware when running the workload, time and energy required to
power up/down nodes, etc.

When a job arrives, the cluster is in some state, which potentially
includes having some nodes already in a powered down mode. The
energy management technique may choose to power up or down
some nodes (based on the energy management policy and work-
load characteristics) to execute this workload. After the workload
is done, if there is still idle time left in the windowυ, it may power
down more nodes. To allow for iterative application of our model,
the end state of the cluster in terms of the nodes that are online, is
the same as the starting state. (Extensions to relax this assumption
are straight-forward, and omitted in the interest of space.)

Thus, using the variables in Table 1, the total energy consump-
tion, denoted asE(ω, υ, η), is:

E(ω, υ, η) = (PtrTtr) + (P n
w + P

n̄
w)Tw + (P m

idle + P
m̄
idle)Tidle (1)

The time components forE(ω, υ, η) must sum toυ, so:
υ = Ttr + Tw + Tidle (2)

Finally, the workload characteristics may require that the job be run
within some time limit,τ . The cluster energy management problem
can then be cast as:

min(E(ω, υ, η)) | Tw ≤ τ (3)

Based on this model, we can see that there are several approaches
to reduce the cluster energy consumption. From Equation 1, we
see that one can reduce the energy consumption by reducing the
idle energy consumption,(P m

idle + P m̄
idle)Tidle, by powering down

part of the cluster. But powering down part of the cluster implies
that the job has fewer nodes/resources to run, which potentially
impacts the execution time of the workload (Tw). From Equation 1
this means that the energy cost to run the workload could rise asTw

increases. The rate of increase in the workload energy consumption
with fewer nodes will depend on the workload characteristics, and
primarily the computational complexity of the workload.

From Equation 1, we also observe that the time to transition
nodes between powered up and down states (Ttr) can have a sig-
nificant impact on the energy consumption, especially when the
workload energy component in Equation 1 is small; i.e., when the
workload execution time is small, schemes that require powering
up and down often will consume significant energy in transitions.

Finally, from Equation 1, we can see that reducing the power
drawn by online idle nodesP m

idle can have a big impact on energy
management schemes.

3. ENERGY MANAGEMENT STRATEGIES
In this section, we use the framework developed in Section 2

to consider two cluster energy management strategies. These two
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strategies are: a) Covering Set (CS) – a recently proposed data
placement and power down strategy to reduce the energy consump-
tion of MapReduce clusters, and b) All-In Strategy (AIS) – a tech-
nique that we propose in this paper.

First, we present an overview of CS and AIS (Section 3.1), fol-
lowed by various extensions to CS that are needed to make it a
practical solution (Section 3.2), followed by a discussion of the AIS
strategy (Section 3.3). We compare both techniques in Section 4.

3.1 Overview of CS and AIS
The CS strategy powers down nodes to reduce the idle energy

consumption in Equation 1. In an ideal case, CS knows the work-
load perfectly ahead of time, and can power down just the right
number of nodes at the start of the workload execution to reduce
idle energy consumption to zero. However, as discussed in Sec-
tion 2, such powering down of nodes can increase the response
time of the workload, which in turn can increase the energy con-
sumed during the workload execution. Thus, CS can only power
down nodes such that it still adheres to performance constraints
(Equation 3). CS also changes the data placement policy of the
DFS so that one copy of the data is always online. The original
CS work does not describe a strategy for powering down nodes. In
Section 3.2 we discuss various node power down strategies for CS.

The AIS strategy is to trade idle energy consumption for tran-
sitioning energy consumption in Equation 1. It takes an extreme
view and toggles the entire cluster between “all-nodes-on” and “all-
nodes-off” modes. It uses all the nodes in the system to run the
workload as fast as it can (i.e., minimizesTw Equation 1), and then
at the end of the workload execution, powers down all the nodes to
reduce the idle energy cost. The price AIS pays is a high transition-
ing energy cost. The scale of this increase in transitioning cost is
determined by the power (Ptr) and length of time (Ttr) of the clus-
ter transition. While this transitioning power (Ptr) may be similar
to the power when the cluster is fully on and running a workload,
Ttr is solely defined by the capabilities of the hardware and the
operating system.

3.2 Covering Set (CS)
The Covering Set (CS) strategy, proposed recently by Leverich

and Kozyrakis [22] aims to reduce the energy consumption of clus-
ters by changing the data placement policy in a DFS. The main
idea is that in a DFS, such as GFS [14, 15] and HDFS [8], every
data block is replicated three times. The cluster energy consump-
tion can be reduced if the server powers down some nodes. But,
powering down some nodes can make some data unavailable. To
avoid this case, CS changes the data placement policy so that one
copy of every data block is kept on a set of nodes. These nodes
constitute the Covering Set nodes and are never powered down. To
reduce energy consumption, non-CS nodes can be powered down.
The CS nodes can be any arbitrary fraction of the total nodes in the
system. For example, the CS nodes could be 25% of the total nodes
in the system, which implies that up to 75% of the nodes could be
powered down when running a workload.

The CS method proposed in [22] does not include any strategy
to determine which nodes to power down when the overall system
utilization drops. To use CS practically, one needs such a method
which we briefly describe below (see Appendix A for more details).
Also, to use CS in practice one also needs a power up method,
which is the reverse of the power down method, and omitted in the
interest of space.

We have developed and examined three power down strategies
for CS, namely: Random, Load Balanced, and Round-Robin Ran-
dom. A random power down strategy for CS simply powers down

the non-CS nodes randomly. It does not take into account any other
cluster configuration (such as physical rack topology) besides the
dichotomy of CS and non-CS, and is thus vulnerable to load im-
balances on the remaining online nodes. The Load Balanced strat-
egy we examined tries to minimize the maximum expected node
load on each MR node in the cluster given a possible node power
down. This method requires a good metric to determine the max-
imum expected node load to avoid load imbalances. Finally, the
Round-Robin Random method, which we found to be both simple
and balanced, iteratively powers down one random node per rack
as the non-CS nodes are powered down.

Since we found the Round-Robin Random method to be both
effective and efficient, for the rest of this paper, CS discussion and
results imply using this power down/up strategy with CS.

3.3 All-In Strategy (AIS)
The CS technique described in the previous section (Section 3.2),

has a few drawbacks. First, the CS strategy requires modifying the
DFS code to alter the data placement strategy. As a result, it is not a
broad generic solution and it is tied to the specific replication strate-
gies used by the DFS. (It also makes it harder to use in cases where
a single system may have different data sets with varying replica-
tion factors.) Second, CS does not explicitly consider the impact
on response time. As we will see for workloads like distributed
Grep that have linear computation complexity, this is manageable,
but for workloads that have worse than linear complexity, this is
problematic as running on fewer nodes can result in rapid response
time degradation, which may not be acceptable. This means that
to use CS, one would need a detailed workload run time estimation
technique for all the cluster configurations that CS might transition
to. Finally, CS requires good workload prediction as the system
has to determine how many nodes to power down, and for how
long. Compared to CS, AIS does not require modifying the data
placement strategy or a detailed node power down strategy, and
can trivially calculate the workload response time degradation.

The strength of CS is that it maintains data availability (though
not in the presence of updates/appends, as in the general case such
operations require that all the nodes in the system to be online).
However, one needs to make an important distinction between data
availability because of node failures (which is why we have repli-
cation), and data unavailability caused by powering down nodes.
The latter can simply be reversed by powering up the offline nodes.
Thus, one can think of a relaxed, or “eventual data availability” in
which data becomes available eventually when the node with the
copy of the data is powered up (from a low power state).

We exploit this idea of eventual data availability and develop
a new scheme for cluster energy management that addresses the
shortcomings of CS outlined above. This new strategy is called
the All-In Strategy (AIS). The AIS mechanism is simply to run the
MapReduce job on all the nodes in the system and power down
the entire system when there is no work. (Here we could have a
mechanism to transition the entire system which could include ev-
erything – the compute nodes, rack power supply, other power sup-
plies, routers, etc., to and from a low power state. Or, we could have
a mechanism to transition selected parts of the entire system, e.g.,
only the compute nodes. The benefits are larger if more and more
power hungry components provide mechanisms for quick transi-
tions to and from power savings mode. AIS provides one more
argument for building data centers out of traditionally fast transi-
tioning mobile parts.)

In cases where there is a consistent low utilization period, AIS
would batch the MR jobs in a queue, and periodically power up
the entire system and run the entire batch of jobs on the cluster
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“Down” means idle state (114W ) transitioning to offline state, “Up” is the reverse.

State Down Time(s) Down Cost(J)Up Time(s) Up Cost(J) State Cost(W)

Stopgrant 1 114 1 114 112
Hibernate 11 1300 100 12900 10

Off 27 3200 156 20000 10

Table 2: Costs for different types of offline states availableon
our MR nodes. Hibernate and Shutdown draw 10W because
the motherboard/NIC is still powered on (for IPMI).

(and then power down). For instance, for the default FIFO queue
scheduler in Hadoop or the add-on Fair scheduler, AIS could batch
intermittantly arriving jobs to then submit all the jobs in the batch
simultaneously. This idea mirrors the QED idea of energy efficient
batching of database queries at a single node [19], and requires
techniques for making the decision of how long to batch the jobs.
These decisions could be guided by the delays that the job can toler-
ate (see Equation 3), and other workload characteristics. Workload
prediction models, such as [7], would be used to guide the energy
management framework. We leave such complex workload man-
agement as part of future work. (Note that CS would need such
techniques too, so there is a broader set of research agendas on de-
veloping the decision making algorithms for system transitions.)

A crucial aspect for AIS is the cost to transition between low
power states (Ttr, in Equation 1, Section 2) and the energy con-
sumed in the idle state. There are a number of choices for these
parameters that are offered by modern hardware. Consider Table 2
where we presentall the available power up and down character-
istics of one of our cluster nodes (details are presented in Sec-
tion 4.1). In this table, it is clear that the hibernate state is the
ideal energy efficient state to use; it is faster than full shutdown
and consumes much less in its “off” state cost than the stopgrant
state. Technology on the horizon, such as phase change mem-
ory [26], and systems research, such as automatically transitioning
hardware [24], will help reduce the transitioning costs further.

The All-In Strategy is quite simple to fit into our framework.
The data placement module need not alter the respective systems
data partition placement rules since the cluster operates in an all-
or-nothing manner which is not affected by data unavailability. The
runtime cluster node management simply keeps the entire cluster
powered up when data availability is needed and powers down the
cluster otherwise.

4. EVALUATION
In this section, we compare CS and AIS using actual end-to-end

response time and high resolution energy measurements taken on a
Hadoop cluster. We used sort and scan jobs as was used in [22,28].
This section largely focusing onsingle-user latency-sensitiveenvi-
ronments. This type of environment can be found using Hadoop-
On-Demand by Yahoo! that partitions user specific virtual cluster
partitions of the physical cluster [1]. An evaluation ofmulti-user
throughput-sensitiveenvironments is found in Section 4.3.2 and
Appendix C.

4.1 Experimental Background
For our evaluation we used a cluster with 24 nodes, each with a

2.4 GHz Intel Core 2 Duo processor running 64-bit RHEL5 with
Linux kernel 2.6.18, 4GB of memory, and two 250GB SATA-I
hard disks. The cluster nodes were connected with Cisco Catalyst
3750E-48TD switches with gigabit Ethernet ports for each node
and an internal switching fabric of 128Gbps. Switches were con-
nected to 50 nodes and linked together with Cisco StackWise Plus
giving a 64Gbps ring between the switches.

Energy measurements were taken using the following setup: The
cluster is composed of 3 racks of 8 nodes each, and each rack was

plugged into an APC Switched Rack PDU. AC current was mea-
sured at the APC PDU using Fluke i200s AC current clamps. Three
Fluke clamps were connected to a National Instruments USB-6009
Multifunction DAQ and collected using National Instruments Lab-
View sampling at 1KHz. RMS current was calculated using a slid-
ing window of 20 sample points (1 period) given an AC frequency
of 50Hz. The RMS voltage was measured at 116V. Our observed
power factor was 0.96 and we used this to calculate the real power
from the apparent power (RMS current x RMS voltage). Finally,
energy consumption was calculated by summing the time discretized
real power values over the length of the workload.

On our cluster we ran Hadoop version 0.20.0 and Java version
1.6.0. We used the standard 64MB block size and set the sort buffer
size to 768MB. The amount of memory given to the task tracker
child process was 1024MB. The sort spill percentage was set to
0.95. The data was triple replicated. Rack awareness was enabled
in Hadoop and re-replication due to under-replication was disabled.
The master node that hosts the Namenode and the Jobtracker was
run on a separate server (but on the same network). Finally, we ran
one mapper and one reducer per node.

We used the distributed Grep and the Terasort workload. We
chose these two workloads because of their striking differences and
also because other studies [22, 28] have relied on these workloads.
The distributed Grep workload is a map-only file scan job with vari-
able selectivity and requires little additional space on disk. For the
Grep workload, we ran a three character query against the Teragen
dataset as was done in [28]. The Terasort workload stresses both
map and reduce components of the MR framework. It needs to read
and write significant amounts of intermediate data and the size of
the output is equal to the size of input.

The dataset we used for these two workloads was a 77GB Tera-
sort dataset generated using the default Hadoop Teragen applica-
tion. With this size, each node stores on average 150 blocks (with
triple replication). For CS, one entire rack was designated as the
Covering Set. Thus, with CS we allowed powering down up to
66% of the nodes in the entire clusters.

We also ran the workloads on a 96 node cluster with a 4X larger
data set and measured the response time (though not the power as
we did not have enough instruments to accurately measure power
for 96 nodes). The response time behavior on 96 nodes is similar to
the 24 node case, and both matched the analytical model (found in
Appendix B). In the interest of space we do not present any results
from the 96 node runs in this paper.

4.2 Workload-Only Evaluation
Now, consider a best-case scenario for both CS and AIS in which

the MR cluster already exists in the state that the strategy needs (see
Section 2). In other words, for CS, the system has already powered
down the desired number of nodes. For AIS, the cluster is fully
powered up. Since our framework expects the cluster to be returned
to the state in which it originated, the best-case scenario means
that no transitioning costs are needed by either method and there
is no idle time (Equation 1 in Section 2). In other words, we only
measured the actual time and energy consumed when running the
actual workload (we relax this assumption in the next experiment).

Figures 1 (a) and (b) show our actual measured CS and AIS re-
sults for the Grep and Terasort workloads respectively. In each fig-
ure, the workload energy consumption is plotted on the left y-axis
and the response time on the right y-axis.

CS is very dependent on the workload complexity when it comes
to its response time degradation. This response time degradation
typically translates to increased energy consumption during work-
load evaluation since the linear decrease in online nodes results in
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Figure 1: 77GB Grep and Terasort workload (no transition-
ing/idle) response time and energy consumption on a 24 node
cluster using CS and AIS.

a non-linear increase in response time for non-linear jobs. We can
see this result in the response time curves of Figures 1 (a) and (b).
Grep in Figure 1 (a) follows a response time degradation exactly
proportional toM = N/(N − i) for an N node cluster withi
nodes powered down. Similarly, Terasort in Figure 1 (b) shows a
response time degradation proportional toMlnM consistent with
sort complexity (see analysis in Appendix A.4).

Our measured energy results show that CS steadily consumes
more energy to run the same workload with fewer online nodes.
Figure 1 (b) shows that this increase for Terasort is about 39% be-
tweenperformance mode(all nodes being powered up) and when
all the non-CS nodes are powered down. Since in this scenario,
AIS consumes the same amount of energy as performance mode,
AIS is up to 39% more energy efficient than CS for Terasort. For
linear Grep, AIS is 17% more energy efficient than CS when all the
non-CS nodes are powered down (Figure 1 (a)). This is because
CS’ offline nodes still draw 10W (Table 2).

The main point is that AIS consumes less energy than CS in this
experiment.Further, if the workload is super-linear in complexity,
CS degrades very poorly in both runtime and energy cost.While
these are best-case scenarios that assumes that both strategies do
not make any transitions, the next section presents similar results in
a more detailed setting that includes both transition and idle costs.

4.3 Workloads with Idle Periods
Next we evaluate CS and AIS with full idle and transitioning

costs factored in. We will present results for both latency-sensitive
and (briefly) throughput-sensitive workloads.

4.3.1 Latency-sensitive Workloads
Now let us consider a scenario in which CS and AIS need to

transition nodes to minimize idle energy costs (114W/node), which
would happen when the cluster is underutilized. Consider a 1032
second window, which is the time it takes for CS to run the Grep
workload without idle cost, including powering down all non-CS
nodes (11s), execute the workload (921s with 8 online nodes), and
then powering up 16 nodes to return to performance mode (100s).
If we can not power down 16 nodes (due to performance limitations
as discussed in Section 2), the workload will finish and the cluster
will consume idle energy. In performance mode, CS runs Grep in
318s and then it will have to idle 24 nodes for the rest of the pe-
riod which consumes tremendous amounts of energy as shown in
Figure 2 – see the bar corresponding to zero nodes powered down.
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Figure 2: Cluster energy consumption (transitioning and idle)
of Grep over a 1032s time window.
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Figure 3: Cluster energy consumption (transitioning and idle)
of Terasort over a 3197s time window.

If CS powers down nodes prior to running Grep, Grep will take
longer to return and the idle costs diminish but transition costs in-
crease (shown in Figure 2 where the black bars increase as more
nodes are powered down). When 16 nodes are offline, there is no
idle energy cost.

Similarly, in Figure 3 we present the same analysis for Terasort
but over a 3197 second window where CS can run Terasort on 8
nodes (3086s) and perform all round-trip transitions (111s) to per-
formance mode. Similarly, the energy consumption over the win-
dow decreases as we lengthen the workload running time to fill
3197 seconds and erase all idle time cost.

In Figures 2 and 3, the energy consumption of AIS during the
respective time windows includes the cost to power up the 24 node
cluster, run the workload, power it back down, and draw 10W per
node (see Table 2) while they are powered down for the rest of the
time period. For Grep, AIS consumes less energy during the 1032s
window than CS most of the time until CS powers down 13 or
more nodes. Since AIS has the overhead of transitioning, this cost
makes AIS less desirable for this short workload. However, for the
Terasort workload, we notice that AISalwaysconsumes less energy
during the 3197s window. Due to the complexity of the workload,
AIS’ overhead costs are less than the energy consumption increases
of CS. Consequently, AIS saves 10% in energy over CS even at CS’
more efficient operating state.

Consider an example of a scenario where the response time per-
formance requirements (Equation 3) cause CS to consume more
energy than AIS because it cannot power down sufficient nodes to
eliminate idle cost. Let the tolerable level of Grep response time
degradation be 50% (τ = 450s). Figure 2 shows that during this
underutilized period, CS will consume 33%morethan AIS because
CS can only power down8 nodes and draws idle power.

133



Amount of Data GB

10
00

13
00

16
00

19
00

22
00

25
00

28
00

31
00

34
00

37
00

40
00

T
er

as
or

t E
ne

rg
y 

C
on

su
m

pt
io

n 
(M

J)

0

25

50

75

100

125

150

175

200

T
er

as
or

t R
es

po
ns

e 
T

im
e 

in
 S

ec
on

ds

0

200

400

600

800

1000

1200

1400
CS Terasort Energy Consumption

AIS Terasort Energy Consumption

CS Terasort Response Time

AIS Terasort Response Time

Figure 4: Analytic comparison between CS and AIS response
time and energy cost for Terasort. CS uses 50% of the 2000
node cluster. Hibernate parameters are found in Table 2. Aver-
age operating power is 150W for each online node.

This problem is even worse with a super-linear complexity job
such as Terasort. If acceptable response timeτ = 1300s (in Equa-
tion 3) is 1.5X the performance mode response time, then CS can
only power down7 nodes (less than for Grep). Then Figure 3 shows
that CS consumes 80%morethan AIS!

Thus, the response time degradation with CS can make it un-
tenable in many operating environments, even with moderately ac-
ceptable response time degradation.

4.3.2 Throughput-sensitive Workloads
We have also evaluated AIS and CS on throughput-sensitive work-

loads, and observed that AIS can save significantly more energy
than CS given a fixed level of throughput degradation. We ran a
heterogeneous workload of Grep and Terasort jobs (similar to [22])
and used CS and AIS to manage the cluster energy consumption.
In our results we found that when AIS batches jobs, it consumes
26% less energy than CS given a acceptable throughput degrada-
tion (3%). These results are not surprising, and follow the same
intuition from the evaluations in Section 4.3; CS results in rapid re-
sponse time degradation which impacts both the energy consump-
tion and throughput. In the interest of space, additional details can
be found in Appendix C.

4.4 Effects of Workload and Hardware
In this section, we analytically model the effects of workload

and hardware characteristics on CS and AIS to fully explore the
pros and cons of these methods in diverse workload and hardware
settings.

The response time of any AIS job is simply the performance
mode (all nodes online) response time plus transitioning time. Sim-
ilarly the energy cost for AIS is simply the performance mode cost
plus the transitioning costs. For CS, we have shown that the work-
load complexity determines the response time when nodes are pow-
ered down (Section 4.2). Energy modeling for CS similarly re-
quires incorporation of the workload complexity and also the tran-
sitioning costs. For space, the details and accuracy of our models
can be found in Appendix B.

Given the results of Section 4.3, we have shown that the main
factor that affects AIS is the transitioning costs that it has to in-
cur. But the question is how does this transitioning cost affect AIS’
potential advantage over CS?

To explore this question, let us model the differences between
CS and AIS when we have powered down50% of a 2000 node
cluster. Furthermore, we increase the amount of data that needs
to be processed given constant transitioning parameters such as the
node power up time. We assume that each node draws 150W when
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Figure 5: An analysis on the effect of workload complexity and
relativeTtr on CS and AIS workload response time.

running a job (an average from our empirical results) and the cluster
nodes have the hibernate transitioning characteristics as in Table 2.

For simplicity, in the following analysis, for CS, we assume that
the cluster is already powered down appropriately, and do not add
any transition costs for CS. However, for AIS, we include the full
power up and power down that is required. For both, we do not
include any idle time cost.

Figure 4 shows the energy consumption and response time of
CS and AIS for Terasort on this 2000 node cluster as we increase
the amount of data to be sorted. As the results in Figure 4 show,
the relative rather than the absolute transition time is the important
factor since as we increase the workload length, AIS’ transitioning
penalties will be overcome. Thus, the relative transitioning time is
a significant factor in determining the feasibility of AIS. When run-
ning a 1TB sort job with half the nodes in the cluster, CS provides
better energy efficiency and response time characteristics than AIS.
However, at this point,Ttr = 111s is about half of the perfor-
mance mode response time (200s). Now as the data size increases,
the workload response time increases while theTtr factor remains
constant. As this happens, the advantage of AIS becomes apparent
– beyond a 2.8TB data set (1.4GB/node), AIS is both faster and
more energy efficient than CS.

The results above show that the absolute value ofTtr is not im-
portant, but rather the important measure is the ratio betweenTtr

and workload response time when run in the performance mode.
Thus we call this measure therelativeTtr.

Figures 5 and 6 compares the response time and energy con-
sumption characteristics respectively, of both methods for work-
loads with varying computational complexity, as we increase the
proportion of the cluster that is powered down by CS. In these fig-
ures, we show four different cases for AIS, withrelative Ttr val-
ues of1%, 5%, 10%, and20%. Since our observed transition-
ing power (Ptr in Equation 1) is approximately equal to workload
power (P n

w ), the rel. Ttr also translates to the relative increase in
AIS energy consumption.

In these figures, we have presented the proportional increase
in response time and energy consumption for both CS and AIS
over an “ideal” case in which the hardware is perfectly energy-
proportional, for three different classes of jobs with linear, sort,
and quadratic computation costs.

From Figure 5, we observe that across all workloads, even with
the largest20% relativeTtr, AIS generally has a better workload
response time than CS. This is not surprising as AIS runs the work-
load in performance mode, and its response time degradation is
based only on the transitioning overhead. AIS has worse response
time than CS only when the relativeTtr is very large.
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Figure 6: An analysis on the effect of workload complexity and
relativeTtr on CS and AIS workload energy consumption.

Looking at the energy consumption in Figure 6, we notice that
if the relativeTtr is large (e.g.,20%), then AIS will consume too
much energy in transitioning, and will only be more effective with
large complex workloads, where the computational complexity of
the workload is high (e.g., polynomial or worse). AIS’ energy con-
sumption drops rapidly as the relativeTtr decreases. For example,
with a relativeTtr of 1%, AIS is the preferred strategy for all three
workloads. In this environment, for a sort workload, if the cluster
is powered down by 66% by CS, then AIS saves more than 30% in
energy consumption over CS.

These results also shows that if the transitioning cost is high (rel-
ative Ttr ≥ 10%), then generally CS provides better efficiency
because the AIS energy cost of powering up the entire cluster over-
shadows any inefficiencies from operating CS with a smaller com-
mitment of resources.

Table 3 presents a two dimensional summary of the factors that
affect the energy efficiency of AIS and CS. These factors are the
computational complexity of the workload and efficiency of node
transitioning (Ttr). Table 3 shows that AIS is favoured when the
workload computational complexity is high. Furthermore, when
AIS and CS provide about the same benefits (linear-rel.Ttr = 5%
and sort-rel.Ttr = 10%), AIS is preferred when the fraction of
idle time is high and CS needs to power down a large proportion of
the nodes. Finally, when theTtr factor is small, AIS is preferred
even when the computational complexity is linear. Of course, this
summary is caveated with the assumption that the CS response time
degradation is acceptable. As shown in Section 4.3, if the CS re-
sponse time is unacceptable, AIS is the preferred method.

4.5 Discussion
In this section, we discuss various implications on implement-

ing and running AIS and CS. We also discuss other cluster energy
management methods that fit in our framework.

4.5.1 Drawbacks of CS
There are three important drawbacks of CS which need to be

considered when deploying CS.
Storage Overprovisioning– CS requiressignificantoverprovi-

sioning of storage for the Covering Set nodes. Consider a large
five terabyte dataset on 100 nodes. With DFS triple replication,
the nodes must collectively store 15TB of data. In addition, the
output of Terasort takes another 15TB (assuming it is also triple
replicated). This means that in performance mode, each node must
have 300GB of storage for this workload. But when CS powers
down all 66 non-Covering Set nodes, each Covering Set node must
now have 600GB of storage. Essentially, the online nodes must be

RelativeTtr O(N) O(NlnN) O(N2)

1% AIS AIS AIS
5% CS/AIS AIS AIS
10% CS CS/AIS AIS
20% CS CS AIS

Table 3: Summary of the two main factors that discriminate
CS from AIS: Workload Complexity and Relative Transition-
ing Cost. This summary is based on the workload energy con-
sumption since the response time performance of AIS is better
than that for CS in the vast majority of cases.

overprovisioned in storage, consuming evenmoreenergy. (This is
why our real workload results ran relatively small Terasort jobs.)

Response Time Degradation– As discussed in Section 4.3, Fig-
ure 2 and 3 shows that CS can only save energy when it commits
exactly the right amount of resources such that all the idle time in a
given time window is erased (Equation 1). However, this requires
that the workload is willing to tolerate a potentially large response
time penalty (constraintτ in Equation 3). If this response time
penalty is not acceptable and CS must commit more resources and
incur more idle energy, Figure 2 and 3 shows that AIS will con-
sume less energy than CS for the majority of the cases. Section 4.3
shows that with an acceptable 50% increase in response time, AIS
can save up to 80% of CS’ consumption.

DFS modification – The last drawback of CS is that it requires
modifying the data placement code in the DFS. These changes can
be complicated if one has to deal with creating new data when the
cluster is in power savings mode, and when the cluster has hetero-
geneous nodes.

4.5.2 Hybrid Approaches
The effectiveness of AIS for energy management improves as

the relativeTtr value drops, and the effectiveness of CS improves
as the workload computational complexity decreases. As a result,
each method may have its sweet spot for a given hardware and
workload characteristics. However, it is possible to combine AIS
and CS to build a hybrid solution.

For example, if CS runs with a combination of CS and some non-
CS nodes up (e.g., to cap the response time degradation), then after
running the workload, the non-CS nodes could be powered down,
or all the nodes in the cluster could be powered down.

5. RELATED WORK
The problem of increasing energy consumption in large-scale

data processing environment has received considerable attention in
the context of data center construction and operation [11, 16, 17,
23, 27]. All these efforts have resulted in dramatic improvements
in the energy efficiency of data centers, and can largely be used
orthogonally to software methods to reduce energy consumption.

A desired property for systems is energy proportionality, which
is currently lacking in modern servers [5]. Major components, such
as CPU and disk, are now under high scrutiny for improving their
energy characteristics under varying utilizations [5, 10, 36]. Soft-
ware efforts such as the Tickless Kernel project, aim to change the
way the OS kernels operate when the server is idle [37]. Efforts by
the systems community to develop energy efficiency metrics can be
found in [2,18,34,35]. Recent work has examined how direct CPU
power control mechanisms can effect energy savings and workload
response time [19] while single node database energy efficiency
was discussed in [40]. Chen et al. recently presented a study on
MR operating variables [12].

Studies into shutting down online web servers were discussed
in [30, 32]. Shutting down a replicated parallel database environ-
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ment was analyzed in [20]. Other related methods [29, 31] either
rely on learning request skew, specialized hardware, and data mi-
gration. Increasing utilization can be done by consolidation using a
virtual machine (VM) solution [3,13,33,39]. However, using VMs
when running data intensive services, like the ones we consider
in this paper, is challenging for a number of reasons such as per-
formance penalties from VM overhead, homogeneous performance
from heterogeneous hardware [25], and costs of VM migration and
overprovisioning. Weddle et al. [42] described a RAID-based sys-
tem to turn off disks to save energy.

As we have mentioned in our discussions on reducing cluster
node transitioning costs, recent discussions on fundamentally new
cluster server design are highly relevant to ideas such as CS and
AIS [17, 21, 24, 41]. Hardware advances, such as low-power non-
volatile Phase-Change Memory [26], solid state/flash memory, and
large arrays of cheap low power processors such as Intel’s Atom,
may be the key towards achieving cost-effective, energy-efficient
servers that transition between online and offline states efficiently.

6. CONCLUSIONS
In this paper we have presented a general framework for design-

ing and evaluating methods to reduce the energy consumption of
MR clusters. We have also investigated the class of techniques that
power down (and power up) MR nodes to save energy in periods
of low utilization. Using this framework, we closely examined two
broad strategies for MR energy management – a recently proposed
strategy called CS, and a new strategy called AIS that we propose
in this paper. We also compared these two techniques within the
context of MR systems. Our results show that there are two crucial
factors that affect the effectiveness of these two methods (and gen-
erally any energy management method that fits in our framework).
These factors are the computational complexity of the workload,
and the time taken to transition nodes to and from a low power
(deep hibernation) state to a high performance state. We evaluated
both CS and AIS on an actual cluster, and also developed an accu-
rate and detailed analytical model for both methods. Our evaluation
shows that CS is more effective than AIS only when the computa-
tional complexity of the workload is low (e.g., linear), and the time
it takes for the hardware to transition a node to and from a low
power state is a relatively large fraction of the overall workload
time (i.e., the workload execution time is small). In all other cases,
which tend to be the common cases for MR systems, the benefits of
AIS over CS are significant – both in terms of energy savings and
response time performance.
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APPENDIX

A. CS POWER DOWN STRATEGIES
This section details some of the different power down strategies

for the CS approach. A CS power down strategy’s main goal is to
be simple and help maintain predictable response time degradation.
As [22] did not detail a power down strategy, we first detail our
observations of a purely random power down order.

A.1 Random Power Down
Consider powering down a cluster ofN nodes where a dataset

is triply replicated and a MapReduce workload is run. Suppose
utilization drops and the system responds by powering down the
cluster one node at a time. (Extension to power down by more
than one node in each step is straight-forward.) In this case, the
work at each remaining online node goes up at the rate ofN/(N −
i), in anN node system fori nodes that are powered down. The
actual response time will also go up at this rate, if the computational
complexity of the workload is linear.

However, randomly selecting non-CS nodes for powering down
can result in suboptimal performance, as explained below. To begin
this discussion, consider a distributed Grep workload on a 24 node
Hadoop cluster. (More details about the system setup and workload
can be found in Section 4.1.) In this case, the system has three racks
and each rack had 8 nodes. The CS set was set to the nodes in the
third rack. (Similar issues as those described below happen, if the
CS nodes are spread across the racks.)

Now, consider selecting nodes at random for powering down
from the two non-CS racks. Figure 7 shows the effect on response
time for the Grep workload as nodes are powered down. Also
plotted in this figure is the theoretical ideal response time curve
(N/(N − i)) for Grep. As can be seen from this figure, there is a
significant degradation in response time when the 9th node is pow-
ered down. The reason for this degradation is as follows: first,
recall that for each data block, HDFS keeps one replica on a node
on the same rack, and another replica on a node on another rack.
Second, because of the HDFS replication policy, a natural way to
produce a CS node set is to allocate an entire rack to the CS nodes
(in our 3 rack case). Third, Hadoop tries to schedule Map and Re-
duce jobs so that they work on the data that is local (called “data
local” tasks), but the Hadoop scheduler will assign tasks to work on
remote blocks if some nodes have no additional unprocessed local
blocks. These remote tasks incur additional overhead as they inter-
fere with the disk activity at the remote node (which is presumably
running a data local task), and incurs additional delays because of
the network activity. Fourth, as non-CS nodes are powered down,
the probability that nodes in the CS rack have the only copy of
the data increases. Finally, if by chance there is a disproportionate
number of nodes in one non-CS rack that are turned off, then the
chance that some node in the CS rack will end up with a dispro-
portionately larger number of single replica blocks increases. This
node will then be the bottleneck as some blocks on that node will
probably have to be fetched remotely by other nodes for process-
ing. In fact, this is precisely what happens in Figure 7 when the
9th node is powered down and the fraction of non-data local nodes
increases rapidly over the previous case when the 8th node was
turned off. Consequently, as can be seen in Figure 7, the response
time degrades rapidly when the 9th node is taken down.

Thus, simple random powering down has the drawback of result-
ing in surprising jumps in response time.

A.2 Load Balanced (LB) Power Down
The drawback of selecting a random node for powering down,

can be addressed by keeping a precise track of the load increase

that will result from powering down a node. The DFS file system
keeps metadata about the placement of each block and replica, and
this central metadata can be augmented to keep track of the nodes
that are being powered down.

Then, when the energy management module needs to power down
a node, it looks at the metadata and calculates the expected data lo-
cal node load for each node. For instance, if nodes A, B, and C
store the same data blockb, then the expected node load for all
three nodes because of blockb is 1/3. (In other words there is a
3 in 1 chance for each node to be asked to process this block.). If
node C is powered down, then blockb contributes a node load of
1/2 at each node A and node B. If A, B, and C store two blocks
(instead of one above), and C is powered down, then A and B have
a node load1 each.

The “load balanced” power down strategy is simple: In response
to a request to select a node for powering down, it iterates through
each node,d, in the system and computes for each remaining node,
u, the expected node load on the nodeu if noded is powered down.
A priority queue is maintained on themaximum expectednode load
measure, and the next node to power down is the node that has the
smallest maximum expected node load increase.

This load balanced power down method has some drawbacks, as
the computation of the load increase can be expensive, especially
for large clusters. Next, we present a simpler algorithm that also
produces balanced load, but requires less storage and computation.

A.3 Round – Robin Random (RRR)
Power Down

This scheme simply goes through the non-CS racks in a round
robin fashion and selects a random node (that is not powered down)
in each rack as the next “victim”. Thus, in the case above, where we
have two non-CS racks (see Appendix A.1) this strategy will first
select, at random, a node from the first non-CS rack for powering
down. In the next iteration, it will select a victim from the second
non-CS rack, and in a subsequent iteration it will return back to
the original first non-CS rack for victim selection, and so on. The
difference between this strategy and a purely random strategy is
that we do not allow any two physical racks to have their number
of powered down nodes to differ by more than one. In this way, we
minimize the number of single replica blocks that are created by
each node power down.

This scheme is simple and requires minimal overhead to oper-
ate. We only need to keep track of the round robin sequence of the
racks, and which rack needs to be examined next.

A.4 Comparing the Power Down Schemes
Figure 8 shows the corresponding behavior of the load balanced

(Appendix A.2) and the round-robin random (Appendix A.3) schemes
compared to the ideal behavior (as was shown in Figure 7).

Figure 8 shows two important points. First, the response time of
both the Round-Robin Random (RRR) and the Load Balanced (LB)
schemes match the theoretical ideal case. Second, in this case both
the RRR and LB methods have nearly identical response time. The
simplicity of the RRR method (see Appendix A.3), implies that it
is a better method for use with the Covering Set technique.

We have analyzed these three schemes for a 24 node Terasort
workload. Unlike Grep, the Terasort workload has anO(NlnN)
computational complexity. Figure 9 shows similar Terasort results
as in Figure 8. That is, RRR and LB provide similar response time
degradation and very closely follow the idealO(NlnN).

As we have seen here, the computational complexity models are
good for modeling CS response time degradation. Further, we will
need these response time models for modeling CS energy consump-
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Figure 7: An example of load imbalance with a bad power down order on a MapReduce cluster
using a CS data placement. A Grep workload was run on a 24 node cluster with a CS of 8 nodes.
Ideally as i nodes are powered down in anN node cluster, the amount of work at each node
increases by a factor ofN/(N − i).
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Figure 8: 77GB Grep workload response time on a24 node cluster asi nodes are powered
down. A comparison of the effects of the RRR and Greedy power down strategy and the ideal
O(N) degradation.

tion. This is discussed in Section 4.4 and Appendix B.

B. MODELING VALIDATION
Modeling AIS is simple. AIS only has two different operating

modes: performance modein which the entire cluster is always
powered up andenergy savings modein which the cluster is pow-
ered off until it needs to be powered up to fulfill a job request, and
then powered back down. Thus, the response time modeling of the
energy savings mode simply requires adding the times associated
with each of these components. Furthermore, energy consumption
modeling can be similarly defined to be the sum of the performance
mode energy consumption, and the cost to power up and down the
cluster nodes.

CS on the other hand, is more complex in its modeling of re-
sponse time and energy consumption. We have already presented
results showing that the computational complexity of the workloads
can be used to accurately model the response time degradation of
CS as more nodes are powered down (Appendix A.4).

If we recall Equation 1 from Section 2, the workload energy
consumption isEw = (P n

w + P n̄
w)Tw, which considers the power

drawn by both the online and offline nodes during the actual work-
load execution. The effect of CS powering down nodes is that the
idle energy shrinks, and eventually reduces to zero. As CS pow-
ers down more nodes, (P n

w ) decreases while (P n̄
w ) increases. Using

Equation 1, we can model the energy consumption of the workload
under CS when we substituteTw with the workload complexity

models just described. Any transitioning and idle costs are straight-
forward to include as we just add them to the workload cost. For
simplicity, we do not include them in our modeled analysis of CS.

Figure 10 shows a comparison of the observed and modeled en-
ergy consumption of the Grep and Terasort workloads using the
workload energy consumption(P n

w + P n̄
w)Tw from Equation 1.

For this figure, we used the power data shown in Table 2, along
with using O(N) and O(NlnN) complexities to model the response
times of Grep and Terasort respectively. The results shown in Fig-
ure 10 demonstrate that the models are quite accurate in predicting
the energy consumption of CS: an average error of 1% and 4% for
Grep and Terasort jobs respectively.

C. THROUGHPUT – SENSITIVE
WORKLOADS

In this section we discuss empirical results showing the abilities
of CS and AIS to handle a throughput-sensitive MapReduce cluster.
Here we are trading throughput for energy efficiency instead of the
response time/energy efficiency trade-offs, as in Section 4.

For AIS, the method that we employ is the batching method de-
scribed in Section 3.3. AIS keeps the MR cluster powered down
while jobs are batching [19, 38]. When enough MR jobs are col-
lected, AIS powers up the cluster and submits all the jobs. The job
collection, or batching delay, effectively degrades throughput.

In contrast, CS runs the jobs as they arrive but can process them
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Figure 9: 77GB Terasort workload response time on a24 node cluster asi nodes are powered
down. A comparison of the effects of the RRR and Greedy power down strategy and the ideal
O(NlnN) degradation.
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Figure 10: Comparing the observed and modeled energy consumption of the Grep and Tera-
sort workloads for CS. The average error is 1% and 4% for the Grep and Terasort models
respectively.

with some MR cluster nodes powered down. However, as fewer
nodes are available for the job, this also lowers throughput.

Our throughput workload mimics that of [22] whereby sort and
scan jobs are injected into the MR cluster. We use the same Tera-
sort and Grep jobs of Section 4 whereby each job runs on a 77GB
dataset.

We evaluate a heterogeneous job workload consisting of four sort
and four scan jobs, randomly ordered and individually submitted
to the 24 node cluster in 850 second intervals. Recall from Sec-
tion 4.2, that the Grep job can run in about 300 seconds and the
Terasort job can run in 850 seconds.

Given this normal operating environment, the cluster throughput
is essentially eight jobs in 6800 seconds with an energy cost of
20.5MJ. Now, suppose we have a tolerable throughput degradation
of 3% which means we can accept eight jobs in 7000 seconds.

Using CS, we can power down nodes, degrading throughput, and
potentially saving energy. We found that if CS powers down 3/24
nodes, then its throughput degrades to 6984 seconds. Given this
throughput, CS with 21 nodes powered up, consumes 18.8MJ of
energy for this eight job workload.

Now using AIS, if we delay jobs such that we can then sub-
mit two jobs in a batch to the system at a time, then our mea-
sured throughput for eight jobs is 6962 seconds (which includes
all batching time). With this throughput, AIS will power down all
the nodes while batching jobs and power the entire cluster up to
execute the batch. The measured energy consumption for AIS is
13.9MJ (which includes all transitioning costs). Therefore, for this
heterogeneous job workload, AIS saves 26% of CS’ energy con-
sumption when both have equal throughput rates.
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