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ABSTRACT
This paper addresses the problem of explaining missing answers
in queries that include selection, projection, join, union, aggrega-
tion and grouping (SPJUA). Explaining missing answers of queries
is useful in various scenarios, including query understanding and
debugging. We present a general framework for the generation of
these explanations based on source data. We describe the algo-
rithms used to generate a correct, finite, and, when possible, min-
imal set of explanations. These algorithms are part of Artemis, a
system that assists query developers in analyzing queries by, for in-
stance, allowing them to ask why certain tuples are not in the query
results. Experimental results demonstrate that Artemis generates
explanations of missing tuples at a pace that allows developers to
effectively use them for query analysis.

1. Introduction
A common scenario faced by SQL programmers involves asking

why one or more tuples are missing from the results of a query. One
might wonder why, for instance, the result of a query is empty or
why a query did not return certain tuples. In the case when queries
are used to define multiple views, one may ask why, for instance, an
employee information is missing from both the employee register
and the payroll views. Often, the first reaction of programmers is
to review the query itself since the explanation could be that a filter
is too restrictive, or an inner-join should be an outer-join. How-
ever, if the expressions in the queries appear to be correct, then the
next step is exploring the data sources to figure if data that maybe
combined to yield the desired tuples are indeed there. We call this
latter kind of explanations, in which data is used to explain missing
answers, instance-based explanations.

We present a missing answers explanation framework implemented
in Artemis [11], a system for debugging and validating SQL queries
using data. Artemis’ algorithms are able to generate explanations
for a set of missing tuples over a set of queries that include se-
lection, projection, join, union, aggregation, and grouping (SPJUA
queries for short). Missing values are entered by users as a “pat-
tern” representing the missing tuples. These tuple patterns can con-
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Figure 1: The PhotoShare database (sample)

tain the actual expected values for certain attributes, and “labeled
nulls” representing unknown values.

Consider for example a simple debugging scenario for a social
network application. Fig. 1 shows an excerpt of a database used by
an application called PhotoShare that models a network of friends
sharing pictures. The five relations at the bottom are the source re-
lations and the two at the top are relational views. Arrows indicate
which relations appear in the FROM clause of the view definitions.
The source schema stores information about PhotoShare users in-
cluding their friends, pictures taken, and tags about their interests.
Each picture can also be tagged as relevant to interests.

The Network view associates the e-mail addresses of people con-
nected by the Friend table. This association is bi-directional and is
computed by the union of two almost identical SPJ queries (one
for each direction). InterestingPics finds, for each user, a list of
shared pictures whose tag matches one of the user’s interests. For
example, peter@home.de appears in this view because the picture
pier39.jpg, contributed by John, was tagged as I1, an interest that
Peter shares. The InterestingPics query is a union between shared
pictures visible to everybody and pictures that are only visible to
friends. Fig. 7 (Appendix) shows the actual SQL view definitions.

As an initial example, assume the query programmer wants to
know why Peter does not appear as a friend of John in Network.
The user queries Artemis by adding the following tuple pattern into
Network. The tuple pattern contains constant values and labeled
nulls, denoted by a $ sign followed by the name of the null.

t1 = Network〈’john@univ.edu’, ’Peter’,$friend-email〉

Fig. 2 shows four explanations for t1 (each row represents one
explanation). Each explanation has as many attributes as there are
in all source relations and can be thought of as the result of join-
ing tuples from each source relation. In our example, the query is
a join between Friend and two instances of User and, thus, each
explanation contains a Friend tuple and two User tuples. Notice
that some of these tuples already exist in the source relations (illus-
trated with the lighter background) while others do not exists and
represent the “missing” source tuples that, if added, would produce
t1. Consider, for instance, the last explanation in Fig. 2 (row 4). To
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Figure 2: Explanations creating t1

create t1, a tuple 〈U3,U1〉 must be inserted into Friend. That new
tuple will join with the two existing tuples in User shown in row 4.
Another possibility, described in row 1, is to insert a new tuple into
Friend and a new tuple into User. Those tuples include a condition,
namely F.UID2 =U2.UID, needed to join the tuples to produce t1.

In a little more complex example, our query programmer needs
to know why john@univ.edu does not appear in InterestingPics.
Notice that we can extract several possible high-level explanations
by studying how source data is joined. Maybe John is no longer a
PhotoShare user, or does not have a declared interest. Perhaps none
of the users is sharing a photo tagged with John’s interest. Or, even
if they have such a photo, the photo is not visible to John.

To explain this missing value, the user enters a new tuple pattern
into InterestingPics:

t2 = InterestingPics〈’john@univ.edu’,$picture,$friend-name〉

Further, assume the user wants to ensure john@univ.edu is a
friend of the person contributing the picture. This is easily done by
entering a new tuple pattern

t3 = Network〈’john@univ.edu’,$friend-name,$friend-email〉

Notice that $friend-name is present in both t2 and t3, meaning that
both tuples share the same (unknown) value. In a sense, the speci-
fication of tuple patterns resembles Query-By-Example [16].

To explain t2 and t3 simultaneously, we compute the cross prod-
uct of all explanations for t2 and t3. In our example, Artemis pro-
duces 7 explanations for t2 and 67 explanations for t3, resulting in
469 explanations in the cross product.

Artemis provides several ways to reduce the number of expla-
nations. Users can, for example, request that no new tuples be
added to the User table. We can also restrict or minimize the “side-
effect” an explanation creates. For example, consider what happens
if we use the explanation for t1 in row 2 (Fig. 2) and insert a tuple
Friend〈U1,U3〉. If that tuple is inserted, t1 will be generated as re-
quested. However, InterestingPics〈peter@home.de,goldegate.jpg, John〉
will also be generated as a “side-effect”. To avoid these cases, users
can request Artemis to only produce explanations that minimize, or
even avoid changes on a view. Minimizing side-effects in our ex-
ample reduces the number of explanations for t2 to 4 and the num-
ber of explanations for t3 to 13, for a new total of 52 explanations.

Our work is largely inspired by the work in [12] but it extends
that work in non-trivial ways. Our contributions specifically are:
Framework. We present a framework for instance-based explana-
tion generation and study properties of the generated output such
as universality and minimality.
Explaining a set of missing tuples over a set of SPJUA queries.
Artemis provides explanations over a set of SPJUA queries ([12]
only covers a single SPJ query) for a set of missing tuples ([12]
provides explanations for one tuple at a time). One could argue
that it is possible to trivially extend the algorithm in [12] to support
multiple SPJU queries and explain multiple tuples. However, we
notice that for the example in this section, [12] produces 25 expla-
nations for t2 alone and 396 for t3 alone. Such a trivial extension
would produce 9,900 explanations for this simple scenario.
Side-effects are considered by Artemis (and not by [12]).
Correctness. We compute explanations by encoding the problem
into a set of constraints which are passed to a constraint solver.
An explanation is returned to the user only if the constraint solver

can find a satisfiable solution for its constraints (as we discuss in
Appendix C, [12] can return explanations that do not satisfy con-
straints when explanations require nulls, inequalities, or unique
constraints).

We discuss some related work next. We define a framework
for explanation generation for SPJU queries in Sec. 3. Sec. 4 de-
scribes the algorithm for producing explanations for SPJU queries
and Sec. 5 extends this algorithm to grouping and aggregation. In
Sec. 6 we evaluate our algorithms, before we conclude in Sec. 7.

2. Related Work
The instance-based explanations extend the traditional data prove-

nance research, where the problem is to determine what data and/or
transformations led to existing tuples (see a survey in [6]). The idea
of extending the computation of provenance information of missing
tuples has recently been explored by [12] and [5].

The Missing-Answers algorithm [12] computes instance-based
explanations given a single missing tuple and a single SPJ query.
We highlighted our extensions to these capabilities in Sec. 1.

Explanations for missing tuples can also be created by analyzing
the query operations [5]. Given a missing tuple t, [5] first identifies
tuples in the source database D that contain the constant values in
t and are not part of the lineage of any tuple in the query result.
The values in those tuples are traced over the query operators to
identify which operators have them as input but not as output. In
our work, we do not consider query-based explanations, but note
that they complement instance-based explanations.

A framework that models both types of explanations based on
functional causality has recently been proposed [15]. Opposed to
that, our framework mainly focuses on a concise definition of input
and output for the generation of instance-based explanations.

Our algorithm relies on conditional tuples, or c-tuples for short.
C-tuples and the semantics and evaluation of relational queries over
tables containing them were defined in [13] for unions of conjunc-
tive queries. Aggregation and grouping using c-tuples is discussed
in [14]. The queries we use to generate explanations based on c-
tuples (Sec. 4) make use of techniques developed in previous work
on view update and maintenance over c-tuples [17, 18].

A related research area is the generation of test databases [3].
Given a query and a relational instance generated by that query, the
goal is to create a source database that produces the generated in-
stance. Indeed, generating source data for a given result of a query
is similar to the first step of our algorithm that determines what
data should be present in the sources to produce the missing tuples,
and the use of a constraint solver to produce correct test data was
also explored in [3]. The generation of explanations is different
to the generation of test databases as an explanation combines ex-
isting data with new data, considers side-effects, and we consider
multiple views and additional constraints as well.

3. SPJU Explanation Framework
The basic Artemis explanation framework takes as input a de-

bugging scenario specification and returns a number of instance-
based explanations. We define our input as follows:

DEFINITION 1 (DEBUGGING SCENARIO). A debugging sce-
nario S is defined by a 5-tuple 〈Q ,Q im,Q m,D,E〉. Q is the set of
queries that we are debugging. D represents the source database
for Q and we use Q (D) to denote the set of tuples produced by
Q . E represents a set of c-tuples that encode missing tuples that
do not exists in Q (D) and that require an explanation. We further
model a set Q v of identity views that each mirror a source relation,
i.e., for each relation Ri ∈ D a view Vi(X) :- Ri(X) is added to Q v.
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Q im ⊂Q ∪Q v is the set of “immutable” queries on which no side-
effects are admissible as part of the explanations. Q m ⊂Q ∪Q v is
the set of queries in which only the minimal number of side-effects
is accepted for an explanation. Further, Q m∩Q im = /0.

In the PhotoShare debugging scenario of Sec. 1, Q = {QNetwork,
QInterestingPics} (the queries defining the views), D= { Friend, User,
UserInterest, Picture, PictureTag, Network}, and E = {t2, t3}. Net-
work is in D because it is a source in InterestingPics. We also set
Q m = {InterestingPics} and Q im = {VUser}. Here VUser ∈Q v rep-
resents the identity view over the source relation User. These iden-
tity views allow us to treat all source relations as queries to which
we can restrict side-effects.

Note that Q im is similar in spirit to the concept of table trust
in [12]. However, our framework is a bit more flexible and allows
marking any subset of the data (both in the source relations or in
the query results) as immutable, based on the data being identified
by a query. On the other hand, [12] allows marking attributes in re-
lations as immutable, avoiding the generation of explanations that
otherwise update these attributes. Our framework only explains
missing tuples by inserting rows and, thus, does not support con-
straints to avoid updates.

Previously, we informally described t2 and t3 as tuple patterns.
We now formally define them as c-tuples:

DEFINITION 2 (C-TUPLE). A c-tuple is a tuple
〈a1,a2, . . . ,an,cond〉 such that every value ai is either a con-
stant or a labeled null. The attribute cond is a boolean expression.

C-tuples populate conditional tables (c-tables) and a single c-
tuple in the extension of a c-table stands for any tuple whose valu-
ation satisfies cond.

Using c-tuples on E allows users to put constraints on the miss-
ing tuples that need explanation. For example, assume we have a
view Employees and we want to know why an employee named
‘John’ is not in the result. We might not remember how to spell
John’s last name but we might know that John is not older than 25.
We can specify this as follows:

t = Employee〈‘John’,$lastname,$age, . . . ,$age < 25〉

Since our debugging scenarios involve multiple queries, we add
the name of the query (or relation) to each c-tuple to clarify the
context. As discussed next, c-tuples are also used to explain the
missing tuples. These explanations involve c-tuples that already
exist, combined with new c-tuples. To distinguish between c-tuples
that exist and c-tuples that do not exist, we add a ’+’ sign in front
of c-tuples that do not exist. The output of our system is a set of
explanations, called explanation set.

DEFINITION 3 (EXPLANATION). Given a debugging scenario
S , an explanation ψ is a set of labeled c-tuples. The label of a c-
tuple describes whether the c-tuple represents an existing or a non-
existing tuple. ψ describes how data existing in D combines with
c-tuples in order to generate all missing tuples in E while satisfying
the constraints on side-effects specified by Q im and Q m.

DEFINITION 4 (EXPLANATION SET). Given a debugging sce-
nario S , an explanation set Ψ = {ψ1,ψ2, . . .ψn} is a finite set of
explanations that represents all possible explanations w.r.t. S .

EXAMPLE 1. Consider the following relations R(A,B) and S(A,B,C),
and the conjunctive query Q: Q(A,B) :- R(A,B),B > 5; Q(A,B) :-
S(A,B,C),C < 5; Q(A1,B2) :- R(A1,B1),S(A1,B2,C).

R A B
a 1
b 6
d 3

S A B C
c 3 4
a 9 7

Q(D) A B
b 6
c 3
a 9

Assume we want to explain why 〈d,6〉 is not in the result of Q. The
explanation set is (with Ni denoting labeled nulls):

ψ1 : +R〈d,6, true〉 satisfies R(A,B),B > 5
ψ2 : +S〈d,6,N1,N1 < 5〉 satisfies S(A,B,C),C < 5
ψ3 : R〈d,3〉 ,+S 〈d,6,N1, true〉 satisfies R(A1,B1),S(A1,B2,C)
ψ4 : +R〈d,N2, true〉 ,+S 〈d,6,N3, true〉 satisfies R(A1,B1),S(A1,B2,C)

Having defined our framework, let us now focus on an algorithm
that implements the framework.

4. SPJU Explanation Algorithm
Before we delve into the details of our algorithm, we provide

further definitions. These definitions are used to guarantee that the
output explanation set is finite and covers all possible explanations.

4.1 Definitions
In general, the number of explanations for a given scenario is

infinite. One could, for example, propose the following as an addi-
tional explanation for Ex. 1:

ψ5 : +R〈d,6, true〉 ,+S〈x,4,5, true〉
This explanation is, however, already covered by ψ1 and contains
an unnecessary +S c-tuple. To avoid such redundant explanations,
our algorithm only generates explanations that match an explana-
tion pattern.

DEFINITION 5 (EXPLANATION PATTERN). An explanation pat-
tern P is a finite set of c-tuples that is sufficient to yield all tuples in
E, i.e., Q (P)⊇ E.

To determine if an explanation matches an explanation pattern,
we use the following definition. Remember that both explanations
and patterns are sets of c-tuples.

DEFINITION 6 (MATCHING C-TUPLE SETS). Two c-tuples t1
and t2 match if (i) they are instances of the same c-table, (ii) we
can unify the corresponding values in t1 with the values in t2, and
(iii) t1.cond∧ t2.cond is satisfiable. Two sets of c-tuples “match” if
(i) for each c-tuple in the first set we can find a match in the second
set, and (ii) this c-tuple match is bijective.

EXAMPLE 2. Using Q from Ex. 1 we generate the following
three explanation pattern for 〈d,6〉.

P1 : R〈d,6, true〉 Q(d,6) :- R(d,6),6 > 5
P2 : S〈d,6,N1,N1 < 5〉 Q(d,6) :- S(d,6,N1),N1 < 5
P3 : R〈d,N2, true〉 ,S〈d,6,N3, true〉 Q(d,6) :- R(d,N2),S(d,6,N3)

P1 matches ψ1, because the single c-tuple in ψ1 matches the single
c-tuple of P1. Similarly, P2 matches ψ2, and P3 matches ψ3 and
ψ4. On the other hand, ψ5 does not match any of the explanation
patterns and is not a valid explanation.

Ex. 2 shows that missing tuples can be generated from multiple
explanation patterns P. We call the set of all explanation patterns
that can generate all our missing tuples a generic witness.

DEFINITION 7 (GENERIC WITNESS). Given a debugging sce-
nario S , a generic witness W = {P1,P2, . . . ,Pk} is a set of explana-
tion patterns, such that any explanation ψ for E matches at least
one explanation pattern P ∈W.

4.2 Algorithm Overview

Our algorithm that produces an explanation set for SPJU queries
consists of the following steps:
Step 1: Compute generic witness. Using Q and E, we first com-
pute the generic witness W . Then, for each pattern P in the generic
witness, do the following three steps:

187



• Step 2: Create c-tables for D. Convert all tuples in D into
c-tuples with their condition set to true and insert them into c-
tables. Add the c-tuples in the generic witness pattern P into the
c-tables. We denote this set of c-tables derived from D as Dc.
Ex. 6 shows a sample result of this step.

• Step 3: Execute Q over the c-tables. Compute Q (Dc) based
on the semantics of query execution over c-tables defined in [13].
The resulting instances have the same schema as the instances
obtained over D, except for an additional condition attached to
each tuple. In these views, distinguish three types of tuples:
(i) tuples that are present in the original view, (ii) tuples that
match c-tuples in E, and (iii) the remaining tuples, which are po-
tential side-effects. Ex. 7 shows examples of computed views,
and Ex. 8 illustrates the identification of tuples of type (ii).

• Step 4: Compute explanations. Find every possible way of
combining tuples of type (ii) such that each of the n c-tuples in
E is generated exactly once. For each combination, a condition
Ci = t1.cond∧ . . .∧ tn.cond is formulated as the conjunction of
the conditions in each c-tuple. From the point of view of this
current combination, all other tuples of type (ii) or (iii) are side-
effects. If side-effects are not permitted or should be minimized
(specified by Q im or Q m,) we add conditions to Ci to enforce
these conditions. Ex. 10 shows an example of a generated con-
straint. A constraint solver [10] is used to determine if Ci is sat-
isfiable. If Ci is satisfiable, the current combination of c-tuples
becomes an explanation.

Step 5: Prune and output explanations. Union the explanations
returned for each pattern of the generic witness. This step further
prunes redundant solutions if necessary.

We discuss the different steps of the algorithm next. Note that
Step 5 is trivial and is not further discussed.

4.3 Generic Witness Generation (Step 1)

We first discuss how we obtain a generic witness (Def. 7) and
then show how and under what conditions we minimize its size.
From queries to generic witnesses: Given an SPJU query Q and
a missing tuple t, we compute a canonical instance. For unions
of conjunctive queries, this canonical instance corresponds to a
generic witness of t w.r.t. Q.

PROPOSITION 1. Let Q be a union of m conjunctive queries of
the form

Q(Zi) :- R1i(X1i), . . . ,Rki(Xki)

Let t be a valuation of x such that Q(x)[x/t], or Q(t) for short is
a tuple. (E)[x/t] means replace each variable x ∈ x with the cor-
responding value in t on the expression E. Then, the universal
generic witness for Q includes m explanation patterns where the
i-th pattern corresponds to the canonical instance of the i-th sub-
query, i.e., to (

R1i (X11) , . . . ,Rki

(
Xki

))
[x/t]

EXAMPLE 3. Consider a query that is the union of the queries
depicted in Fig. 3(a). Fig. 3(b) represents the universal generic
witness for a tuple t = 〈a,b〉, computed as the canonical instance.

Prop. 1 describes how to generate a universal generic witness
for a single query Q and a single missing tuple t. However, our

Q(x,y) :- R(x,y),R(x,z)
Q(x,z) :- R(x,y),R(y,z)
Q(x,y) :−R(x,y),R(y,y)

P1 = R(a,b),R(a,N1)
P2 = R(a,N2),R(N2,b)
P3 = R(a,b),R(b,b)

(a) query Q (b) Generic witness
Figure 3: Computing a generic witness

debugging scenario allows a set E of tuples missing from a set of
query results Q (D). The semantics of E dictate that all tuples in
E should occur simultaneously, so we need to determine a generic
witness where each pattern generates all missing tuples. Such a
generic witness is obtained by first determining the generic witness
Wi for every missing tuple ti ∈ E, 1≤ i≤ n. As a result, we create a
set of patterns for each missing tuple. To obtain a set of patterns for
all missing tuples, we simply combine patterns from the different
witnesses using the cross-product:

W =W1×W2× . . .×Wn

For instance, if W1 = {P1,P2} and W2 = {P3,P4} then W = {P1 ∪
P3,P1∪P4,P2∪P3,P2∪P4}.
Reducing the size of a generic witness: So far, our generic wit-
ness consists of a finite set of patterns that covers all possible ex-
planations and thus satisfies Def. 7. In general, however, there is
no guarantee that a generic witness is minimal. I.e., it is possible
that all explanations matching a pattern Pi ∈W will also match a
different pattern Pj ∈W . Obtaining a minimal generic witness is
equivalent to determining if there exists an homomorphism from
one pattern to another. (We are using the definition of homomor-
phism commonly used in data integration and data exchange [8].)
It is also equivalent to solving query containment [1]. Thus, de-
termining the minimal generic witness for unions of conjunctive
queries is NP-complete. Moreover, query containment is undecid-
able when conjunctive queries contain inequalities (e.g., P2).

Despite the computational complexity of this problem, minimiz-
ing the size of the generic witness is worth the effort since each
pattern in the witness can generate numerous explanations. When-
ever possible, we compute the core of each pattern [9]. Since cores
of homomorphically equivalent patterns are equal (up to isomor-
phism), we use the core as unique representative of homomorphi-
cally equivalent patterns.

PROPOSITION 2. Let t be a c-tuple with only constant values
(no labeled nulls) and let Q be a union of conjunctive queries
without inequalities. Let Pi ∈ W be an explanation pattern of
t w.r.t. Q. Then, Core(Pi) = CoreWitness(Pi) and Wmin =
{CoreWitness(Pi)|Pi ∈W} is the unique minimum generic witness
(up to isomorphism) for W.

Notice that Prop. 2 applies when missing tuples contain only
constant values. In general, missing tuples contain labeled nulls
and in those cases the computed core may not be a valid pattern
for an explanation (see Appendix E). In our implementation, we
compute the minimum generic witness according to the following
algorithm, when applicable.

PROPOSITION 3 (MINIMUM GENERIC WITNESS). From the
generic witness, we obtain a minimum generic witness by (i) com-
puting the core of each pattern, (ii) removing duplicate patterns,
and (iii) for each pair of remaining patterns (Pi, Pj) we remove Pj
if ∃h : Pi→ Pj.

EXAMPLE 4. Consider the generic witness depicted in Fig. 3(b).
We observe that it does not yet correspond to the minimum generic
witness because pattern P1 does not correspond to a core and ∃h :
P1 → P3 and ∃h : P2 → P3 . We compute the core of each pattern
and obtain the result shown in Fig. 4(a). We then remove all pat-
terns to which a homomorphism points to, e.g., P3. The result is the
minimum generic witness in Fig. 4(b).

Even if the generic witness is minimal, all we guarantee is that
we can use it to generate all possible explanations (and, thus, the
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P1 = R(a,b)
P2 = R(a,N2),R(N2,b)
P3 = R(a,b),R(b,b)

P1 = R(a,b)
P2 = R(a,N2),R(N2,b)

(a) pattern cores (b) minimal generic witness
Figure 4: Computing the minimal generic witness

generated explanation set is universal). However, the set of ex-
planation generated is not necessarily minimal. Since it would be
prohibitively expensive to compute homomorphism at the data in-
stance level (i.e., among all explanations), we do not attempt this
and pay the price of returning redundant explanations.

PROPOSITION 4 (COMPLETENESS & UNIVERSALITY).
The explanation set Ψ produced by Artemis for a (minimal)
generic witness is complete and universal: Ψ is complete because
all explanations matching a pattern of the generic witness are
computed; Ψ is universal because there does not exist a valid
explanation e′ that is not covered by an explanation e ∈ E. An
explanation e covers an explanation e′ if every c-tuple in e matches
a c-tuple in e′ with equal labels(inserted (+) or existing).

4.4 Conditional View Construction (Steps 2 and 3)

Conceptually, this step converts all source tables in D into a set
of c-tables Dc. Then, we add the c-tuples in the patterns of the
generic witness into Dc. Finally, we execute Q over the c-tables to
obtain conditional views (c-views).
Converting source tables. For each relation R ∈ D, we create a
c-table view definition R′c(X , true):-R(X), i.e., we assign “true” as
the condition of each c-tuple. In our implementation, all c-tables
are views, thus avoiding any materialization.
Adding pattern c-tuples. We first create empty c-tables for each
relation R ∈ D. That is, for each R(X) ∈ D, we create an empty
c-table ∆Rc(X ,cond). Then, for each P ∈W (the patterns in the
generic witness), and for each c-tuple t ∈ P, we add t into its cor-
responding ∆Rc. The only important consideration here is what to
do with the conditions in the c-tuple t. Conditions in c-tuples could
involve values from the tuple alone (we call those intra-tuple con-
ditions) or values from other tuples (inter-tuple conditions).

EXAMPLE 5. Consider a pattern P = {R〈N1,7, true〉 ,
S 〈N1,3,N3,N3 > 5〉} and the source tables of Ex. 1. Here
N3 > 5 is an intra-tuple condition. Notice, however that both
tuples use N1 to represent the same value. Let us rename the
second N1 and state the condition explicitly: {R〈N1,7,N1 = N2〉 ,
S 〈N2,3,N3,N1 = N2∧N3 > 5〉}. N1 = N2 is an inter-tuple
condition.

When copying a c-tuple t into its corresponding ∆Rc, we only
keep the intra-tuple conditions, because the inter-tuple conditions
are introduced when generating c-views. We rename labeled nulls
like N1 in the previous example, but do not add inter-tuple condi-
tions to ∆Rc. The actual Rc is the union of the c-tuples in R′c and
∆Rc. We refer to these conditional source c-tables as Dc.

EXAMPLE 6. The resulting c-tables for R and S for the previous
example (Dc) are:

Rc A B cond
a 1 true
b 6 true
d 3 true

N1 7 true

Sc A B C cond
c 3 4 true
a 9 7 true

N2 3 N3 N3 > 5

Note that if key or unique constraints exist on a relation R, we
further add conditions to the c-tuples in ∆Rc that ensure that none
of these tuples violates these constraints. For instance, assuming

R.A was a key in the above example, the c-tuple 〈N1,7, true〉 would
change to 〈N1,7,N1 6∈ {a,b,d}〉.
C-view computation. We now execute Q (Dc) using the standard
algorithm for query evaluation over c-tables [13]. We illustrate the
intuition of this step with our example.

EXAMPLE 7. Assume that Q consists of the following two queries
and that R and S are as defined in the previous example.

Q1(B1,C) :-R(A,B1),S(A,B2,C)
Q2(B,C) :-S(A,B,C),C 6= 3

Applying these two queries on Dc, we obtain the following c-views.

Q1 B C cond
1 7 true
7 4 N1 = c
7 7 N1 = a
1 N3 N2 = a∧N3 > 5
6 N3 N2 = b∧N3 > 5
3 N3 N2 = d∧N3 > 5
7 N3 N1 = N2 ∧N3 > 5

Q2 B C cond
3 4 true
9 7 true
3 N3 N3 > 5∧N3 6= 3

We implement the c-views as actual SQL queries on top of Dc.
Notice that any potentially valid explanation must include at least
one c-tuple form a ∆Rc part of an Rc relation. Otherwise, if all
c-tuples come from the R′c part of the relations, then the gener-
ated explanations will only include tuples that already exist in the
source relations (i.e., the “missing” tuple cannot be missing). Thus,
the query we generate uses the standard incremental view mainte-
nance [4] pattern and treats the ∆Rc parts as the increments. I.e.,
given Q=R1 S, we can compute new tuples in Q(Dc) as ∆Q(Dc)=
(∆Rc 1 S′c)∪ (R′c 1 ∆Sc)∪ (∆Rc 1 ∆Sc) Fig. 8 (Appendix) shows
the c-view definition query for Q1.

Missing-Answers [12] computes a query that in principle com-
putes Q(D∪P), where P is the unique pattern of the canonical in-
stance based on the single t and SPJ query Q the algorithm consid-
ers. The result of this query is the set of explanations returned to
a user. We have identified several cases where the set of explana-
tions can contain unsatisfiable explanations when using [12] (see
Appendix C for details) and experiments show that the number of
these incorrect explanations can be substantial. Our algorithm does
not suffer from this problem because, as discussed next, it uses a
constraint solver to distinguish between correct and incorrect ex-
planations in addition to further considering side-effects.

4.5 Explanation Generation (Step 4)

In this final phase of explanation generation, we analyze the con-
ditional views to generate all alternative explanations. We also con-
sider the user-specified constraints on admissible side-effects (Qim
and Qm) and ensure that no explanation violates key or unique con-
straints. The explanation generation phase consists of two steps:
(i) the identification of matching tuples and (ii) constraint formula-
tion and execution.
Identifying matching tuples. For every missing tuple t ∈ E, we
find matches in the corresponding Q(Dc) computed in the previous
step (recall that each missing tuple is associated with one query in
Q ). Intuitively, t matches a c-tuple if the constant values match, the
labeled nulls are unified, and the condition is satisfied. We denote
the set of tuples matching t as Match(t).

EXAMPLE 8. Let us assume a tuple t = 〈7,7〉 ∈ E is
missing from Q1(D) (from the previous example). We
scan the c-tuples in Q1(Dc) and determine Match(t) = {
〈7,7,N1 = a〉,〈7,N3,N1 = N2∧N3 > 5〉}.
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Resolving constraints. In this second step we use a constraint
solver to determine which tuples in Match(t) satisfy all constraints
in the query, t, Q m and Q im. Every tuple tm ∈ Match(t) that the
constraint solver determines to be satisfiable becomes an explana-
tion for the tuple t.

In our implementation, we use MINION [10] as a constraint
solver. To solve a constraint, MINION requires the following in-
formation: (i) the specification of attribute domains, (ii) variable
declarations, including the variable name and variable domain, and
(iii) the constraint itself. We create these declarations for each de-
bugging scenario S and initialize MINION with them. Fig. 10 in
Appendix B.2 shows an example input file for MINION.

Every variable that appears in a constraint must be assigned a do-
main. The main data type in MINION are integers and we need to
covert some of our data types into integers before using the solver.
For instance, we have a function mapInt() that maps strings into
an integer representation. Since we have to handle comparisons of
string values in our queries, mapInt() makes sure the mapping pre-
serves the lexicographical order of the string values. This mapping
is performed per debugging scenario and the domain definitions are
reused for every tuple tm ∈Match(t). To model finite domains for
key or unique attribute values, we exclude all existing key values
already in the attribute.

EXAMPLE 9. For the variables N1, N2, and N3 of our ex-
ample, assume that R.A is a key attribute. Then, the domain
definition for the attribute of N1, i.e., R.A, is dom(R.A) = Z \
{mapInt(a),mapInt(b),mapInt(d)}, whereas the remaining do-
main definitions are simply Z.

Note that the exclusion of key and unique values from the domains
allows us to remove the constraint that N1 6∈ {a,b,d} from the con-
straints of c-tuples in the c-view (as it is enforced by the definition
of the domain). However, this optimization only applies for key
and unique constraints over a single attribute. To enforce compos-
ite keys, the corresponding constraints remain in the c-tuples and
are passed to the constraint solver.

Variables are declared by simply defining their name and binding
them to one of the domains. For instance, the domain of N1 is
declared to be dom(R.A).

By default, the condition we send to the constraint solver for
each tm is its tm.cond condition. We now discuss how we modify
this default constraint to deal with side-effects.

A side-effect for a tuple tm is any tuple tse ∈ ∆Q(Dc) s.t. (i) tse 6=
tm and (ii) the existence of tm implies the existence of tse. Let us de-
note the set of potential side-effects as SE(tm) = {tse1 , tse2 . . . , tsen}
which we obtain by executing the query ∆Q(Dc)\{tm}.

In the case where no side-effects are admissible, i.e., when Q ∈
Qim, we send the following constraint Cim to the constraint solver,
which is satisfied iff the condition of tm is true and none of the po-
tential side-effect tuples exist, i.e., all conditions of potential side-
effects evaluate to false.

Cim = tm.cond∧¬(tse1 .cond∨ tse2 .cond, . . .∨ tsen .cond)

When side-effects are allowed, but must be minimized, we gen-
erate a constraint Cm that asserts a boolean variable for every side-
effect. We then add to the constraint the requirement that the num-
ber of these boolean variables asserted as true to be minimal. To
understand the expression, assume each variable is 1 when true and
0 when false.

Cm = tm.cond
∧ (tse1 .cond⇔ i1)∧ (tse2 .cond⇔ i2) . . .∧ (tsen .cond⇔ in)
∧ min(i1 + i2 + . . .+ in)

EXAMPLE 10. Assume tm = 〈7,N3,N1 = N2∧N3 > 5〉 and that
Q1 is immutable. In this case, we pass the following constraint to a
constraint solver:

(N1 = N2) ∧ (N3 > 5)∧
¬((N1 = c)∨ (N1 = a)∨ (N2 = a∧N3 > 5)∨ (N2 = b∧N3 > 5)∨ (N2 = d∧N3 > 5))

In our implementation, we reduce the set of potential side-effects
based on the concept of insertion patterns. Intuitively, given a
matching tuple tm, we only consider as potential side-effects those
tuples in the c-view that insert c-tuples to the same set of tables
as required for tm, or a subset thereof. For instance, assume tm =
〈7,7,N1 = a〉. The explanation of this tuple only inserts a c-tuple
to R and we thus identify a potential side-effect as any c-tuple in
the view that only inserts data to R as well. We observe that only
the second tuple of the c-view in our example also inserts to R only,
so the constraint checking for side-effects for match tm consists of
conditions contributed by one instead of five c-tuples.

The number of constraints passed to the constraint solver is bound
by |Match(t1)|+|Match(t2)|+. . .+|Match(tn)| for E = {t1, t2, . . . tn}.
In the worst case, this number grows exponentially with the num-
ber of joins in the query and the computational complexity of the
Artemis algorithm is dominated by the complexity of performing
this step. In practice, the number of constraints we pass to the
solver is reduced because the explanations we produce for each
tm ∈ Match(ti) are sorted by the descending number of inserts re-
quired. That is, an explanation tm that requires only one insert will
appear at the end of the produced set. Intuitively, if an explanation
tm that requires k inserts is not satisfiable, any t ′m that contains a
subset of the inserts in tm is not satisfiable as well.

The size of the constraint, measured by the number of c-tuples
that contribute to the condition, depends on the constraints imposed
by the debugging scenario. In the simplest case, when there is
no need to consider side-effects and there are no key or unique
constraints, the solver only needs to deal with the conditions in
tm.cond. On the other hand, when side-effects are considered, the
number of c-tuples involved per constraint is bounded by |∆Q (Dc)|.
However, it can be reduced to ∆Q (D′c ∪∆tm) for a given matching
tuple tm, where ∆tm includes the insertions of c-tuples relevant to
produce tm, which is given by the insertion pattern corresponding
to tm.

5. Grouping & Aggregation
We now briefly discuss some modifications to our SPJU algo-

rithm to handle grouping and aggregation. Consider, for example,
the following query and its result:

SELECT P.PID, P.Picture, CCOUNT(UI.UID) AS C
FROM Picture P, PictureTag PT, UserInterest UI
WHERE P.PID = PT.PID AND UI.IID = PT.Category

AND P.Visibility = ’Public’ AND PT.Category = ’I4’
GROUP BY P.PID, P.Picture

Q(D) PID Picture C
P1 pier39.jpg 2

Our goal is to use the algorithm described in Sec. 4 to com-
pute explanations for the SPJ parts of the query and then process
those explanations to handle grouping and aggregation. We handle
grouping by grouping the resulting explanations for the SPJ part by
the value of the group by columns (in effect, creating groups of ex-
planations over which the aggregate function is applied). However,
we leave it to the user to decide which subset of explanations in
each group is needed to properly create the aggregated value. We
explain this with an example.
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EXAMPLE 11. Assume we want to explain why the tuple
〈P4,winetasting.jpg,18〉 is not in Q(D) above. Artemis produces the
following explanation ψ:

[ {P〈P4,winetasting.jpg,Public〉 ,+PT〈vptid ,P4, I4〉},+UI〈I4,vuid〉 (1)

{P〈P4,winetasting.jpg,Public〉 ,+PT〈vptid ,P4, I4〉},UI〈I4,U1〉 (2)

{P〈P4,winetasting.jpg,Public〉 ,+PT〈vptid ,P4, I4〉},UI〈I4,U3〉 (3)

] s.t. groupBy(P.PID = P4, P.Picture = ‘winetasting.jpg’)∧ count(UI.UID) = 18

(We are using the relation aliases instead of the names in this exam-
ple). To read this explanation, start from the group by constraint at
the bottom. We can generate the missing tuple for the group where
P.PID is P4 and P.Picture is ‘winetasting.jpg‘ and where the total
count is 18 if we insert a number of tuples in the source relations
that match any one of the patterns (labeled (1), (2), and (3)). For
example, we can insert 9 tuples into PictureTag with PID = ’P4’
and IID = ’I4’. Since these 9 new tuples (in combination with the
existing Picture and UserInterest tuple) will match patterns (2) and
(3), the missing tuple with a count of 18 is generated. Alterna-
tively, we can insert a tuple in PictureTag and UsetInterest that,
together, satisfy pattern (1) and five more PictureTag tuples that,
again, match both (2) and (3). Notice that these explanations only
provide the pattern for the missing tuples. However, it is still up to
the user to select the appropriate combination of tuples that satisfy
the explanation patterns and that generate the correct aggregate
value in the missing tuple.

To find the canonical instances of an SPJUA query, the SPJUA
explanation algorithm starts by dividing the input query into its
SPJA sub-queries. Then, selections, projections, and joins are pushed
down the aggregations. That is, we divide each SPJA into an SPJ
block, a set A of aggregate attributes, and a set G of grouping at-
tributes. This procedure is similar to computing the canonical in-
stance in the presence of aggregation introduced in [7]. In our cur-
rent example, Q does not have a UNION clause and, thus, Q is
already an SPJA query. The SPJ block of Q is

SELECT P.PID, P.Picture, UI.UID
FROM Picture P, PictureTag PT, UserInterest UI
WHERE P.PID = PT.PID AND UI.IID = PT.Category
AND P.Visibility = ’Public AND PT.Category = ’I4’

We compute A and G from the SELECT and GROUP BY clauses
of the SPJA components. In this example, A = {UI.UID} and G =
{P.PID, P.Picture}.

We then convert each missing tuple t ∈ E into a tuple t ′ that
replaces all aggregate attributes in t to labeled nulls in t ′. More for-
mally, given a c-tuple t ∈ E, we create a c-tuple t ′ = 〈πG(t),Var(A),
Cond(t.cond,G)〉, where Var(A) generates a new labeled null for
every attribute in A, and Cond(cond,G) drops any condition in the
original t.cond that does not use the attributes in G. We do not
support conditions on the aggregated values yet other than the ac-
tual resulting aggregate values. Since it is up to the user to put to-
gether a valid combination of tuples that satisfies the aggregate con-
dition, conditions on the aggregated values are handled by users.
This is a limitation we plan to address in future work. In the
case of our example, t = 〈P4,winetasting.jpg,18〉 is converted into
t ′ = 〈P4,winetasting.jpg,v1〉.

Given an SPJA query Q with grouped attributes G and aggre-
gated attributes A, the explanation of a missing tuple t is given by a
single explanation of the form

ΨSPJA : [Ψ] s.t. groupBy(G)∧agg(A) = πA(t)

where Ψ is the universal explanation set (see Def. 4) of the SPJ
block of Q.

When Q is a union of SPJA queries, we proceed analogously to
the SPJU case, which results in one SPJA-explanation for every
sub-query. The set of SPJA-explanations for one SPJAU query is
denoted as ΨSPJAU . In the general case, E consists of more than
one tuple. Let ΨiSPJUA be the explanation for tuple ti ∈ E,1≤ i≤ n,
then, the explanation of E is given by

Ψ1SPJAU ×Ψ2SPJAU , . . .×ΨnSPJAU

6. Evaluation
We implemented both Artemis and the Missing-Answers system

in [12] using Java 1.6. The experiments reported in this section
were run on a Mac Book Pro with a 2.93 GHz Intel Core Duo pro-
cessor, 4GB of main memory, and running Mac OS 10.6.2. We
used IBM DB2 V9.5 as our DBMS and run it locally on the same
machine, using the out-of-the-box parameter settings. Artemis re-
quires the use of a constraint solver for validating the generated ex-
planations. We used MINION v0.8.1 [10], a general-purpose and
open-source constraint solver.

We used 10 MB of TPC-H data (corresponding to tens of thou-
sands of tuples in some tables), a well-known query benchmark
for decision support (http://www.tpc.org/tpch/). TPC-H defines a re-
lational database that models parts, part suppliers, and orders for
parts. The benchmark defines 22 queries of varying complexity
over this relational data. Since some of these queries include fea-
tures that Artemis does not support (e.g., HAVING clauses, nested
queries), the queries we use are adaptations of some of the TPC-
H queries. To compare Artemis with Missing-Answers, we only
consider the SPJU parts of the queries, except for Q1.

TPC-H includes two tables that encode geographic location of
suppliers and customers (tables Nation and Region). Since we con-
sider the information in those tables to be authoritative, we do
not want explanations that require inserting new tuples into them.
Thus, Qim = {Nation,Region}. Also, in the results reported here,
we assume Qm = /0.

Finally, to compare with Missing-Answers, E contains a single
missing tuple. Since the number of constraints we put into each
missing tuple affects the runtime (and the number of explanation
generated), the missing tuples we used for each query contain a
mix of constant values and labeled nulls. Specifically, we put a
constant value for any categorical field in the query schema (e.g.,
string and date fields) and we used labeled-nulls for all other fields
(e.g., numerical fields). All time results are the average time for
five runs of the same scenario.

Note that more details on the TPC-H scenario and a second sce-
nario we used (PhotoShare) are available in Appendix D, together
with further experiments.
Experiment 1: Explanation quality. Since Artemis uses a con-
straint solver to evaluate potential explanations, we guarantee all
our solutions satisfy the constraints of the scenario. Missing-Answers
does not have that guarantee and, indeed, returns solutions that do
not satisfy some constraints (see Appendix C for details).

Fig. 5 compares the number of explanations Artemis and Missing-
Answers return for a single missing tuple for a number of TPC-H
queries. To understand how to read these results, consider the bar
for Q5. In that case, Artemis returns 451 explanations, all satisfy-
ing the constraints of the scenario, while Missing-Answers returns
19,254 explanations. The extra 18,803 explanations returned by
Missing-Answers do not satisfy the constraints of this scenario and
are considered wrong. For Q5, the main reason of the overhead
explanations generated by Missing-Answers is the presence of in-
equalities in the query that may cause wrong explanations. Another
reason for instance applies to Q3, where we specify a missing tuple
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that is unsatisfiable based on the query and we observe that Artemis
correctly returns no explanations while Missing-Answers generates
162 explanations.

We conclude that the use of a constraint solver significantly re-
duces the number of explanations generated in many scenarios. The
key question we answer next is how much more (or less) time we
use to generate explanations using Artemis.
Experiment 2: Runtime to compute first correct explanation.
Fig. 6 shows how long developers have to wait for the first expla-
nation to be returned when using Artemis and Missing-Answers.
By definition, all explanations returned by Artemis satisfy all con-
straints and, thus, the first explanation is considered correct. (No-
tice that this is different from being the solution the user wants.)
Missing-Answers, however, may return a number of wrong expla-
nations before producing the first correct one. Nevertheless, for the
purpose of runtime comparison, we ignore this fact here.

We observe that in eight out of nine debugging scenarios, Artemis
returns the first explanation in less than a second, which indicates
that a developer does not have to wait a significant time before
starting to process explanations. For the unsatisfiable query Q3,
the runtime of Artemis is identical to the runtime of computing all
explanations, because it is a query where no explanation exist and
all constraints are thus processed. For that query, Missing-Answers
produces 162 explanations so the extra time needed to verify that
none of these are correct explanations is worthwhile.

Comparing the runtimes of Artemis and Missing-Answers, we
observe that Artemis returns the first explanation faster than Missing-
Answers in three debugging scenarios. In all other cases, using the
constraint solver to verify the correctness of explanations adds an
overhead to the runtime, but, as mentioned previously, this results
in a higher precision of the returned set of explanations that saves
a developer to manually go through (wrong) explanations.

7. Conclusion and Outlook
We presented an algorithm that determines instance-based expla-

nations, an idea originally introduced in [12]. This algorithm com-
putes all instance-based explanations of missing answers for a set of
SPJUA queries and implements the framework for instance-based
explanations we introduced in this paper. Our algorithm can answer
“why-not” questions for multiple missing tuples at once and allows

users to embed conditions in those “why-not” question. At the heart
of our algorithm is the use of a constraint solver to ensure all ex-
planations are satisfiable with respect to the underlying database
constraints and requirements expressed by users. Our framework
and algorithms also consider side-effects created by the explana-
tions and allow users to either avoid or minimize them. We further
studied interesting properties such as universality and minimality
of the the set of explanations returned by our algorithm. Experi-
ments suggest that the runtime is acceptable to effectively use the
resulting explanations for query analysis. Nevertheless, we plan to
investigate further methods to reduce the runtime.

Besides instance-based explanations, missing tuples can also be
explained based on queries [5]. The goal of Artemis is to combine
the best of query-based and instance-based explanations into one
query debugging tool. Besides generating correct explanations, it
is also worthwhile to study how to easily convey their meaning
to users, for instance based on suited visualization techniques or
presentation as natural language instead of c-tuples.
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APPENDIX

A. PhotoShare Sample Queries
In Sec. 1, we presented the PhotoShare scenario and showed

sample data for a selection of tables and views in Fig. 1. Fig. 7
shows the SQL queries (both SPJU queries) that define the views
Network and InterestingPics.

CREATE VIEW Photoshare.Network AS
SELECT !U1.email AS U1_email,
! ! U2.name AS Friend, U2.email AS U2_email
FROM ! Photoshare.User U1, Photoshare.User U2,
! ! Photoshare.Friend F
WHERE ! U1.uid = F.uid1 and u2.uid = f.uid2
UNION
SELECT !U1.email AS U1_email,
! ! U2.name AS Friend, U2.email AS U2_email
FROM ! Photoshare.User U1, Photoshare.User U2,
! ! Photoshare.Friend F
WHERE ! U1.uid = F.uid2 and u2.uid = f.uid1;

CREATE VIEW Photoshare.InterestingPics AS
SELECT !U1.EMAIL AS U1_EMAIL, P.Picture AS Picture,
! ! U2.Name AS PContributor
FROM ! Photoshare.User U1, Photoshare.User U2,
! ! Photoshare.PICTURE P, Photoshare.PictureTag PT,
! ! Photoshare.UserInterest UI
WHERE ! U1.UID = UI.UID AND PT.CATEGORY = UI.IID
AND ! ! PT.PID = P.PID AND P.VISIBILITY = 'Public'
AND ! ! U1.UID <> U2.UID AND U2.UID = P.UID
UNION
SELECT !NWV.U1_EMAIL AS U1_EMAIL, P.PICTURE AS Picture,
! ! NWV.FRIEND AS PContributor
FROM ! Photoshare.User U1, Photoshare.User U2,
! ! Photoshare.PICTURE P, Photoshare.PictureTag PT,
! ! Photoshare.UserInterest UI, Photoshare.Network NWV
WHERE ! NWV.U1_EMAIL = U1.EMAIL AND UI.UID = U1.UID
AND ! ! NWV.U2_EMAIL = U2.EMAIL AND U2.UID = P.UID
AND ! ! PT.PID = P.PID AND PT.CATEGORY = UI.IID
AND ! ! P.VISIBILITY = 'Friend'

Figure 7: View definition queries for Fig 1

B. Explanation Generation Details

B.1 C-View Query Generation (Step 3)

In Sec. 4.4 we discussed how we construct a conditional view
for the query Q that creates explanations for a missing tuple in that
query. The main intuition of this part of the algorithm is that we
treat the c-tuples corresponding to the explanation patterns in the
generic witness as incremental portions of the source tables. Since
we are only interested in solutions that use at least one of these
explanation patterns, the query follows the familiar pattern from
incremental view maintenance.

Fig. 8 shows the SQL query used to compute this incremental
c-view (∆Q1(Dc)) for the query Q1 in Ex. 7 (SELECT R.B, S.C
FROM R, S WHERE R.A=S.A). The query assumes the user wants
to know why the tuple 〈7,7〉 is missing from the answer of Q1. The
VALUES clauses in the query add the generic witness patterns into
the resulting explanations.

Fig. 9 shows the result computed by the SQL query in Fig. 8
over the data in Ex. 6. Note that the INSERT columns keep track
if the source tuples exist (F) or must be inserted (T) and define the
insertion pattern of an explanation.

B.2 Explanation Generation (Step 4)

Explanation generation iterates over each tuple in the c-view
(Fig. 9) and first identifies the tuples matching the missing tuple.
Assuming that 〈7,7〉 is the missing tuple, the first row is a match
that describes a combination of the existing tuple S 〈a,9,7〉 and an
inserted tuple +R〈v3,7,v3 = a∧a = v3〉.

SELECT -- Delta S Join Delta R
  RTRIM(CHAR(S.A)) AS S_A, RTRIM(CHAR(S.B)) AS S_B, 
  RTRIM(CHAR(S.C)) AS S_C, 
  RTRIM(CHAR(R.A)) AS R_A, RTRIM(CHAR(R.B)) AS R_B, 
  RTRIM( coalesce(CHAR( R.A), 'null') ) || '=' 
!     || RTRIM( coalesce(CHAR( S.A ), 'null') )||
   '/\' || RTRIM( coalesce(CHAR( S.A), 'null') ) || '=' 
!     || RTRIM( coalesce(CHAR( R.A ), 'null') )!
  AS Condition,
  'T' AS INSERT_S, 'T' AS INSERT_R 
FROM!
  ( VALUES ( 'v1', 'v2', '7') ) AS S(A, B, C),
  ( VALUES ( 'v3', '7') ) AS R(A, B)
UNION 
SELECT -- Delta S Join R
  RTRIM(CHAR(S.A)) AS S_A, RTRIM(CHAR(S.B)) AS S_B, 
  RTRIM(CHAR(S.C)) AS S_C, 
  RTRIM(CHAR(R.A)) AS R_A, RTRIM(CHAR(R.B)) AS R_B, 
  RTRIM( coalesce(CHAR( R.A), 'null') ) || '=' 
! !  || RTRIM( coalesce(CHAR( S.A ), 'null') )||
! '/\' ||RTRIM( coalesce(CHAR( S.A), 'null') ) || '=' 
! !  || RTRIM( coalesce(CHAR( R.A ), 'null') ) 
  AS Condition,
  'T' AS INSERT_S, 'F' AS INSERT_R 
FROM!
  ( VALUES ( 'v1', 'v2', '7') ) AS S(A, B, C),
  R AS R 
UNION!  -- S Join Delta R
SELECT 
  RTRIM(CHAR(S.A)) AS S_A, RTRIM(CHAR(S.B)) AS S_B, 
  RTRIM(CHAR(S.C)) AS S_C,
  RTRIM(CHAR(R.A)) AS R_A, RTRIM(CHAR(R.B)) AS R_B, 
  RTRIM( coalesce(CHAR( R.A), 'null') ) || '=' 
! ! || RTRIM( coalesce(CHAR( S.A ), 'null') )||
! '/\' ||RTRIM( coalesce(CHAR( S.A), 'null') ) || '=' 
     !|| RTRIM( coalesce(CHAR( R.A ), 'null') ) 
  AS Condition,
  'F' AS INSERT_S, 'T' AS INSERT_R 
FROM
  S AS S,
  ( VALUES ( 'v3', '7') ) AS R(A, B)

find v1:s_s_a
find v3:r_r_a
find v2:s_s_b
find i1:bool
find i2:bool
find i3:bool
find i4:bool
find s:SEC
minimising s

such that

//condition of tm
( (v3=v1)/\(v1=v3))!! ! !

//condition recording side-effects
/\( ((d=v1)/\(v1=d))<=> (i1)  ) 
/\( ((b=v1)/\(v1=b))<=> (i2)  ) 
/\( ((10=a)/\(v1=a))<=> (i3)  ) 
/\( ((v3=c)/\(c=v3))<=> (i4)  ) 
/\( ((v3=a)/\(a=v3))<=> (i4)  )

//counting side-effects to be minimized
 /\ (s = ( i1 + i2 + i3 + i4 ) )

New Experiments:

Figure 8: C-view implementation for Q1

S A S B S C R A R B CONDITION INSERT S INSERT R
a 9 7 v3 7 v3=a∧a=v3 F T
c 3 4 v3 7 v3=c∧c=v3 F T

v1 v2 7 a 1 a=v1∧v1=a T F
v1 v2 7 b 6 b=v1∧v1=b T F
v1 v2 7 d 3 d=v1∧v1=d T F
v1 v2 7 v3 7 v3=v1∧v1=v3 T T

Figure 9: Result of c-view query of Fig. 8

For each matching tuple, a logical constraint is formulated that,
if satisfied, would make the tuple a valid explanation for the de-
bugging scenario. As we discussed in Sec. 4.5, these constraints
are used to (i) validate the condition of each c-tuple, (ii) make sure
the explanation does not violate a key constraint, and (iii) avoid the
creation of side-effects when needed. The constraints are passed to
MINION, a constraint-solver, that decides if they are satisfiable.

We use MINION through Essence’, a declarative language for
specifying constraints1 and that serves as a front-end to MINION.
An Essence’ input declaration consists of a header, domain defini-
tions, variable declarations, and the constraint itself. Fig. 10 shows
an example input to MINION written in Essence’. To generate the
domain declarations, we have to convert every infinite domain to an
order preserving finite integer domain. To this end, we map each
constant that exists in D and E for a given attribute, e.g., R.A to an
integer such that the order of integers preserves the order of strings.
In our example, a→ 1, b→ 2, and d → 3. We further extend the
domain by integers at the head and tail of the domain of constants
by a number of values that can stand in for the labeled nulls, based
on the number of labeled nulls and comparisons performed over
these. For instance, the value -1 stands for any labeled null with
value less than another value, whereas 4 stands for any labeled null
larger than any other value.

1http://www.cs.st-andrews.ac.uk/ andrea/tailor/
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language ESSENCE’ 1.b.a
$$ attribute domains
letting r r a be domain int {-1, 1, 2, 3, 4}
letting SEC be domain int
$$ Variable declarations (domains excluded for brevity)
find v3:r r a
find i1:bool
find s:SEC
$$ Constraint to minimize number of side-effects
minimising s
such that

$$ condition of matching tuple tm
( (1=v3) )
$$ Conditions of potential side-effects
∧( ( 3=v3) )<=> (i1) )
$$ Counting side-effect
∧ (s = ( i1 ) )

Figure 10: Constraint input to MINION in Essence’

C. Analysis of Missing-Answers Algorithm
At a very high-level, Missing-Answers transforms the input query

Q into a new query Q′ that computes a canonical instance for the
“missing” tuple t. The modified query returns existing tuples from
the underlying tables whose values match those in t combined with
dummy tuples that stand for missing values on the source. Each
table in the FROM clause of Q will receive one extra dummy tuple
containing null values for all attributes. The WHERE clause in Q′

contains selection conditions that (i) select the attribute values in t
and (ii) make sure that if the values in t do not exists in the source
table, then the dummy tuple is picked as a place-holder.

For example, for query Q1 of Ex. 7 and assuming the missing
tuple t = 〈7,7〉, Missing-Answers produces the query shown in
Fig. 11, whose result corresponds to the set of explanations. The
VALUES clauses add the dummy tuples and the additional disjunc-
tions on the WHERE clause select the dummy tuples when the miss-
ing values are not available in the source.

SELECT ...
FROM

(SELECT R.A, R.B FROM R UNION
VALUES (NULL, NULL)
) R,
(SELECT S.A, S.B, S.C FROM S UNION
VALUES (NULL, NULL, NULL)
) S

WHERE (R.A = S.A OR R.A = NULL OR S.A = NULL)
AND (R.B = 7 OR R.B = NULL)
AND (S.C = 7 OR R.C = NULL)

Figure 11: SQL query produced by Missing-Answers

We now discuss three cases where Missing-Answers produces
explanations that cannot be considered correct given the constraints
in our debugging scenarios.
Dealing with null values. Missing data from the sources is mod-
eled as tuples that consist of null values only. Predicates in the
WHERE clause are then modified to ensure that an attribute either
satisfies the constraints of Q and t based on its attribute value, or
the attribute value matches the value of a missing tuple, i.e., NULL.
Clearly, if the source data includes NULL values in these attributes,
incorrect explanations may be generated.
Inequalities. Missing-Answers produces correct explanations in
the restricted case where all conditions in the WHERE clause are
equality conditions (and none of the other cases discussed here
apply). However, when inequalities appear in the WHERE clause,
Missing-Answers can produce unsatisfiable explanations. As a very
simple example, consider the query SELECT B FROM R WHERE B
> 3 and assume that the missing tuple is t = 〈2〉. The generated
query follows this general pattern:

SELECT ...
FROM (SELECT * FROM R UNION VALUES(NULL, NULL)) R
WHERE ( R.B = 2 OR R.B IS NULL )
AND ( R.B > 3 OR R.B IS NULL )

The query returns the dummy tuple for R with the constraint that
R.B= 2 and under the unsatisfiable condition 2> 3. Since Missing-
Answers does not check the condition, the returned tuple is consid-
ered an explanation.
Key and foreign key constraints. The way the query generation
algorithm of Missing-Answers is defined, the rewriting that con-
siders key and unique constraints may still return explanations that
violate these constraints. For instance, assuming attribute R.A in
Ex. 1 is a key attribute, the query generated by Missing-Answers
is the same as the query of Fig. 11, except that a full outer join
combines the two tables R and S that both, however, still contain a
dummy tuple. The query returns one explanation that violates the
constraint, i.e.,+R〈N1,7,N1 = a〉 ,S〈a,9,7〉

Note that there are no trivial extensions of Missing-Answers that
would address the above.

D. Detailed Experimental Results
We report results for debugging scenarios that originate from one

of the following domains.
• PhotoShare corresponds to the domain described in the exam-

ple of Sec. 1. We defined six debugging scenarios over the base
tables (the tables of Fig. 1 plus tables Interest(IID, Name) and
PictureVote(PID, UID, Vote) ). Fig. 12 summarizes the debug-
ging scenarios. The data set itself represents a small database a
developer may generate to study the behavior of queries (tens of
tuples to a hundred tuples). Such a small amount of data allows
us to manually analyze the set of explanations returned by each
algorithm. When not mentioned otherwise, Qim = Qm = /0, and
Q consists of a single query only.

• TPC-H. We described the TPC-H scenario in Sec. 6 and summa-
rize additional relevant information on the debugging scenarios
in Fig. 13. Note that the Q1 scenario uses aggregation and the
missing tuple asks about the aggregated value. In the Q3 sce-
nario we used a missing tuple with values for which we know
there is no possible valid explanation.

Experiment A1: Result quality on PhotoShare. For PhotoShare,
we process the six debugging scenarios using both Artemis and
Missing-Answers, when applicable. We measure the number of
explanations returned for each debugging scenario by each algo-
rithm and report them in Fig. 14. We manually verify the set of
explanations returned by each algorithm w.r.t. the correctness of an
explanation. Whereas Artemis returns correct explanations only,
Missing-Answers returns additional incorrect explanations.
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Figure 14: Result quality on PhotoShare data
As for the TPC-H debugging scenarios (see Exp. 1 in Sec. 6), we

observe that Missing-Answers often returns incorrect explanations.
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Query View Schema Missing tuple t
Q1 UserEmailInterest(UEmail, Interest) 〈$email,$interest〉
Q2 InterestingPics(U1 Email, Picture, PContributor) 〈john@univ.edu,winetasting.jpg,Jane〉
Q3 UnSat(UID, PID) 〈3,2〉
Q4 UserNameInterest(UName, Interest) 〈Jane,Bridge〉
Q5 PopularPublicPics(Pict, Contrib, AvgVote) 〈sausalito,$contrib,5〉
Q6 Network(U1 Email, Friend, U2 Email) 〈$email1,$name,$email2〉

Figure 12: View schemas and missing tuples in PhotoShare debugging scenarios

Query Type Inequalities? Key/Unique
violation?

Q1 SPJA yes no
Q2 SPJ yes no
Q3 SPJ yes no
Q5 SPJ yes yes
Q7 SPJU yes no
Q8 SPJ yes yes
Q10 SPJ yes no
Q17 SPJ yes no
Q19 SPJU yes yes

Figure 13: TPC-H debugging scenarios

We discussed in Appendix C that Missing-Answers can yield un-
satisfiable explanations due to key and unique constraint violations
(the case for Q1, Q2, and Q6), inequalities (the case for Q2 and Q3),
an null values (the case for Q2).

Among the PhotoShare scenarios, Q1 is a query that projects out
a unique attribute (User.Email), as opposed to Q4 that is the same
query except for the projection. When bound to a constant in a
missing tuple, tuples added to the User relation by an explanation
have to make sure that the constraint is not violated. The addi-
tional explanations returned by Missing-Answers violate unique
constraints. Similarly, Missing-Answers explanations violate key
constraints in Q4. However, in this case constants in explanations
that cause this violation are not introduced during generic witness
generation, but when combining existing tuples with new c-tuples
during the c-view generation. Q3 uses a debugging scenario where
the missing tuple is unsatisfiable based on the join condition UI.UID
< PT.PID. This case is not correctly handled by Missing-Answers,
which returns 4 explanations in this unsatisfiable case. Finally,
Missing-Answers does not apply to Q5, as it is an SPJA query.
Experiment A2: Runtime to compute all explanations. We now
study the runtime of Artemis to compute all explanations. Here,
we report the runtime for the TPC-H debugging scenarios for both
Artemis and Missing-Answers. For Missing-Answers, all runtimes
except for Q5 and Q7 are below 1 second. Q5 takes 3.5 seconds and
Q7 takes 16.3 seconds. The runtime for each debugging scenario
using Artemis is shown in Fig. 15.
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Figure 15: Runtime to compute all explanations using Artemis

Not surprisingly, the runtime of Artemis is significantly higher
than the runtime of Missing-Answers. Artemis’ constraint-solving
phase dominates the total runtime and, thus, scenarios that require a
large number of constraint solved are significantly impacted (e.g.,
Q5, Q7, Q8, and Q9). Q7, for instance, requires 23,178 calls to
the constraint solver (see Fig. 5). In fact, the main culprit for the
large runtimes is the way we implemented the interface between the
Artemis runtime and MINION, the constraint-solver. Our current
implementation executes MINION as a separate process every time
a constraint must be solved. On average, MINION uses 14ms to
solve our constraints and, thus, Q7 uses 325 seconds to resolve all
explanations. The remaining 2000s are wasted in system calls.

Artemis is designed as an interactive tool and our emphasis is
to quickly produce a small number of initial and correct answers
for the user to inspect (We discussed the time needed to return
the first explanation in Sec. 6, Exp. 2.). Moreover, using the con-

straint solver guarantees that each of the returned explanations is
correct. This is rather important in cases like Q7 where without
the constraint-solver a large number of incorrect explanations are
generate.
Experiment A3: Runtimes for each phase of the algorithm.
Fig. 16 shows the fraction of the execution time used by each of
the four main steps of Artemis’ algorithm to compute all explana-
tions. The “generic witness” part corresponds to the generation of
the generic witness, “conditionalize” to Steps 2 and 3 in which the
sources and views are converted to c-tables and c-views, “match”
to the beginning of Step 4 where tuples in the c-view are matched
against missing tuples, and “solve” to the verification of each ex-
planation using the constraint solver. The actual execution times
are in Fig 15.
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Figure 16: Phase-wise runtime computing all explanations

We clearly see that when computing all explanations, the domi-
nant phase is the solving phase. The exception is Q2, where con-
ditionalization dominates the total runtime. The reason for this be-
havior is that Q2 only performs two calls to the constraint solver.
For queries Q1 and Q3, the fraction of the conditionalization phase
is above 5% because the number of potential explanations to verify
is still low, whereas all other queries have to process more than a
hundred potential explanations in the solving phase.

Experiment A4: Considering side-effects. All previous exper-
iments did not consider side-effects. I.e., none of the constraints
included a Cim or Cm component (see Sec. 4.5).

In this experiment, we ran the six debugging scenarios for Pho-
toShare again (Fig. 12), this time adding restrictions on the number
of side-effects allowed.

Fig. 17 shows the total runtime and Fig. 18 shows the number
of explanations for each debugging scenario. In the figures, we
divided each scenario into three categories: (1) Standard – no side-
effects are considered, which corresponds to our previous experi-
ments. (2) No side-effects – side-effects are not acceptable for the
given query and we set Q im = Q . (3) Minimal number of side-
effects – we set Q m = Q .

From Fig. 17, we observe that the difference in runtime when
considering side-effects is negligible when the number of potential
side-effects (i.e., the size of Cm or Cim) is small. For instance, in
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Figure 17: Runtime when including non-empty Qim or Qm
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Figure 18: Number of explanations with non-empty Qim or Qm

scenarios Q1, Q4, and Q6 the number of potential side-effects is 34,
34, and 128, respectively. However, the difference in runtime be-
comes significant as the number of potential side-effects increases.
For instance, scenario Q2 produces 573 potential side-effects. The
runtime for minimizing the number of side-effects is larger than
the runtime for avoiding side-effects. This is expected since when
no side-effects are allowed, the constraint solver stops processing
after the first one is found. As a final remark, Artemis recognizes
that scenario Q3 is unsatisfiable early in the process and finishes it
quickly.

Focusing on Fig. 18, we observe that for scenarios Q1, Q2, Q4,
and Q5, the minimum number of side-effects is zero, hence, we ob-
tain the same number of explanations when avoiding side-effects
than when minimizing side-effects. For scenarios Q2 and Q4, how-
ever, some explanations are pruned compared to the case where no
side-effects are considered. In scenario Q6, we observe that the
number of explanations with minimal side-effects is equal to the
number of all possible explanations, but no explanation is returned
when not allowing side-effects. The reason for this is that in this
scenario, all explanations generate a side-effect.

E. Proofs Sketches for Propositions
PROOF SKETCH PROP. 1. We first notice that the canonical in-

stance (R1 (X1) , . . . ,Rk (Xk)) [x/t] of any sub-query in Q, where Q
is a union of conjunctive queries, is an explanation pattern for t.
Indeed, the valuation that maps each variable xi ∈ x to the corre-
sponding value of t is a valuation that will produce the missing
tuple t.

Now, take any pattern P that yields t. This means that there is at
least one valuation ρ from the body of Q to P such that ρ(x) = t.
Assume that the valuation has been obtained for the i-th sub-query
in Q, 1 ≤ i ≤ m. This means that ρ has a homomorphism from(
Ri1 (Xi1) , . . . ,Rik

(
Xki

))
[x/t] to P. That yields to the conclusion

that every possible pattern has a homomorphism from a pattern in
the generic witness that consists of the canonical set instance.

PROOF SKETCH PROP. 2. The proof has two steps. First, we
prove that Core(Pi) =CoreWitness(Pi) for SPJU queries and miss-

ing tuples with constant values only. We then show that Wmin is the
unique minimum generic witness (up to isomorphism) for W .
Part 1. For select-project-join-union (SPJU) queries, it has been
shown that queries are preserved under homomorphism [2]. That is,
whenever a tuple t ∈ Q(A) and a homomorphism h : A→ B exists,
then h(t) ∈ Q(B). As the following example shows, this property
only applies for tuples in a result of a query where all values are
constants, whereas we reason about tuples that are not in the result
and where t can have both constants and labeled nulls as values.

EXAMPLE 12. Assume we have a relation R(A,B)
with tuple 〈a,1〉. Further assume we have a query
Q(B1,B2) :- R(A,B1),R(A,B2). Clearly, Q(R) = 〈1,1〉. Now,
assume t = 〈N1,N2〉, which corresponds to t being any possi-
ble tuple returned by Q(R). An explanation pattern that can
account for any tuple satisfying the constraint defined by t is
P1 = 〈N1,N2〉 ,〈N1,N3〉. It is easy to verify that the pattern
P2 = 〈N1,N2〉 is homomorphically equivalent to P1, and P2 is the
core of both P1 and P2. However, P2 only accounts for output
tuples 〈N1,N1〉 in the result of Q. The equality constraint of both
attributes is not part of t, so the core is too specific and only
accounts for a subset of tuples that can be witnessed.

Assuming that t uses constant values only and Q is an SPJU
query, it is true that h(t) = t and in this case, if t ∈ Q(P) and
∃h : P→ Core(P), then t ∈ Q(Core(P)). Thus, Core(P) is still a
valid pattern to generate t and CoreWitness(P) =Core(P).
Part 2. The patterns part of the universal witness can be divided
into clusters of patterns, where a cluster is formed by homomorphi-
cally equivalent patterns and no two distinct clusters contain pat-
terns that are homomorphically equivalent to each other. Then, for
each of these clusters, the core of each pattern in a cluster is the
same (up to isomorphism) and the core is still a a valid pattern (re-
sult of Part 1). Since two distinct clusters do not share any patterns
between which mutual homomorphism exists, their cores are not
isomorphic and therefore, every cluster is represented by a differ-
ent core. We have one unique core for each distinct cluster, so there
is a unique combination of these cores.

PROOF SKETCH PROP. 3. To generate the minimum universal
witness, we defined a three-step procedure. Step one ensures that
the minimal universal witness consists of core witnesses only, which
is necessary by definition. Homomorphically equivalent witnesses
have equal cores, and these duplicates are removed in step (ii). As
a consequence, all other witnesses either have no homomorphisms
between them or there is homomorphism in only one direction. We
need to detect the second case and remove the witnesses to which
the homomorphism maps to to obtain the minimum universal wit-
ness basis.

PROOF SKETCH PROP. 4. The completeness of E is guaranteed
by Steps 2 and 3 of our algorithm (Sec. 4.4). Those two steps gen-
erate all possible explanations that match a pattern in the generic
witness. It thus remains to show that the generated set is indeed
universal.

Every explanation e ∈ E is a correct explanation (its condition
is verified by the constraint solver in Step 4 described in Sec. 4.5)
and will produce any missing t tuple w.r.t. the query Q. This means
there is a least one valuation ρ from the body of Q, and hence from
the generic witness, to e such that replacing each variable in e with
the corresponding value produces t, i.e., ρ(x) = t. Assume that the
valuation has been obtained for the i-th pattern P of the generic wit-
ness. This means that ρ has a homomorphism from an explanation
e that matches P to e, and e covers e. That yields the conclusion that
every possible explanation is covered by an explanation contained
in the explanation set E.
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