
GRAIL: Scalable Reachability Index for Large Graphs ∗

Hilmi Yıldırım
Rensselaer Polytechnic

Institute
110 8th St.

Troy/NY, USA

yildih2@cs.rpi.edu

Vineet Chaoji
Yahoo! Labs
Bangalore

India

chaojv@yahoo-inc.com

Mohammed J. Zaki
Rensselaer Polytechnic

Institute
110 8th St.

Troy/NY, USA

zaki@cs.rpi.edu

ABSTRACT
Given a large directed graph, rapidly answering reachability queries
between source and target nodes is an important problem. Existing
methods for reachability trade-off indexing time and space versus
query time performance. However, the biggest limitation of exist-
ing methods is that they simply do not scale to very large real-world
graphs. We present a very simple, but scalable reachability index,
called GRAIL, that is based on the idea of randomized interval la-
beling, and that can effectively handle very large graphs. Based on
an extensive set of experiments, we show that while more sophis-
ticated methods work better on small graphs, GRAIL is the only
index that can scale to millions of nodes and edges. GRAIL has
linear indexing time and space, and the query time ranges from
constant time to being linear in the graph order and size.

1. INTRODUCTION
Given a directed graphG = (V,E) and two nodesu, v ∈ V , a

reachability queryasks if there exists a path fromu to v in G. If
u can reachv, we denote it asu → v, whereas ifu cannot reach
v, we denote it asu 6→ v. Answering graph reachability queries
quickly has been the focus of research for over 20 years. Tradi-
tional applications include reasoning about inheritance in class hi-
erarchies, testing concept subsumption in knowledge representa-
tion systems, and checking connections in geographical informa-
tion systems. However, interest in the reachability problem re-
vived in recent years with the advent of new applications which
have very large graph-structured data that are queried for reach-
ability excessively. The emerging area of Semantic Web is com-
posed of RDF/OWL data which are indeed graphs with rich con-
tent, and there exist RDF data with millions of nodes and billions
of edges. Reachability queries are often necessitated on these data
to infer the relationships among the objects. In network biology,
reachability play a role in querying protein-protein interaction net-
works, metabolic pathways and gene regulatory networks. In gen-
eral, given the ubiquity of large graphs, there is a crucial need for
highly scalable indexing schemes.
∗This work was supported in part by NSF Grants EMT-0829835,
and CNS-0103708, and NIH Grant 1R01EB0080161-01A1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment,Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

It is worth noting at the outset that the problem of reachabil-
ity on directed graphs can be reduced to reachability on directed
acyclic graphs (DAGs). Given a directed graphG, we can obtain
an equivalent DAGG′ (called thecondensation graphof G), in
which each node represents a strongly connected component of the
original graph, and each edge represents the fact whether one com-
ponent can reach another. To answer whether nodeu can reachv
in G, we simply look up their corresponding strongly connected
components,Su andSv, respectively, which are the nodes inG′.
If Su = Sv, then by definitionu and reachv (and vice-versa). If
Su 6= Sv, then we pose the question whetherSu can reachSv

in G′. Thus all reachability queries on the original graph can be
answered on the DAG. Henceforth, we will assume that all input
graphs have been transformed into their corresponding DAGs, and
thus we will discuss methods for reachability only on DAGs.

Full Transitive Closure DFS/BFS

O(nm) O(1)
Construction Time

O(1) O(n+m)
Query Time

O(n2) O(1)
Index Size

Figure 1: Tradeoff between Query Time and Index Size
There are two basic approaches to answer the reachability queries

on DAGs, which lie at the two extremes of the index design space,
as illustrated in Figure 1. Given a DAGG, with n vertices and
m edges, one extreme (shown on left) is to precompute and store
the full transitive closure; this allows one to answer reachability
queries in constant time by a single lookup, but it unfortunately
requires a quadratic space index, making it practically unfeasible
for large graphs. On the other extreme (shown on right), one can
use a depth-first (DFS) or breadth-first (BFS) traversal of the graph
starting from nodeu, until either the target,v, is reached or it is de-
termined that no such path exists. This approach requires no index,
but requiresO(n+m) time for each query, which is unacceptable
for large graphs. Existing approaches to graph reachability index-
ing lie in-between these two extremes.

While there is not yet a single best indexing scheme for DAGs,
the reachability problem on trees can be solved effectively byin-
terval labeling [11], which takes linear time and space for con-
structing the index, and provides constant time querying. It labels
each nodeu with a rangeLu = [rx, ru], whereru denotes the
rank of the nodeu in a post-order traversal of the tree, where the
ranks are assumed to begin at 1, and all the children of a node are
assumed to be ordered and fixed for that traversal. Further,rx de-

276

0 [1,10]

1 [1,6] 2 [7,9]

3 [1,4] 4 [5,5] 5 [7,8]

6 [7,7] 7 [1,3]

8 [1,1] 9 [2,2]

(a) Tree

0 [1,10]

1 [1,6] 2 [1,9]

3 [1,4] 4 [1,5] 5 [1,8]

6 [1,7] 7 [1,3]

8 [1,1] 9 [2,2]

(b) DAG: Single Interval

0 [1,10],[1,10]

1 [1,6],[1,9] 2 [1,9],[1,7]

3 [1,4],[1,6] 4 [1,5],[1,8] 5 [1,8],[1,3]

6 [1,7],[1,2] 7 [1,3],[1,5]

8 [1,1],[1,1] 9 [2,2],[4,4]

(c) DAG: Multiple Intervals

Figure 2: Interval Labeling: Tree (a) and DAG: Single (b) & Multiple (c)

notes the lowest rank for any nodex in the subtree rooted atu
(i.e., includingu). This approach guarantees that the containment
between intervals is equivalent to the reachability relationship be-
tween the nodes, since the post-order traversal enters a node before
all of its descendants, and leaves after having visited all of its de-
scendants. In other words,u → v ⇐⇒ Lv ⊆ Lu. For example,
Figure 2(a) shows the interval labeling on a tree, assuming that
the children are ordered from left to right. It is easy to see that
reachability can be answered by interval containment. For exam-
ple, 1 → 9, sinceL9 = [2, 2] ⊂ [1, 6] = L1, but 2 6→ 7, since
L7 = [1, 3] 6⊆ [7, 9] = L2.

To generalize the interval labeling to a DAG, we have to ensure
that a node is not visited more than once, and a node will keep the
post-order rank of its first visit. For example, Figure 2(b) shows an
interval labeling on a DAG, assuming a left to right ordering of the
children. As one can see, interval containment of nodes in a DAG
is not exactly equivalent to reachability. For example,5 6→ 4, but
L4 = [1, 5] ⊆ [1, 8] = L5. In other words,Lv ⊆ Lu does not
imply thatu → v. On the other hand, one can show thatLv 6⊆
Lu =⇒ u 6→ v.

In this paper we present a novel, scalable graph indexing ap-
proach for very large graphs, called GRAIL, which stands forGraph
Reachability Indexing via RAndomizedIntervalLabeling. Instead
of using a single interval, GRAIL employs multiple intervals that
are obtained via random graph traversals. We use the symbold to
denote the number of intervals to keep per node, which also corre-
sponds to the number of graph traversals used to obtain the label.
For example, Figure 2(c) shows a DAG labeling using 2 intervals
(the first interval assumes a left-to-right ordering of the children,
whereas the second interval assumes a right-to-left ordering).

The key idea of GRAIL is to do very fast elimination for those
pairs of query nodes for whom non-reachability can be determined
via the intervals. In other words, ifLv 6⊆ Lu, which can be checked
in O(d) time, we immediately returnu 6→ v. On the other hand,
if successive index lookups fail, reachability defaults to a DFS in
the worst-case. The space complexity of our indexing isO(dn),
sinced intervals have to be kept per node, and the construction
time isO(d(n+m)), sinced random graph traversals are made to
obtain those labels. Sinced is typically a small constant, GRAIL
requires time and space linear in the graph size for index creation.
For query answering, the time complexity ranges fromO(d) (in
cases where non-reachability can be determined using the index),

toO(n+m) (in cases where the search defaults to a DFS). GRAIL
is thus a light-weight index, that scales to very large graphs, due
to its simplicity. Via an extensive set of experiments, we show
that GRAIL outperforms existing methods on very large real and
synthetic graphs, sometimes by over an order of magnitude. In
many cases, GRAIL is the only method that can even run on such
large graphs.

2. RELATED WORK
As noted above, existing approaches for graph reachability com-

bine aspects of indexing and pure search, trading off index space for
querying time. Major approaches include interval labeling, com-
pressed transitive closure, and 2HOP indexing [1, 21, 22, 15, 13, 5,
2, 7, 20, 19, 23, 6, 12], which are discussed below, and summarized
in Table 1.

Construction Time Query Time Index Size

Opt. Tree Cover [1] O(nm) O(n) O(n2)
GRIPP [21] O(m + n) O(m − n) O(m + n)
Dual Labeling [22] O(n + m + t3) O(1) O(n + t2)
PathTree [15] O(mk) O(mk)/O(mn) O(nk)
2HOP [7] O(n4) O(

√

m) O(n
√

m)
HOPI [20] O(n3) O(

√

m) O(n
√

m)
GRAIL (this paper) O(d(n + m)) O(d)/O(n + m) O(dn)

Table 1: Comparison of Approaches: n denotes number of ver-
tices; m, number of edges; t = O(m − n), number of non-tree
edges; k number of paths/chains; and d number of intervals.

Optimal Tree Cover [1] is the first known variant of interval la-
beling for DAGs. The approach first creates interval labels for a
spanning tree of the DAG. This is not enough to correctly answer
reachability queries, as mentioned above. To guarantee correct-
ness, the method processes nodes in reverse topological order for
each non-tree edge (i.e., an edge that is not part of the spanning
tree) betweenu andv, with u inheriting all the intervals associated
with nodev. Thusu is guaranteed to contain all of its children’s
intervals. Testing reachability is equivalent to deciding whether a
list of intervals subsumes another list of intervals. The worst case
complexity of this is the same as a full transitive closure.

GRIPP [21] is another variant of interval labeling. Instead of
inflating the index size for the non-tree edges as in [1], reachabil-
ity testing is done via multiple containment queries. Given nodes
u andv, if Lv is not contained inLu, the non-tree edges(x, y),

277

such thatx is a descendant ofu, are fetched, and recursively a new
query(y, v) is issued for everyy, until eitherv is reachable from a
y node or if all non-tree edges are exhausted. If one of they nodes
can reachv thenu can reachv. Since there arem − n non-tree
edges, the query time complexity isO(m−n). Dual labeling[22]
processes non-tree edges in a different way. After labeling the se-
lected tree, it computes the transitive closure of non-tree edges so
that it can answer queries by a constant number of lookups (in Ta-
ble 1t = O(m−n) denotes the number of non-tree edges). GRIPP
and Dual Labeling thus lie on the opposite sides of the trade-off il-
lustrated in Figure 1.

A chain decomposition approach was proposed in [13] to com-
press the transitive closure. The graph is split into node-disjoint
chains. A nodeu can reach to nodev if they exist in the same
chain, andu precedesv. Each node also keeps the highest node
that it can reach in every other chain. Thus the space requirement
isO(kn) wherek is the number of chains. Such a chain decompo-
sition is computed inO(n3) time. This bound was improved in [5],
where they proposed a decomposition which can be computed in
O(n2 + kn

√
k) time. Recently, [4] further improved this scheme

by using general spanning trees in which each edge corresponds to
a path in the original graph. [2] solves a variant of the reachability
problem where the input is assumed to a collection of non-disjoint
paths instead of a graph.

PathTree [15] is the generalization of the tree cover approach. It
extracts the disjoint paths of a DAG, then creates a tree of paths on
which a variant of interval labeling is applied. That labeling cap-
tures most of the transitive information and the rest of the closure
is computed in an efficient way. PathTree has constant time query-
ing and fast construction times, but its index size might get very
large on dense graphs (kdenotes the number of paths in the de-
composition). In a recent paper by the same authors, they proposed
3HOP [14] which addresses the issue of large index size. Although
3HOP has a reduced index size, the construction and query times
degraded significantly. Based on our experimentation, PathTree is
the best extant method in terms of query time.

The other major class of methods is based on2HOP Indexing[7,
20, 19, 23, 6, 12], where each node determines a set of intermedi-
ate nodes it can reach, and a set of intermediate nodes which can
reach it. The query betweenu andv returns success if the inter-
section of the successor set ofu and predecessor set ofv is not
empty. 2HOP was first proposed in [7], where they also showed
that computing the minimum 2HOP cover is NP-Hard, and gave an
O(logm)-approximation algorithm based on a greedy algorithm
set-cover problem. Its quartic construction time was improved in
[23] by using a geometric approach which produces slightly larger
2HOP cover than obtained in [7]. A divide-and-conquer strategy to
to 2HOP indexing was proposed in [20, 19]. HOPI[20] partitions
the graph intok subgraphs, computes the 2HOP indexing within
each subgraph and finally merges their 2HOP covers by process-
ing the cross-edges between subgraphs. [19], by the same authors,
improved the merge phase by changing the way in which cross-
edges between subgraphs are processed. [6] partition the graph in
a top-down hierarchical manner, instead of a flat partitioning into
k subgraphs. The graph is partitioned into two subgraphs repeat-
edly, and then their 2HOP covers are merged more efficiently than
in [19]. Their approach outperforms existing 2HOP approaches in
large and dense datasets.

The HLSS [12] method proposes a hybrid of 2HOP and Interval
Labeling. They first label a spanning tree of the graph with interval
labeling and extract a remainder graph whose transitive closure is
yet to be computed. In the transitive closure of the remainder graph,
densest sub-matrices are found and indexed with 2HOP indexing.

The problem of finding densest sub-matrices is NP-hard and they
proposed a 2-approximation algorithm for it.

Despite the overwhelming interest in static transitive closure,
not much attention has been paid to practical algorithms for the
dynamic case, though several theoretical studies exist [18, 16, 9].
Practical works on dynamic transitive closure [10, 17] and dynamic
2HOP indexing [3] have only recently been proposed. However,
scalability remains a problem. Our focus in this paper is on static
indexing; extending GRAIL to the dynamic setting will be consid-
ered in the future.

3. THE GRAIL APPROACH
Our approach to reachability indexing is motivated by the obser-

vation that existing interval labeling variants identify a subgraph
of the DAG (i.e., trees in [1, 22, 21] and path-tree in [15]) in the
first stage, and incorporate the remaining (uncovered) portion of
the DAG, in the second phase of indexing or during the query time.
However, most of the reachability information is captured in the
first stage. The motivating idea in GRAIL is to use interval labeling
multiple times to reduce the workload of the second phase of index-
ing or the querying. The multiple intervals yield a hyper-rectangle
instead of single interval per node.

node exceptions (E) direct (Ed) indirect (Ei)
2 {1, 4} ∅ {1, 4}
4 {3, 7, 9} {3, 7, 9} ∅
5 {1, 3, 4, 7, 9} ∅ {1, 3, 4, 7, 9}
6 {1, 3, 4, 7, 9} {1, 3, 4, 7, 9} ∅

Table 2: Exceptions for DAG in Figure 2(b)

In GRAIL, for a given nodeu, the new label is given asLu =
L1

u, L
2
u, . . . , L

d
u, whereLi

u is the interval label obtained from the
i-th (random) traversal of the DAG, and1 ≤ i ≤ d, whered is the
dimensionor number of intervals. We say thatLv is contained in
Lu, denoted asLv ⊆ Lu, if and only ifLi

v ⊆ Li
u for all i ∈ [1, d].

If Lv 6⊆ Lu, then we can conclude thatu 6→ v, as per the theorem
below:

THEOREM 1. If Lv 6⊆ Lu, thenu 6→ v.
PROOF: Given thatLv 6⊆ Lu, there must exist a “dimension”i,
such thatLi

v 6⊆ Li
u. Assume thatu → v, and letx andy be the

lowest ranked nodes underu andv, respectively, in the post-order
traversal. In this caseLi

v = [ry, rv] andLi
u = [rx, ru], where

rn denotes the rank of noden. Butu → v implies thatru > rv
in post-order, and further thatrx ≤ ry, which in turn implies that
Li

v = [ry, rv] ⊆ [rx, ru] = Li
u. But this is a contradiction to our

assumption thatu→ v. We conclude thatu 6→ v.

On the other hand, ifLv ⊆ Lu, it is possible that this is a
false positive, i.e., it can still happen thatu 6→ v. We call such
a false positive containment anexception. For example, in Figure
2(b), there are 15 exceptions in total, as listed in Table 2. For in-
stance, for node2, node1 is an exception, sinceL1 = [1, 6] ⊆
[1, 9] = L2, but in fact2 6→ 1. The basic intuition in GRAIL is
that using multiple random labels makes it more likely that such
false containments, i.e., exceptions, are minimized. For exam-
ple, when one considers the 2-dimensional intervals given in Fig-
ure 2(c), for the very same graph, 12 out of the 15 exceptions get
eliminated! For instance, we see that1 is no longer an exception
for 2, sinceL1 = [1, 6], [1, 9] 6⊆ [1, 9], [1, 7] = L2, since for
the second interval we have[1, 9] 6⊆ [1, 7]. We can thus conclude
that2 6→ 1. However, note that3 is still an exception for4 since
L3 = [1, 4], [1, 6] ⊆ [1, 5][1, 8] = L4. For 4, nodes7 and9 also

278

remain as exceptions. In general using multiple intervals drastically
cuts down on the exception list, but is not guaranteed to completely
eliminate exceptions.

There are two main issues in GRAIL: i) how to compute the
d random interval labels while indexing, and ii) how to deal with
exceptions, while querying. We will discuss these in detail below.

3.1 Index Construction
The index construction step in GRAIL is very straightforward;

we generate the desired number of post-order interval labels by
simply changing the visitation order of the children randomly dur-
ing each depth-first traversal. Algorithm 1 shows an implementa-
tion of this strategy; an intervalLi

u is denoted as

Li
u = [Li

u[1], L
i
u[2]] = [rx, ru]

While the number of possible labelings is exponential, yet most
graphs can be indexed very compactly with small number of di-
mensions depending on the edge density of the graph. Furthermore,
since it is not guaranteed that all exceptions will be eliminated, the
best strategy is to cease labeling after a small number of dimen-
sions (such as5), with reduced exceptions, rather than trying to
totally eliminate all exceptions, which might require a very large
number of dimensions.

Algorithm 1: GRAIL Indexing: Randomized Intervals

RandomizedLabeling(G, d):
1 foreach i← 1 to d do
2 r ← 1 // global variable: rank of node
3 Roots← {n : n ∈ roots(G)}
4 foreach x ∈ Roots in random orderdo
5 Call RandomizedVisit(x, i, G)

RandomizedVisit(x, i, G) :
6 if x visited beforethen return
7 foreach y ∈ Children(x) in random orderdo
8 Call RandomizedVisit(y, i, G)

9 r∗c ← min{Li
c[1] : c ∈ Children(x)}

10 Li
x ← [min(r, r∗c), r]

11 r ← r + 1

In terms of the traversal strategies, we aim to generate labelings
that are as different from each other as possible. We experimented
with the following traversal strategies.

Randomized: This is the strategy shown in Algorithm 1, with a
random traversal order for each dimension.

Randomized Pairs: In this approach, we first randomize the order
of the roots and children, and fix it. We then generate pairs of
labeling, using left-to-right (L-R) and right-to-left (R-L) traversals.
The intuition is to make the intervals as different as possible; a node
that is visited first in L-R order is visited last in R-L order.

Bottom Up: Instead of processing the nodes in topological order
from the roots to the sinks, in this strategy we conceptually “reverse
the edges” and process the nodes in reverse topological order. With
this change,Lv 6⊆ Lu =⇒ v 6→ u. The bottom-up traversal can
be done at random, or in random-pairs.

It is clear that the index construction in GRAIL takesO(d(n +
m)), corresponding to thed traversals for the graphG. Further, the
space complexity is exactly2dn = O(dn), sinced intervals are
kept per node.

3.2 Reachability Queries
To answer reachability queries between two nodes,u and v,

GRAIL adopts a two-pronged approach. GRAIL first checks whether
Lv 6⊆ Lu. If so, we can immediately conclude thatu 6→ v, by The-
orem 1. On the other hand, ifLv ⊆ Lu, nothing can be concluded
immediately since we know that the index can have false positives,
i.e., exceptions.

There are basically two ways of tackling exceptions. The first is
to explicitly maintain anexception listper node. Given nodex, we
denote byEx, the list of exceptions involving nodex, given as:

Ex = {y : (x, y) is an exception, i.e.,Ly ⊆ Lx andx 6→ y}

For example, for the DAG in Figure 2(b), we noted that there were
15 exceptions in total, as shown in Table 2. From the table, we can
see thatE2 = {1, 4}, E4 = {3, 7, 9}, and so on. If every node
has an explicit exception list, then once we know thatLv ⊆ Lu, all
we have to do is check ifv ∈ Eu. If yes, then the pair(u, v) is an
exception, and we returnu 6→ v. If no, then the containment is not
an exception, and we answeru→ v. We describe how to construct
exceptions lists in Appendix A.

Unfortunately, keeping explicit exception lists per node adds sig-
nificant overhead in terms of time and space, and further does not
scale to very large graphs. Thus the default approach in GRAIL
is to not maintain exception at all. Rather, GRAIL uses a “smart”
DFS, with recursive containment check based pruning, to answer
queries. This strategy does not require the computation of excep-
tion list so its construction time and index size is linear.

Algorithm 2: GRAIL Query: Reachability Testing

Reachable(u, v,G):
1 if Lv 6⊆ Lu then
2 return False// u 6→ v

3 else if use exception liststhen
4 if v ∈ Eu then return False// u 6→ v
5 else return True// u→ v

6 else
// DFS with pruning

7 foreach c ∈ Children(u) such thatLv ⊆ Lc do
8 if Reachable(c, v,G) then
9 return True// u→ v

10 return False// u 6→ v

Algorithm 2 shows the pseudo-code for reachability testing in
GRAIL. Line 1 tests whetherLv 6⊆ Lu, and if so, returns false.
Line 3 is applied only if exceptions lists are explicitly maintained,
either complete or memoized (see Section A): ifv ∈ Eu, then
GRAIL returns false, otherwise it returns true. Lines 7-10 code the
default recursive DFS with pruning. If there exists a childc of u,
that satisfies the condition thatLv ⊆ Lc, and we check and find that
c→ v, we can conclude thatu→ v, and GRAIL returns true (Line
9). Otherwise, if none of the children can reachv, then we conclude
thatu 6→ v, and we return false in Line 10. As an example, let us
consider the single interval index in Figure 2(b). Letu = 2, and
let v = 4, and assume that we are not using exception lists. Since
L4 = [1, 5] ⊆ [1, 9] = L2, we have to do a DFS to determine
reachability. Both3 and5 are children of2, but only5 satisfies the
condition thatL4 = [1, 5] ⊆ [1, 8] = L5, we therefore check if5
can reach4. Applying the DFS recursion, we will check6 and then,
finally conclude that5 cannot reach4. Thus the condition in Line
8 fails, and we return false as the answer (Line 10), i.e.,2 6→ 4.

279

Computational Complexity: It is easy to see that querying takes
O(d) time if Lv 6⊆ Lu. If exception lists are to be used, and they
are maintained in a hash table, then the check in Line 3 takesO(1)
time; otherwise, if the exceptions list is kept sorted, then the times
is O(log(|Eu|)). The default option is to perform DFS, but note
that it is possible we may terminate early due to the containment
based pruning. Thus the worst case complexity isO(n + m) for
the DFS, but in practice it can be much faster, depending on the
topological level ofu and depending on the effectiveness of prun-
ing. Thus the query time ranges fromO(d) toO(n+m).

4. EXPERIMENTS
We conducted extensive experiments to compare our algorithm

with the best existing studies. All experiments are performed in
a machine x8664 Dual Core AMD Opteron(tm) Processor 870
GNU/Linux which has 8 processors and 32G ram. We compared
our algorithm with pure DFS (depth-first search) without any prun-
ing, HLSS [12], Interval (INT) [1], Dual Labeling (Dual) [22]),
PathTree (PT) [15] and 3HOP [14]. The code for these methods
was obtained from the authors, though in some cases, the original
code had been reimplemented by later researchers.

Based on our experiments for GRAIL we found that the basic
randomized traversal strategy works very well, with no significant
benefit of the other methods. Thus all experiments are reported
only with randomized traversals. Furthermore, we found that ex-
ception lists maintenance is very expensive for large graphs, so the
default option in GRAIL is to use DFS with pruning.

Note that all query times are aggregate times for 100K queries.
We generate 100K random query pairs, and issue the same queries
to all methods. In the tables below, we use the notation –(t), and
–(m), to note that the given method exceeds the allocated time
(10M milliseconds (ms) for small sparse, and 20M ms for all other
graphs;M ≡ million) or memory limits (32GB RAM; i.e., the
method aborts with abad-alloc error).

Dataset Nodes Edges Avg
Deg

agrocyc 12684 13657 1.07
amaze 3710 3947 1.06
anthra 12499 13327 1.07
ecoo 12620 13575 1.08
human 38811 39816 1.01
kegg 3617 4395 1.22
mtbrv 9602 10438 1.09
nasa 5605 6538 1.17
vchocyc 9491 10345 1.09
xmark 6080 7051 1.16

Table 3: Small Sparse Real

Dataset Nodes Edges Avg
Deg

arxiv 6000 66707 11.12
citeseer 10720 44258 4.13
go 6793 13361 1.97
pubmed 9000 40028 4.45
yago 6642 42392 6.38

Table 4: Small Dense Real

Dataset Nodes Edges Avg
Deg

citeseer 693947 312282 0.45
citeseerx 6540399 15011259 2.30
cit-patents 3774768 16518947 4.38
go-uniprot 6967956 34770235 4.99
uniprot22m 1595444 1595442 1.00
uniprot100m 16087295 16087293 1.00
uniprot150m 25037600 25037598 1.00

Table 5: Large Real

Dataset Nodes Edges Avg
Deg

rand10m2x 10M 20M 2
rand10m5x 10M 50M 5
rand10m10x 10M 100M 10
rand100m2x 100M 200M 2
rand100m5x 100M 500M 5

Table 6: Large Synthetic

4.1 Datasets
We used a variety of real datasets, both small and large, as well

as large synthetic ones, as described below.

Small-Sparse: These are small, real graphs, with average degree
less than1.2, taken from [15], and listed in Table 3.xmark and
nasa are XML documents, andamaze andkegg are metabolic
networks, first used in [21]. Others were collected from BioCyc

(biocyc.org), a collection of pathway and genome databases.
amaze andkegg have a slightly different structure, in that they
have a central node which has a very large in-degree and out-degree.

Small-Dense: These are small, dense real-world graphs taken from
[14] (see Table 4).arxiv (arxiv.org),citeceer (citeseer.
ist.psu.edu), andpubmed (www.pubmedcentral.nih.
gov) are all citation graph datasets. GO is a subset of the Gene
Ontology (www.geneontology.org) graph, and yago is a sub-
set of the semantic knowledge database YAGO (www.mpi-inf.
mpg.de/suchanek/downloads/yago).

Large-Real: To evaluate the scalability of GRAIL on real datasets,
we collected 7 new datasets which have previously not been been
used by existing methods (see Table 5).citeseer, citeseerx
andcit-patents are citations networks in which non-leaf nodes
are expected to have 10 to 30 outgoing edges on average. How-
everciteseer is very sparse because of data incompleteness.
citeseerx is the complete citation graph as of March 2010 from
(citeseerx.ist.psu.edu). cit-patents (snap.stan\
-ford.edu/data) includes all citations in patents granted in
the US between 1975 and 1999.go-uniprot is the joint graph
of Gene Ontology terms and the annotations file from the UniProt
(www.uniprot.org) database, the universal protein resource.
Gene ontology is a directed acyclic graph of size around 30K, where
each node is a term. UniProt annotations consist of connections
between the gene products in the UniProt database and the terms
in the ontology. UniProt annotations file has around 7 million
gene products annotated by 56 million annotations. The remain-
ing uniprot datasets are obtained from the RDF graph of UniProt.
uniprot22m is the subset of the complete RDF graph which has
22 million triples, and similarlyuniprot100m anduniprot150m
are obtained from 100 million and 150 million triples, respectively.
These are some of the largest graphs ever considered for reachabil-
ity testing.

Large-Synthetic: To test the scalability with different density set-
ting, we generated random DAGs, ranging with 10M and 100M
nodes, with average degrees of 2, 5, and 10 (see Table 6). We first
randomly select an ordering of the nodes which corresponds to the
topological order of the final dag. Then for the specified number of
edges, we randomly pick two nodes and connect them with an edge
from the lower to higher ranked node.

Dataset GRAIL HLSS INT Dual PT 3HOP

agrocyc 16.13 12397 5232 11803 279 142K
amaze 3.82 703K 3215 4682 818 2304K
anthra 16 11961 4848 11600 268 142K
ecoo 16 12711 5142 12287 276 146K
human 71 135K 47772 134K 822 – (t)
kegg 3.8 1145K 3810 6514 939 3888K
mtbrv 12 3749 2630 3742 208 86291
nasa 6.3 1887 811 999 126 33774
vchocyc 12 4500 2541 3910 201 85667
xmark 7.5 70830 1547 1719 263 151856

Table 7: Small Sparse Graphs: Construction Time (ms)

4.2 Small Real Datasets: Sparse and Dense
Tables 7, 8, and 9 show the index construction time, query time,

and index size for the small, sparse, real datasets. Tables 10, 11, and
12 give the corresponding values for the small, dense, real datasets.
The last column in Tables 8 and 11 shows the number of reachable
query node-pairs out of the 100K test queries; the query node-pairs
are sampled randomly from the graphs and the small counts are
reflective of the sparsity of the graphs.

On the sparse datasets, GRAIL (usingd = 2 traversals) has
the smallest construction time among all indexing methods, though

280

 16

 24

 32

 40

 48

 2 3 4 5
 45

 50

 55

 60

 65

C
on

st
ru

ct
io

n
T

im
e

(m
s)

Q
ue

ry
 T

im
e

(m
s)

Number of Traversals

Constr. Time
Query Time

 15

 30

 45

 60

 75

 2 3 4 5
 1.5

 2

 2.5

 3

 3.5

C
on

st
ru

ct
io

n
T

im
e

(s
ec

)

Q
ue

ry
 T

im
e

(s
ec

)

Number of Traversals

Constr. Time
Query Time

 100

 200

 300

 400

 500

 2 3 4 5
 1000

 1500

 2000

 2500

 3000

C
on

st
ru

ct
io

n
T

im
e

(s
ec

)

Q
ue

ry
 T

im
e

(s
ec

)

Number of Traversals

Constr. Time
Query Time

(a) (b) (c)

Figure 3: Effect of Increasing Number of Intervals: (a) ecoo, (b) cit-patents, (c) rand10m10x

Dataset GRAIL DFS HLSS INT Dual PT 3HOP #Pos.Q

agrocyc 57 44 71 158 65 8 235 133
amaze 764 1761 99 101 63 7 4621 17259
anthra 49 40 68 157 65 8.5 139 97
ecoo 56 52 69 160 65 8.0 241 129
human 80 36 81 238 77 14 –(t) 12
kegg 1063 2181 104 100 72 7.1 81 20133
mtbrv 49 55 81 144 75 7.2 218 175
nasa 26.5 138 96 121 80 7.8 79 562
vchocyc 49.6 56 76 145 79 7.2 206 169
xmark 79 390 86 119 92 8.2 570 1482

Table 8: Small Sparse Graphs: Query Time (ms)

Datasets GRAIL HLSS INT Dual PT 3HOP

agrocyc 50736 40097 27100 58552 39027 87305
amaze 14840 17110 10356 433345 12701 1425K
anthra 49996 33532 26310 37378 38250 58796
ecoo 50480 34285 26986 58290 38863 97788
human 155244 109962 79272 54678 117396 –(t)
kegg 14468 17427 10242 504K 12554 10146
mtbrv 38408 30491 20576 41689 29627 74378
nasa 22420 20976 18324 5307 21894 28110
vchocyc 37964 30182 20366 26330 29310 75957
xmark 24320 23814 16474 16434 20596 14892

Table 9: Small Sparse Graphs: Index Size (Num. Entries)

Dataset GRAIL HLSS INT Dual PT 3HOP

arxiv 21.7 – (t) 20317 450761 9639 – (t)
citeseer 43.1 120993 7682 26118 751.5 113075
go 9.5 69063 1144 4116 220.9 30070
pubmed 43.9 146807 7236 27968 774.0 168223
yago 18.2 28487 2627 4928 512 39066

Table 10: Small Dense Graphs: Construction Time (ms)

Dataset GRAIL DFS HLSS INT Dual PT 3HOP #Pos.Q

arxiv 575 12179 –(t) 273 281 24.4 –(t) 15459
citeseer 82.6 408 328 227 141 24.5 263 388
go 51.4 127 273 151 136 11.6 104 241
pubmed 75.5 375 315 254 132 22.1 264 690
yago 46.9 121 258 181 88.4 13.8 157 171

Table 11: Small Dense Graphs: Query Time (ms)

Dataset GRAIL HLSS INT Dual PT 3HOP

arxiv 24000 –(t) 145668 3695K 86855 –(t)
citeseer 64320 114088 142632 426128 91820 74940
go 27172 60287 40644 60342 37729 43339
pubmed 72000 102946 181260 603437 107915 93289
yago 26568 57003 57390 79047 39181 36274

Table 12: Small Dense Graphs: Index Size (Num. Entries)

PathTree is very effective as well. 3HOP could not run onhuman.
In terms of query time, PathTree is the best; it is 3-100 times faster
than GRAIL, and typically 10 times faster than HLSS and Dual.
INT is not very effective, and neither is 3HOP. However, it is worth

noting that DFS gives reasonable query performance, often faster
than indexing methods, other than PathTree and GRAIL. Given the
fact that DFS has no construction time or indexing size overhead, it
is quite attractive for these small datasets. The other methods have
comparable index sizes, though INT has the smallest sizes.

On the small dense datasets, 3HOP and HLSS could not run on
arxiv. GRAIL (with d = 2) has the smallest construction times
and index size of all indexing methods. It is also 2-20 times faster
than a pure DFS search in terms of query times, but is 3-20 times
slower than PathTree. Even on the dense datasets the pure DFS is
quite acceptable, though indexing does deliver significant benefits
in terms of query time performance.

As observed foramaze andkegg (Table 8), and forarxiv
(Table 11), the query time for GRAIL increases as the number of
reachable node-pairs (#PosQ) increase in the query set. However,
the graph topology also has an influence on the query performance.
Small-sparse datasets, such askegg andamaze, have a central
node with a very high in-degree and out-degree. For such graphs,
for many of the queries, GRAIL has to scan all the children of this
central node to arrive at the target node. This significantly increases
the query time (line 7 in Algorithm 2). To alleviate this problem,
one possibility is that nodes with large out-degree could keep the
intervals of their children in a spatial index (e.g. R-Trees) to accel-
erate target node/branch lookup.

Dataset Construction (ms) Query Time (ms) Index Size

GRAIL GRAIL DFS GRAIL
cit-patents 61911.9 1579.9 43535.9 37747680
citeseer 1756.2 94.9 56.6 2775788
citeseerx 19836 12496.6 198422.8 26272704
go-uniprot 32678.7 194.1 391.6 27871824
uniprot22m 5192.7 132.3 44.7 6381776
uniprot100m 58858.2 186.1 77.2 64349180
uniprot150m 96618 183 87.7 100150400

Table 13: Large Real Graphs

Constr. (ms) Query Time (ms) Index Size
Size Deg. GRAIL GRAIL DFS GRAIL

rand10m
2 128796 187.2 577.6 100M
5 226671 5823.9 90505 100M
10 407158 1415296.1 –(t) 100M

rand100m
2 1169601 258.2 762.7 800M
5 1084848 20467 131306 400M

Table 14: Scalability: Large Synthetic Graphs

4.3 Large Datasets: Real and Synthetic
Table 13 shows the construction time, query time, and index size

for GRAIL (d = 5) and pure DFS, on the large real datasets.
We also ran PathTree, but unfortunately, oncit-patents and
citeseerx is aborted with a memory limit error (–(m)), whereas
for the other datasets it exceeded the 20M ms time limit (–(t)). It

281

was able to run only onciteseer data (130406 ms for construc-
tion, 47.4 ms for querying, and the index size was 2360732 entries).
On these large datasets, none of the other indexing methods could
run. GRAIL on the other hand can easily scale to large datasets,
the only limitation being that it does not yet process disk-resident
graphs. We can see that GRAIL outperforms pure DFS by 2-27
times on the denser graphs:go-uniprot, cit-patents, and
citeseerx. On the other datasets, that are very sparse, pure DFS
can in fact be up to 3 times faster.

We also tested the scalability for GRAIL (withd = 5) on the
large synthetic graphs. Table 14 shows the construction time, query
time and index sizes for GRAIL and DFS. Once again, none of the
other indexing methods could handle these large graphs. PathTree
too aborted on all datasets, except forrand10m2x with avg. de-
gree 2 (it took 537019 ms for construction, 211.7 ms for query-
ing, and its index size was 69378979 entries). We can see that for
these datasets GRAIL is uniformly better than DFS in all cases. Its
query time is 3-15 times faster than DFS. In fact onrand10m10x
dataset with average density 10, DFS could not finish in the allo-
cated 20M ms time limit. Once again, we conclude that GRAIL
is the most scalable reachability index for large graphs, especially
with increasing density.

Dataset Constr. Time (ms) Query Time (ms) Index Size (# Entries)
with E w/o E with E w/o E Label Exceptions

amaze 1930.2 3.8 454.2 758.1 22260 19701
human 24235.5 134.5 596.4 81.1 310488 11486
kegg 2320.3 6.4 404.3 1055.1 28936 18385
arxiv 64913.2 53.7 532.4 424.99 60000 3754315

Table 15: GRAIL: Effect of Exceptions

4.4 GRAIL: Sensitivity
Exception Lists: Table 15 shows the effect of using exception lists
in GRAIL: “with E” denotes the use of exception lists, where as
“w/o E” denotes the default DFS search with pruning. We used
d = 3 for amaze, d = 4 for human andkegg (which are the
sparse datasets), andd = 5 for arxiv. We can see that using
exceptions does help in some cases, but the added overhead of in-
creased construction time, and the large size overhead of storing
exception lists (last column), do not justify the small gains. Further-
more, exceptions could not be constructed on the large real graphs.

Number of Traversals/Intervals (d): In Figure 3 we plot the ef-
fect of increasing the dimensionality of the index, i.e., increasing
the number of traversalsd, on one sparse (ecoo), one large real
(cit-patents), and one large synthetic (rand10m10x) graph.
Construction time is shown on the lefty-axis, and query time on
the right y-axis. It is clear that increasing the number of inter-
vals increases construction time, but yields decreasing query times.
However, as shown forecoo, increasingd does not continue to de-
crease query times, since at some point the overhead of checking a
larger number of intervals negates the potential reduction in excep-
tions. That is why the query time increases fromd = 4 to d = 5
for ecoo. To estimate the number of traversals that minimize the
query time, or that optimize the index size/query time trade-off is
not straightforward. However, for any practical benefits it is imper-
ative to keep the index size smaller than the graph size. This loose
constraint restrictsd to be less than the average degree. In our ex-
periments, we found out that the best query time is obtained when
d = 5 or smaller (when the average degree is smaller). Other mea-
sures based on the reduction in the number of (direct) exceptions
per new traversal could also be designed.

Effect of Reachability: For all of the experiments above, we is-
sue 100K random query pairs. However, since the graphs are very

sparse, the vast majority of these pairs are not reachable. As an al-
ternative, we generated 100K reachable pairs by simulating a ran-
dom walk (start from a randomly selected source node, choose a
random child with 99% probability and proceed, or stop and re-
port the node as target with 1% probability). Tables 16 and 17
show the query time performance of GRAIL and pure DFS for the
100K random and 100K only positive queries, on some small and
large graphs. We usedd = 2 for human, d = 4 for arxiv and
d = 5 for the large graphs. The frequency distribution of number
of hops between source and target nodes for the queries is plotted in
Figure 4. Generally speaking, querying only reachable pairs takes
longer (from 2-30 times) for both GRAIL and DFS. Note also that
GRAIL is 2-4 times faster than DFS on positive queries, and up to
30 times faster on the random ones.

Dataset GRAIL
Random Positive

Avg σ Avg/σ Avg σ Avg/σ
human 80.4 23.5 0.292 1058.7 146.4 0.138
arxiv 420.6 11.2 0.027 334.2 4.19 0.013
cit-patents 1580.0 121.4 0.077 3266.4 178.2 0.055
citeseerx 10275.5 3257.2 0.317 310393.2 14809 0.048
rand10m5x 5824.0 363.6 0.062 19286.8 1009.8 0.052

Table 16: Average Query Times and Standard Deviation

Dataset DFS
Random Positive

Avg σ σ/Avg Avg σ σ/Avg
human 36.4 10.4 0.286 919.6 89.5 0.097
arxiv 12179.6 179.1 0.014 1374.2 30.4 0.022
cit-patents 43535.9 1081.3 0.008 6827.8 372.4 0.055
citeseerx 198422.9 10064.3 0.051 650232.0 7411.4 0.011
rand10m5x 90505.9 3303.2 0.036 49989.3 1726.9 0.035

Table 17: Average Query Times and Standard Deviation

Effect of Query Distribution: Tables 16 and 17 show the aver-
age query times and the standard deviation for GRAIL and DFS,
respectively. Ten sets, each of 10K queries, are used to obtain
the mean and standard deviation of the query time. In random
query sets when using GRAIL the coefficient of variation (CV –
the ratio of the standard deviation to the mean) is between1/3 and
1/40, whereas it varies from1/3 to 1/70 when using DFS. As ex-
pected, DFS has more uniform query times compared to GRAIL
because GRAIL can cut some queries short via pruning while in
other queries GRAIL imitates DFS. However for query sets with all
reachable (positive) node-pairs, CV decreases for GRAIL since the
likelihood of pruning and early termination of the query decreases.
On the other hand, there is no such correlation for DFS.

100

101

102

103

104

105

 0 3 6 9 12 15 18

N
um

be
r

of
 Q

ue
rie

s

Number of Hops to Target

human
arxiv

cit-Patents
citeseerx

rand10m5x

Figure 4: Reachability: Distribution of Number of Hops

Effect of Density: We studied the effect of increasing edge density
of the graphs by generating random DAGs with 10 million nodes,
and varying the average density from 2 to 10, as shown in Figure 5.
As we can see, both the construction and query time increase with

282

 100

 150

 200

 250

 300

 350

 400

 450

 2 3 4 5 6 7 8 9 10
 0

 300

 600

 900

 1200

 1500

C
on

st
ru

ct
io

n
Ti

m
e

(s
ec

)

Q
ue

ry
 T

im
e

(s
ec

)

Average Degree

Constr. Time
Query Time

 1.75

 1.8

 1.85

 1.9

 1.95

 2

 2.05

 2 3 4 5 6 7 8 9
 0

 4000

 8000

 12000

 16000

 20000

C
on

st
ru

ct
io

n
Ti

m
e

(s
ec

)

Q
ue

ry
 T

im
e

(s
ec

)

Average Degree

Constr. Time
Query Time

(a) (b)

Figure 5: Increasing Graph Density: (a) GRAIL, (b) DFS

increasing density. However, note that typically GRAIL (withd =
5) is an order of magnitude faster than pure DFS in query time.
Also GRAIL can handle dense graphs, where other methods fail; in
fact, one can increase the dimensionality to handle denser graphs.

5. CONCLUSION
We proposed GRAIL, a very simple indexing scheme, for fast

and scalable reachability testing in very large graphs, based on ran-
domized multiple interval labeling. GRAIL has linear construction
time and index size, and its query time ranges from constant to
linear time per query. Based on an extensive set of experiments,
we conclude that for the class of smaller graphs (both dense and
sparse), while more sophisticated methods give a better query time
performance, a simple DFS search is often good enough, with the
added advantage of having no construction time or index size over-
head. On the other hand, GRAIL outperforms all existing methods,
as well as pure DFS search, on large real graphs; in fact, for these
large graphs existing indexing methods are simply not able to scale.

In GRAIL, we have mainly exploited a randomized traversal
strategy to obtain the interval labelings. We plan to explore other la-
beling strategies in the future. In general, the problem of finding the
next traversal that eliminates the maximum number of exceptions
is open. The question whether there exists an interval labeling with
d dimensions that has no exceptions, is likely to be NP-complete.
Thus it is also of interest to obtain a bound on the number of di-
mensions required to fully index a graph without exceptions. In the
future, we also plan to generalize GRAIL to dynamic graphs.

6. REFERENCES
[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient

management of transitive relationships in large data and
knowledge bases.SIGMOD Rec., 18(2):253–262, 1989.

[2] P. Bouros, S. Skiadopoulos, T. Dalamagas, D. Sacharidis,
and T. Sellis. Evaluating reachability queries over path
collections. InSSDBM, page 416, 2009.

[3] R. Bramandia, B. Choi, and W. K. Ng. On incremental
maintenance of 2-hop labeling of graphs. InWWW, 2008.

[4] Y. Chen. General spanning trees and reachability query
evaluation. InCanadian Conference on Computer Science
and Software Engineering, Montreal, Quebec, Canada, 2009.

[5] Y. Chen and Y. Chen. An efficient algorithm for answering
graph reachability queries. InICDE, 2008.

[6] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast
computing reachability labelings for large graphs with high
compression rate. InEBDT, 2008.

[7] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels.SIAM

Journal of Computing, 32(5):1335–1355, 2003.
[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press, 2001.
[9] C. Demetrescu and G. Italiano. Fully Dynamic Transitive

Closure: Breaking through theO(n2) Barrier. InFOCS,
2000.

[10] C. Demetrescu and G. Italiano. Dynamic shortest paths and
transitive closure: Algorithmic techniques and data
structures.Journal of Discrete Algorithms, 4(3):353–383,
2006.

[11] P. F. Dietz. Maintaining order in a linked list. InSTOC, 1982.
[12] H. He, H. Wang, J. Yang, and P. S. Yu. Compact reachability

labeling for graph-structured data. InCIKM, 2005.
[13] H. V. Jagadish. A compression technique to materialize

transitive closure.ACM Trans. Database Syst.,
15(4):558–598, 1990.

[14] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a
high-compression indexing scheme for reachability query. In
SIGMOD, 2009.

[15] R. Jin, Y. Xiang, N. Ruan, and H. Wang. Efficient answering
reachability queries on very large directed graphs. In
SIGMOD, 2008.

[16] V. King and G. Sagert. A fully dynamic algorithm for
maintaining the transitive closure.J. Comput. Syst. Sci.,
65(1):150–167, 2002.

[17] I. Krommidas and C. Zaroliagis. An experimental study of
algorithms for fully dynamic transitive closure.Journal of
Experimental Algorithmics, 12:16, 2008.

[18] L. Roditty and U. Zwick. A fully dynamic reachability
algorithm for directed graphs with an almost linear update
time. InSTOC, 2004.

[19] R. Schenkel, A. Theobald, and G. Weikum. HOPI: an
efficient connection index for complex XML document
collections. InEBDT, 2004.

[20] R. Schenkel, A. Theobald, and G. Weikum. Efficient creation
and incremental maintenance of the hopi index for complex
xml document collections. InICDE, 2005.

[21] S. Trissl and U. Leser. Fast and practical indexing and
querying of very large graphs. InSIGMOD, 2007.

[22] H. Wang, H. He, J. Yang, P. Yu, and J. X. Yu. Dual labeling:
Answering graph reachability queries in constant time. In
ICDE, 2006.

[23] J. X. Yu, X. Lin, H. Wang, P. S. Yu, and J. Cheng. Fast
computation of reachability labeling for large graphs. In
EBDT, 2006.

283

APPENDIX

A. EXCEPTION LISTS
If one desires to maintain exception lists for each node, a basic

property one can exploit is that ifv ∈ Eu then for each parentp
of v, it must be the case thatu cannot reachp. This is easy to see,
since if for any parentp, if u → p, then by definitionu → v, and
thenv cannot be an exception foru. Thus, the exception list for a
nodeu can be constructed recursively from the exception lists of
its parents. Nevertheless, the complexity of this step is the same as
that of computing the transitive closure, namelyO(nm), which is
impractical.

In GRAIL, we categorize exceptions into two classes. IfLu con-
tainsv 1, but none of the children ofu containsLv, then call the
exception betweenu andv adirect exception. On the other hand, if
at least one child ofu containsv as an exception, then we call the
exception betweenu andv as anindirect exception. For example,
in Figure 2(b)3 is a direct exception for4, but1 is an indirect ex-
ception for2, since there are children of2 (e.g.,5) for whom1 is
still an exception. Table 2 shows the list of direct (denotedEd) and
indirect (denotedEi) exceptions for the DAG.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x

c1

c2

c3

c4

e1 e2 e3
e4

Figure 6: Direct Exceptions: ci denote children and ei denote
exceptions, for node x.

Direct Exceptions: Let us assume thatd = 1, that is, each node
has only one interval. Given the interval labeling, GRAIL con-
structs the exception lists for all nodes in the graph, as follows.
First alln node intervals are indexed in aninterval tree[8], which
takesO(n log n) time andO(n) space. Querying the interval tree
for intervals intersecting a given range of interest can be done in
O(log n) time. To find the direct exceptions of nodex, we first
find the maximal ranges among all of its children. Next thegap
intervals between the maximal ranges are queried to find excep-
tions. Consider the example in Figure 6, where we want to de-
termine the exceptions for nodex. ci denote the children’s inter-
vals, whereasei denote the exceptions to be found. We can see
thatLx = [1, 15], and the maximal intervals among all its chil-
dren areLc1 = [1, 6], Lc3 = [8, 11], andLc4 = [10, 14]. It is
clear that if an exception is contained completely within any one
of the maximal intervals, it cannot be a direct exception. Thus to
find the direct exceptions forx, i.e., to findEd

x, we have to query
the gaps between the maximal ranges to find the intersecting inter-
vals. In our example, the gaps are given by the following intervals:
[6, 8], [11, 11 + δ], and[13, 13 + δ], whereδ > 0 is chosen so that
L2

ci
+ δ < L2

cj
for any pair of maximal ranges. In our example,

a value ofδ = 1 suffices, thus we query the interval tree to find
all intervals that intersect[6, 8], or [11, 12], or [13, 14], which will
yieldEd

x = {e1, e2, e3, e4}.
1In this section the phrases “ucontainsv”, “L u containsv”, and “u
containsLv” are used interchangeably. All are equivalent to saying
thatLu containsLv.

Indirect Exceptions: Given that we have the list of direct excep-
tionsEd

x for each node, the construction of the indirect exceptions
(Ei

x) proceeds in a bottom up manner from the leaves to the roots.
LetEcj = Ed

cj
∪Ei

cj
denote the list of direct or indirect exceptions

for a child nodecj . To computeEi
x, for each exceptione ∈ Ecj

we check if there exists another childck such thatLe ⊆ Lck and
e 6∈ Eck . If the two conditions are mete cannot be an exception for
x, sinceLe ⊆ Lck implies thate is potentially a descendant ofck,
ande 6∈ Eck confirms that it is not an exception. On the other hand,
if the test fails, thene must be an indirect exception forx, and we
add it toEi

x. For example, consider node2 in Figure 2(b). Assume
we have already computed the exception lists for each of its chil-
dren,E3 = Ed

3 ∪ Ei
3 = ∅, andE5 = Ed

5 ∪ Ei
5 = {1, 3, 4, 7, 8}.

We find that for eache inE5, nodes1, and4 fail the test with re-
spect toE3, sinceL1 6⊆ L3, andL4 6⊆ L3, thereforeEi

2 = {1, 4},
as illustrated in Table 2.

Multiple Intervals: To find the exceptions whend > 1, GRAIL
first computes the direct and indirect exceptions from the first traver-
sal, as described above. For computing the remaining exceptions
after thei-th traversal, GRAIL processes the nodes in a bottom up
order. For every direct exception ine ∈ Ed

x, removee from the
direct exception list ife is not an exception forx for the i-th di-
mension, and further, decrement the counter fore in the indirect
exceptions listEi

p for each parentp of x. Also, if after decrement-
ing, the counter for any indirect exceptione becomes zero, then
move e to the direct exception listEd

p of the parentp, provided
Le ⊆ Lp. In this way all exceptions can be found out for thei-th
dimension or traversal.

284

