
The Impact of Virtual Views on Containment

Michael Benedikt
michael.benedikt@comlab.ox.ac.uk

Georg Gottlob
georg.gottlob@comlab.ox.ac.uk

ABSTRACT
Virtual views are a mechanism that facilitates re-use and
makes queries easier to express. However the use of itera-
tive view definitions makes very simple query evaluation and
analysis problems more complex. In this paper we study
classical containment and equivalence problems for queries
built up through simple unions of conjunctive queries and
view definitions. More precisely, we determine the complex-
ity of containment and equivalence for non-recursive Data-
log. We show that the problem is much harder than its clas-
sical counterpart – complete for co-NEXPTIME. We then
show that this remains true even with restrictions on the
schema and queries in place. Finally, we isolate subcases
that are more tractable, ranging from NP to PSPACE.

1. INTRODUCTION
The impact of logical views on query processing has been

studied extensively in the database community [15]. A stan-
dard setting considers the impact of views as a way of re-
stricting the information available to queriers, motivated by
the need either to hide data from unauthorized users or to
reduce space consumption. A fundamental problem is to an-
alyze what queries can be answered exclusively using a set
of views – for example, to compare the query answers that
can be answered using (only) a view with those that could
have been retrieved directly from the base data [21, 4]. The
question is particularly relevant when the views are materi-
alized but the base relations from which views are defined
are not.

In contrast, virtual views can also play a role in mak-
ing queries easier to write: this is how they are commonly
used by SQL developers – as a concise and modular way
of describing common query components. It has been long
understood that the use of views allows queries to be more
succinctly represented. But we will argue that the impact
of the use of views as a device for query-definition has not
been fully understood as yet.

Consider the most basic setting: a query Q is defined via

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

a sequence of nested view definitions. We wish to know
if a top-level atom of Q is redundant. Can we do this ef-
ficiently? As another example, two queries Q and Q′ are
defined via a set of nested view definitions. How can we
determine whether Q is equivalent to Q′? We emphasize
here that we use standard view definitions by conjunctive
queries and unions of conjunctive queries. Query contain-
ment and equivalence analysis has numerous applications,
including query optimization, the checking of integrity con-
straints [14], and independence-checking for updates [20].

Of course, view definitions are a macro facility, and like
any such they add no expressiveness: in the case of the
view definitions above, the queries can be expanded into
traditional unions of conjunctive queries, and the standard
results and algorithms can be applied. However, this expan-
sion blows-up the size of the queries – doubly-exponentially,
as we will demonstrate. Hence the naive application of query
containment and minimization procedures is infeasible. Is
there a cleverer way to do analysis on views without expan-
sion?

In this paper, we examine the question in-depth. The con-
tainment question over queries built from chains of views is
exactly the same as containment problem for the well-known
language nonrecursive Datalog. Containment for full Data-
log – that is, the corresponding language using recursive
definitions — has been extensively studied in the literature.
Shmueli [23] showed that containment (and hence equiva-
lence) of Datalog is undecidable. [3, 2] isolated subclasses
which are decidable, focusing on restricting the form of re-
cursion used. Chaudhuri and Vardi [7] give an extensive
study of the containment of Datalog queries in nonrecursive
Datalog queries, showing in particular that the problem is
decidable. They also show that it is 2ExpTime-hard even
to decide containment of a Datalog query within a union
of conjunctive queries. The lower-bound does not apply to
the nonrecursive case (and indeed, we will show that the
problem is less complex). Chaudhuri and Vardi also show
that for restricted classes the containment and equivalence
problems can become simpler [6] – however, the restrictions
considered do not subsume the nonrecursive case, and the
lower-bounds of [6] make heavy use of recursion.

Surprisingly, the complexity of containment for nonrecur-
sive Datalog has to our knowledge never been explicitly stud-
ied. It is known that evaluation of nonrecursive Datalog is
PSPACE-complete [25], and this easily implies a PSPACE
lower bound for the containment problem, as well as imply-
ing upper bounds in some special cases.

The main contribution of this paper is to isolate the ex-

297

act complexity of nonrecursive Datalog containment. We
show in Section 3 (Theorem 3) that the problem is complete
for co-NEXPTIME. We then isolate the source of the com-
plexity. In Section 4 we show that the complexity remains
similarly high even when drastic restrictions are made on
the input schema or in the right-hand “containing” query.
In Section 5 we isolate some subcases with lower complexity,
focusing on restrictions in the left-hand “contained” query.
We show that the source of complexity lies in the nesting
of sharing (multiple occurrences of the same predicate in a
rule body) and disjunction in the left-hand query. Section 6
gives related work, while Section 7 gives a summary of our
results, along with conclusions.

Our work can be seen as an analysis of the complexity
of containment as the height of a chain of view definitions
grows. It should be noted that current manually-written
queries typically would not employ deep hierarchies of nested
view definitions. However, in the setting of data integration
systems it is natural to build these kinds of hierarchies, and
we expect to see more of these as integration systems become
more widespread. Our results indicate that the complexity
of query containment becomes super-exponential as height
increases, unless limitations on sharing or disjunction are
imposed.

2. BACKGROUND
Datalog. An atom over a relational signature S is an

expression R(x1 . . . xn) where R is an n-ary predicate of S
and the xi are either variables or constants. A pure atom is
one in which all xi are variables.

A Datalog query consists of:

• A relational signature S along with a collection of con-
stants C

• a set of rules of the form φ → A, where φ is a con-
junction of atoms over S, and A is an atom over S.
A is the head of the rule and φ is the body of the
rule. We will often identify φ with the set of atomic
formulas in it, writing A1(~x1), . . . , An(~xn) instead of
A1(~x1) ∧ . . . ∧ An(~xn). A variable that occurs in the
head of rule r is a free variable of r. Other variables
are bound in r; we write bvars(r) for the bound vari-
ables of r. We require that every free variable occurs
in the body.

• A distinguished predicate P of S which occurs in the
head of a rule, referred to as the goal predicate.

The relational symbols that do not occur in the head of
any rule are the input predicates, while the others are in-
tensional predicates. A predicate P immediately depends
on another predicate P ′ if there is a rule that has P in the
head and P ′ in the body. A Datalog query is nonrecursive
if this relation is acyclic. We let NRDL denote the language
of nonrecursive Datalog queries.

Pure vs. Impure Queries. We say that an NRDL query
is pure if all atoms in the heads of rules with nonempty
bodies are pure, and is impure otherwise. Equivalently im-
pure NRDL can be seen as the language of queries over
view definitions where a definition can contain equalities be-
tween variables in the view predicate and constants. Impure
NRDL is a more succinct language than pure NRDL, and
this has impact on the complexity of many computational

problems. For example, the complexity of NRDL satisfia-
bility is PSPACE-complete in the impure case, since it can
be reduced to evaluation, while satisfiability for pure NRDL
queries admits of a simple syntactic check.

We believe that all the results of this paper hold for both
the pure and impure case, and certainly for lower bounds
it is clear that proving them for the pure case is sufficient.
However, for brevity all the results we state here will be for
the pure case only. In particular, we will assume pure queries
in the definition of the semantics and Unf below, which will
be a considerable convenience.

Note that in pure queries, constants can still appear in
rule bodies. However constants play little role in the com-
plexity of containment for pure queries. Containment ques-
tions for pure NRDL queries with constants can generally be
reduced to the corresponding questions for NRDL without
any constants, by replacing each constant c in Q or Q′ by a
unary predicate IsC(x); one can enforce that distinct con-
stant symbols represent distinct values by adding a rule to
Q′ stating that IsC(x), IsD(x)→ Goal.

Semantics. For a NRDL query, we can define the rank
of an intensional predicate P (with respect to the query,
although we omit the argument), denoted Rk(P), as follows:
the rank of an input predicate is 0, the rank of an intensional
predicate P is
max{Rk(P ′) + 1: there is a rule with P ′ in the body and P
in the head}.

Given a structure D interpreting the input predicates, an
NRDL query Q, and a predicate P of Q, we define the evalu-
ation of P in D, denoted P (D), by induction on Rk(P). For
P an input predicate P (D) is the interpretation of P in D.
For P an intensional predicate of Rk k + 1 and arity l.

• Let Dk be the expansion of D with P ′(D) for all in-
tensional P ′ of rank at most k.

• If r is a rule with P (x1 . . . xl) in the head, ~w the bound
variables of r, and φ(~x, ~w) the body of r let Pr(D) be
defined by:

{~c ∈ Dom(D)l : (Dk, x1 7→ c1 . . . xl 7→ cl) |= ∃~w φ}

We let P (D) denote the union of Pr(D) over all r with P
in the head. Finally, the result of a query Q on D is the
evaluation of the goal predicate of Q on D. We will often
assume Goal is nullary, in which case the result of the query
on D is the boolean true iff Goal holds in D. All of our
complexity upper bounds are stated for boolean evaluation,
but they can be restated in terms of membership in a non-
boolean result.

Unfoldings. Let positive existential first-order logic (∃+FO)
be the fragment of predicate logic built up from atoms using
input predicates via ∧,∨ and existential quantification.

A conjunctive query is a ∃+FO query of the form
∃x1 . . .∃xnφ, where φ does not contain ∨ or ∃. A union of
conjunctive queries (or UCQ) is a disjunction of conjunctive
queries. We take the empty disjunction and the empty ∃+FO
query to denote (by convention) the query always evaluating
to false.

We give an alternative semantics of NRDL queries Q via
translation to ∃+FO. The translation simply expands/inlines
each intensional predicate iteratively (we use the term “un-
folding” below).

To start with a simple example, consider the following
nonrecursive Datalog program Q whose input predicates are

298

B and D and whose intensional predicates are R and G:

R(x, y) ∧ R(y, z) → G(x, z)
B(x′, y′, u) → R(y′, x′)
D(x′′, y′′) → R(x′′, y′′)

The unfolding Unf(G(x, z)), Q) of predicate G in Q is then
the following ∃+FO query with free variables x and z:

∃y(((∃uB(y, x, u)) ∨ D(x, y)) ∧ ((∃uB(z, y, u)) ∨ D(y, z))).

As mentioned previously, we give the formal definition of
Unf only in the case where all atoms are pure, leaving the
extension to the general case (i.e. with constants) to the
reader. We will also assume that rules use distinct variables:
this will prevent capture of free variables in the unfolding
process below.

If P (~x) and P (~y) are atoms with the same predicate, we let
σ : ~y 7→ ~x indicate that σ is a bijection mapping the variable
in the ith place of P (~y) to the variable in the ith place of
P (~x), where i ≤ arity(P). Given a first-order logic formula
φ whose free variables overlap with ~y, and σ a mapping as
above, we let σ(φ) be the formula obtained by replacing a
variable yi in ~y with σ(yi). The unfolding of an atom P (~x)
with respect to a NRDL query Q, denoted Unf(P (~x), Q) is
defined by induction on rk(P):

• if P is an input predicate, Unf(P (~x), Q) = P (~x);

• if P is intentional, then Unf(P (~x), Q) =

_
r : rulewith headP (~y)
σ:~y 7→~x,~w=bvars(r)

0@∃~w ^
P ′(~u)∈body(r)

σ(Unf(P ′(~u), Q))

1A .

One can easily verify by induction on rank that Unf(P (~x), Q)
is a ∃+FO formula with exactly ~x free.

We can now state our alternative way to give the seman-
tics of an NRDL query via unfoldings (the proof is immediate
from the definitions):

A NRDL query Q is true in a model D iff Unf(Goal, Q), is
true in D, where Goal is the goal predicate and Unf(Goal, Q)
is evaluated under the usual semantics of ∃+FO.

Containment. A query Q is contained in another query
Q′ if on any input the result of Q is contained in the result
of Q′. Let NRDLCon denote the problem:

Input: two nonrecursive boolean Datalog queries Q,Q′

Output: true iff Q is contained in Q′

The containment problem was first studied by Chandra
and Merlin [5] for conjunctive queries. Their results were
extended to unions of conjunctive queries by Sagiv and Yan-
nakakis [22]. These prior results are summarized by the fol-
lowing result:

Theorem 1. There is an NP algorithm for deciding con-
tainment of UCQ’s, while the problem of containment is NP-
hard even for conjunctive queries.

The results make use of the canonical database (DB) of
a conjunctive query: the database whose elements are the
variables of x, such that for every input relation R in Q, R

holds of ~x iff R(~x) is an atom of Q; i.e. the query seen as
a database. By a canonical database of a UCQ, we mean
a canonical DB of one of its disjuncts. Then the NP upper
bound of [22] follows from the following: Q is contained in
Q′ iff Q′ holds true on every canonical database of Q.

We can extend the notation to say that a canonical db
of an NRDL query is any a canonical db of its unfolding
as a UCQ. The result above still applies. Unfortunately,
applying the unfolding mapping followed by a conversion
of ∃+FO to UCQ, and then applying the technique above,
would lead to a doubly-exponential blow-up.

Example 1. Consider the following family of queries, taken
from [1]. Let A and B be unary predicates and R a binary
predicate. Consider the query asking whether there is a path
in the interpretation of R consisting of 2n nodes, with each
node satisfying A ∨ B. One can write this using an NRDL
query of size O(n), as follows:

A(x)→ N(x)
B(x)→ N(x)
N(x), N(y), R(x, y)→ P1(x, y)

For each 1 ≤ i ≤ n− 1 the rules:
Pi(x,w1), Pi(w1, y)→ Pi+1(x, y)

Pn(x, y)→ Goal
Checking equivalence of queries such as these could clearly

not be done feasibly via unfolding.

The following result shows that this can not be avoided
(see also [1]):

Proposition 2. There are NRDL queries Qn : n ∈ N of
size O(n) such that any sequence of UCQ’s Q′n : n ∈ N with
Q′i equivalent to Qi must have size doubly-exponential in n.

Proof: Consider any UCQ equivalent to the query in Ex-
ample 1. Each disjunct Di consists of a collection of exis-
tentially quantified variables ~x followed by a conjunction Ci.
Note that for any simple path p of size 2n there is a model
that has an isomorphic copy of that path, and no other path
of this size. For every such path p, let Dp be the disjunct
that is satisfied in the corresponding model. We can see that
no two paths can map to the same disjunct, and hence there
must be doubly exponentially many disjuncts.

3. THE COMPLEXITY OF CONTAINMENT
The doubly-exponential succinctness of NRDL with re-

spect to unions of conjunctive queries suggests that con-
tainment could be significantly harder than the NP-bound
one has for UCQ’s. The goal of this section is to prove that
it is indeed hard, although not 2EXPTIME as would be
obtained via naively unfolding and applying the worst-case
bounds for UCQ containment.

Theorem 3. NRDLCon is co-NEXPTIME-complete

We outline the proof here, leaving some details for the
appendix. We start with membership in co-NEXPTIME. We
note that Unf is an EXPTIME function converting a non-
recursive Datalog query into an equivalent formula in ∃+FO.
Thus we have an EXPTIME function that reduces NRDLCon
to the problem: given a ∃+FO query Q and a NRDL query
Q′, is Q contained in Q′.

299

We will need the well-known fact (see, e.g. [9]): the com-
bined complexity of evaluating an NRDL query on a finite
structure is in PSPACE.

Membership in co-NEXPTIME will follow from combining
the exponential time unfolding function, applied to Q only,
with the algorithm produced by the following lemma:

Lemma 4. There is a non-deterministic algorithm that
take as input ∃+FO query Q and NRDL query Q′ and re-
turns true iff Q is not contained in Q′, whose running time

is P (|Q|, 2|Q
′|) for P a polynomial.

Proof: In polynomial time in Q we can convert the ∃+FO
formula Q to the form ∃x1 . . . xnφ, for some n where φ is
quantifier-free.

We first note that if containment fails, then there is a
D satisfying Q ∧ ¬Q′ whose size (in number of tuples) is
bounded by n. Indeed, we claim that for any such D, there
is a submodel D0 of this size: we let d1 . . . dn be such that
D, d1 . . . dn |= φ and let D0 be the submodel of D induced
by d1 . . . dn.

Our non-deterministic machine first guesses a D0 of size at
most n, and also guesses a homomorphism h from x1 . . . xn
onto elements of D0. It then verifies that h is a homomor-
phism for Q into D0, which can be done in polynomial time,
and then verifies that D does not satisfy Q′ in space poly-
nomial in Q′ (hence in EXPTIME in |Q′|), using the result
on evaluation mentioned above.

This completes the proof of the lemma and thus the proof
of membership in co-NEXPTIME.

We now turn to the more difficult direction, showing hard-
ness.

All of our co-NEXPTIME-hardness results will follow via
reduction from the Exponential Tiling Problem. An instance
I of this problem is of the form (n, r,H, V,w) where n and
r are numbers (in unary), H,V are subsets of [1, r] × [1, r]
and w is a sequence of n numbers each in the range [1, r].
Intuitively, we are specifying that we desire a [0, 2n − 1] ×
[0, 2n − 1] corridor, where each cell is tiled with one of r
tiles. w represents a constraint on the initial part of the first
row, H is a constraint on any two tiles that are horizontally
adjacent, while V is a constraint on vertically-adjacent tiles.

A solution for I is a function F from [0, 2n−1]× [0, 2n−1]
to [1, r] such that F (i, 1) = w(i) for each i ≤ n, (F (i, j), F (i+
1, j)) ∈ H for i ≤ 2n − 2 and (F (i, j), F (i, j + 1)) ∈ V for
i ≤ 2n − 2. We will often refer to [0, 2n − 1]× [0, 2n − 1] as
a corridor, with the pairs in it being cells. A cell consists of
two co-ordinates, and any function on a corridor is a tiling.
Exponential Tiling (ExpTile) is the problem:

Input: I as above.
Output: True iff I has a solution.

It is known to be complete for co-NEXPTIME (see, e.g.,
Section 3.2 of [17]). It is easy to see that it remains complete
if we restrict H,V and their complements to be non-empty,
and we will generally assume this in the constructions in the
paper.

We will often abuse notation below by referring to 2n as
both a number (as above) and the space of functions from
n into {0, 1}. Given a function f from n into {0, 1}, we let
Bin(f) be the corresponding number in [0, 2n − 1].

Our proofs will be polynomial time reductions from ExpTile
to the complement of NRDLCon. That is, given I we form

queries QI and Q′I such that I is a tiling iff there is a
database satisfying QI ∧ ¬Q′I .

In the basic construction, the input signature common to
QI and Q′I consists of:

• unary predicates 0i, 1i for i ≤ n. Informally, these
represent the ith bit of a coordinate in [0, 2n − 1]. For
example, an element x with 01(x), . . . 0n(x) represents
the co-ordinate 0, an x with 11(x), 02(x), . . . 0n(x) rep-
resents the co-ordinate 1, while an x with 11(x), . . . 1n(x)
represents the coordinate 2n − 1.

• binary predicates TiledByi for i ≤ r; TiledByi(x, y) will
be used to indicate that the cell with co-ordinates x, y
is tiled by tile i.

QI will have intensional predicates:

• binary predicates Eqi for i ≤ n

• binary predicates TiledAboveColi for i ≤ n and unary
predicate RowTiled

• unary predicates TiledAboveRowi for i ≤ n and nullary
predicate AllTiled

• 0-ary predicate Goal, which will be the goal predicate.

The role of QI is to assert the existence of tiles for the
whole corridor, ignoring all constraints. The predicate Eqi
will represent equality on the first i bits. The predicate
TiledAboveColi(x0, y0) will say that for y-coordinate y0 there
are tiled cells with coordinates (x, y0) for every x value that
agrees with x0 on the first i − 1 bits: that is, for the row
corresponding to y0, every column extending the first i − 1
bits of x0 is tiled. In particular TiledAboveCol1 will say that
the entire row for y0 is tiled. Using TiledAboveCol1 we will
define TiledAboveRowi(y0), which will assert that for every
y′ whose value agrees with y0 on the first i− 1 bits, the row
with y-co-ordinate y′ is fully tiled.

Formally, the rules for QI are divided into the following
sets of rules:

1. (Equality)

01(x), 01(y)→ Eq1(x, y)
11(x), 11(y)→ Eq1(x, y)

For 1 ≤ i ≤ n− 1 the rules:
Eqi(x, y), 0i+1(x), 0i+1(y)→ Eqi+1(x, y)
Eqi(x, y), 1i+1(x), 1i+1(y)→ Eqi+1(x, y)

2. (AllTiledRow)

For j, k ≤ r the rules:
TiledByj(x1, y),TiledByk(x2, y),Eqn−1(x, x1),Eqn−1(x, x2),
1n(x1), 0n(x2)→ TiledAboveColn(x, y)

For j, k ≤ r and 2 ≤ i ≤ n the rules:
Eqi−1(x, x1),Eqi−1(x, x2),
TiledAboveColi(x1, y),TiledAboveColi(x2, y),
1i(x1), 0i(x2)→ TiledAboveColi−1(x, y)

TiledAboveCol1(x, y)→ RowTiled(y)

3. (AllTiled)

Eqn−1(y, y1),Eqn−1(y, y2), 1n(y1), 0n(y2),
RowTiled(y1),RowTiled(y2)→ TiledAboveRown(y)

300

For each 2 ≤ i ≤ n, the rules:
Eqi−1(y, y1),Eqi−1(y, y2), 1i(y1), 0i(y2),
TiledAboveRowi(y1),TiledAboveRowi(y2)
→ TiledAboveColi−1(y)

TiledAboveRow1(y)→ AllTiled

AllTiled→ Goal

Q′I is designed so that it fails exactly when one of the con-
straints on the tiles does not hold. Its intensional predicates
are:

• binary predicates Succi,Eqi for i ≤ n. Eqi is the i-bit
equality as before, while Succi states that the first i
bits are in the successor relation, (hence Succn will be
the usual successor, which corresponds to the coding
of integers in strings we use here).

• nullary predicate Goal, which will be the goal predi-
cate.

The rules for Q′I include the (Equality) rules as in QI , and
also:

1. (ValuesDisjoint)

For each i ≤ n the rule:
0i(x), 1i(x)→ Goal

2. (Successor)

01(x), 11(y)→ Succ1(x, y)

For each 2 ≤ i ≤ n, the rules:
11(x), . . . , 1i−1(x), 0i(x), 01(y), . . . , 0i−1(y), 1i(y)
→ Succi(x, y)
Succi−1(x, y), 1i(x), 1i(y)→ Succi(x, y)
Succi−1(x, y), 0i(x), 0i(y)→ Succi(x, y)

3. (TileConsistency)

For each i 6= j ≤ r, we have the rule:
Eqn(x, x′),Eqn(y, y′),TiledByi(x, y),TiledByj(x

′, y′)→
Goal

4. (TileCompatibility)

For each (i, j) 6∈ V we have a rule:
Succn(y, y′),TiledByi(x, y),TiledByj(x, y

′)→ Goal

and for each (i, j) 6∈ H we have a rule:
Succn(x, x′),TiledByi(x, y),TiledByj(x

′, y)→ Goal

5. (InitialTile)

For each j ≤ n, let fj ∈ 2n be such that Bin(fj) = j
and let k be a number in [1, r] other than w(j) (recall
that w(1) . . . w(n) is part of the ExpTile instance I).
Then we have the rule:
01(y), . . . 0n(y), A1(x), . . . , An(x),TiledByk(x, y)→ Goal

where predicate Ai is 0i if fj(i) = 0 and 1i if fj(i) = 1.

We show in the appendix that the mapping from I to
QI , Q

′
I given above is a polynomial time reduction from

ExpTile to the complement of NRDLCon, which proves The-
orem 3.

4. THE PERSISTENCE OF HARDNESS
We now ask whether simplifications to the queries might

allow hardness to dissipate.
Our previous construction used input schemas of arbitrary

arity. We now show that the problem remains hard even for
fixed input schema.

Theorem 5. There is a fixed input signature, such that
NRDLCon restricted to this signature remains co-NEXPTIME-
hard. For hardness the intensional predicates can be re-
stricted to be binary.

Proof Sketch. The same proof technique is used as in
Theorem 3, but now with fixed signature consisting of predi-
cates: 1(i), 0(i),NumSucc(i, j),BitSet(x, i, b),TiledBy(x, y, i).

Think of the domain as consisting of co-ordinates (which
will represent exponentially-sized numbers) and “small” (poly-
sized) numbers. Using 1 and NumSucc, we will be able
to define the “small” numbers 1 . . .max(n, r) using inten-
sional predicates. The predicate BitSet(x, i, b) will relate a
co-ordinate x, a small number i and b that is either 0 or 1:
intuitively, it states that the ith bit of x is b. TiledBy(x, y, i)
will indicate that the cell with co-ordinates (x, y) is tiled by
tile i, where i is again a small number. Details are in the
appendix.

The next result states that hardness still holds when we
restrict the input signature to be monadic (all predicates
have arity at most 1).

Theorem 6. NRDLCon restricted to signatures for Q in
which input predicates are monadic is co-NEXPTIME-complete.

Proof Sketch. The input predicates are now:

• 0x
i(x), 1x

i(x), 0y
i(x), 1y

i(x) for i ≤ n

• TiledByi(x) for every i ≤ r

Here the variation on the idea of Theorem 3 is quite sim-
ple. In Theorem 3 the elements of the domain of a model
were co-ordinates, and a cell was represented by a pair of do-
main elements. Here domain elements will represent cells.
Each cell will be associated with predicates 0x

i(x), 1x
i(x) de-

scribing the ith bit of the x coordinate of the cell, while the
predicates 0y

i(x), 1y
i(x) describe the ith bit of the y coordi-

nate. The details are given in the appendix.
An obvious question is whether the complexity of contain-

ment is due to the use of iterated view definitions in Q, or
Q′, or both. Towards resolving this, we show that the prob-
lem is still just as hard when Q′ is restricted to be merely a
union of conjunctive queries. The proof is in the appendix.

Theorem 7. The following problem is co-NEXPTIME-hard:
given Q an NRDL query and Q′ a ∃+FO query, determine
whether Q is contained in Q′. Hardness holds even when Q′

is a conjunctive query.

The previous results show that restricting the right-hand
side does not help matters. Some restrictions on the left-
hand side query do not help either – for example, restricting
Q to have only monadic intensional predicates. The follow-
ing is proven in the appendix:

Theorem 8. NRDLCon restricted to signatures for Q in
which all intensional predicates are monadic is co-NEXPTIME-
complete.

301

5. REDUCING THE COMPLEXITY
In contrast to our previous results, we demonstrate one

way of reducing the complexity of containment – by restrict-
ing the shape of Q.

Recall again the doubly-exponential succinctness of NRDL
queries with respect to UCQ’s (Proposition 2). This is caused
by combining two different exponential blow-ups. The use
of sharing, due to repetition of literals in rules blows up the
size of individual canonical dbs of Q. The use of nesting of
disjunctions and conjunctions in Q, as in ∃+FO, allows there
to be exponentially many canonical databases. We examine
limiting these features to lower the complexity below.

5.1 Restricting sharing in Q

A simple argument shows that containment is in PSPACE
when the NRDL query Q is linear – i.e. every rule contains
at most one intensional atom.

We start with the following:

Theorem 9. NRDLCon restricted to signatures for Q in
which all intensional predicates are linear is PSPACE-complete.

Proof: PSPACE-hardness follows easily from the fact that
NRDL-evaluation is PSPACE-hard [25]. We show member-
ship in PSPACE. It suffices to show that there is a polyno-
mial P such that this containment fails iff there is a database
D of size P (|Q|) that witnesses the failure, since (again by
[25]) we can test whether Q ∧ ¬Q′ holds on D in PSPACE.

This follows immediately from the following simple propo-
sition and the corresponding small property for ∃+FO:

Proposition 10. There is a polynomial time function P
that takes a linear NRDL query Q and an atom P (~x) and
produces the unfolding Unf(P (~x), Q).

A variation of the above argument shows:

Theorem 11. The problem of determining if Q ⊆ Q′

where Q and Q′ are linear is Πp
2-complete. Hardness holds

even when Q′ is a conjunctive query.

Proof: To see membership in Πp
2, note again that if there is

a counterexample to containment for such queries, then it
can be taken to be of size polynomial in Q. Thus we have
to check every possible counterexample, and then evaluate
Q′ on it. Each individual test can be done in NP, since by
the same argument we need only guess polynomially many
witnesses (in |Q′|) to check. The hardness follows from the
result of [22] (see also [1]) that membership of a ∃+FO query
in a CQ is Πp

2-hard.

5.2 Restricting the use of disjunction in Q

We now examine what happens when the use of disjunc-
tion in Q is restricted.

The conjunctive NRDL queries (denoted ∧NRDL) are those
in which every intensional predicate appears in the head of
at most one rule. The unfolding of such a query is a single
conjunctive query. The following proposition is not difficult:

Proposition 12. The problem of determining, given a
∧NRDL query Q and an arbitrary NRDL Q′, whether or not
Q is contained in Q′, is PSPACE-complete.

Proof: Membership in PSPACE follows because the un-
folding of Q (considered as a single canonical db) can be
produced by a PSPACE-transducer, which can be composed

with the PSPACE algorithm for evaluation of Q′. PSPACE-
hardness follows from the PSPACE-hardness of NRDL eval-
uation.

A variation of the argument above shows that by simul-
taneously restricting disjunction in Q and sharing in Q′, we
get down to the complexity of classical conjunctive query
containment:

Proposition 13. The problem of determining, given a
∧NRDL query Q and a linear NRDL Q′ is NP-complete, and
it is NP-hard even when Q′ is a conjunctive query.

Proof: We can unfold Q′ to ∃+FO using Proposition
10. Membership in NP follows because every element of
the canonical db can be represented in polynomial space;
thus for any ∃+FO Q′ we can guess a polynomial space rep-
resentation of at most |Q′| elements of the canonical db, a
conjunctive query in the flattening of Q′, and a homomor-
phism of the conjunctive query to these elements. To check
that a mapping is a homomorphism into the canonical db
can be done efficiently, since it requires only looking at the
part of the db containing the paths to those elements.

NP-hardness follows because this subsumes containment
of conjunctive queries.

Pragmatics of ∧NRDL containment. Let us look at
the case where the left-hand side is in ∧NRDL in more detail.
We know it is in PSPACE, and hence in principle reducible in
polynomial time to the PSPACE-complete problem of NRDL
evaluation. We now give an explicit linear-time reduction.
Although this does not improve the worst-case bound, we
believe it will be useful in practice. It allows us to reduce
containment in this case to evaluation of an NRDL program,
for which there are many optimisation techniques available
(e.g. magic set and Query/Subquery transformations).

Let Q be a ∧NRDL query. Let k be the rank of Q, and
assume that each rule uses a distinct set of variable names.
An element of the unique canonical db of Unf(Q) consists
of a sequence of pairs (r1, v1), . . . (rj , vj) for j ≤ k where
vi is a variable of rule ri and ri is associated with a head
predicate contained in rule ri−1 for i > 1. A vector of such
sequences s1 . . . sk satisfies input predicate A(s1 . . . sk) in
the canonical db if there are variables v1 . . . vk with vi in si

and A(v1 . . . vk) occurs in some rule.
Of course, the canonical db is big, and thus we can not

produce it in its entirety efficiently. But we can efficiently
produce an NRDL program that in turn produces the canon-
ical db:

Claim 14. There is a linear-time program v that takes as
input an ∧NRDL program Q with input predicates R1 . . . Rj
and forms an impure NRDL program Q∗ over the empty in-
put signature, which has distinguished intensional predicates
CanonR of arity m ·k for every input predicate R of arity m
in Q (for some k linear in the size of Q), with the following
property: Q∗ will produce relations CanonR1 , . . . CanonRn

isomorphic to the interpretation of R1 . . . Rn in the canoni-
cal database of Q.

The idea is to just “invert the rules of Q”. Officially, we
work inductively top-down on Q. As an example consider
the program with rules:
R1 : R(x, z), R(z, y), T (z, z)→ Q(x, y)
R2 : S(u,w), S(w, v)→ R(u, v)
R3 : S(r, s), S(s, t)→ T (r, s)

302

We first generate a rule that creates the canonical db for
the program consisting only of R1, with R and T considered
as input predicates. This will have rules:
→ CanonR(cx, cz),→ CanonR(cz, cy), and→ CanonT (cz, cz)
Here CanonR, CanonT are intensional predicates and cx, cz, cy

are constants.
Continuing top-down to incorporate rule R2, we generate

two rules:
CanonR(u, v)→ CanonS(c[, c[, u, u, v, cw)
CanonR(u, v)→ CanonS(u, v, cw, c[, c[, u)

Here c[is a constant. Informally, this says that the canon-
ical db now interprets S by pairs of triples (i.e. a 6-tuple).
These triples are formed from any names u and v in the
canonical db’s interpretation for R; we create triples by
padding u and v by a new constant c[(e.g. the triple c[, c[, u
is the padding of u), and also triples formed from u and v
by appending a new constant cw.

Continuing to rule R3, we create the rules:
CanonT (r, s)→ CanonS(c[, c[, r, c[, c[, s)
CanonT (r, s)→ CanonS(c[, c[, s, r, s, ct)

One can verify that this program produces a CanonS that
is isomorphic to the interpretation of S in the canonical db
of the NRDL query Q(x, y). The general procedure requires
additional case distinctions, mostly related to padding pred-
icates that occur at different levels.

Note that this program makes heavy use of constants in
the head, and that it introduces disjunction. The procedure
is used to show the following:

Theorem 15. Given ∧NRDL Q and NRDL Q′ we can
produce in linear time an impure input-free NRDL boolean
query Prod(Q∗, Q′) such that Prod(Q∗, Q′) evaluates to true
iff Q is contained in Q′.

The theorem is proven by unioning the rules of the pro-
gram Q∗ produced by the claim above for Q with the mod-
ification of Q′ which we now describe. Let k be such that
an atomic predicate A of arity m in in the original signa-
ture corresponds to an intensional predicate CanonA of arity
m · k (such a k is linear in the depth of Q). Replace every
free or bound variable x in Q′ by a vector of k variables ~x,
and every input predicate A(x, y) of Q′ by the intensional
predicate CanonA(~x, ~y). The correctness of this construc-
tion follows from Claim 14 above, along with the fact that
Q is contained in Q′ iff Q′ evaluates to true on the canonical
db of Q.

5.3 Fixing parameters in the problem
We now look at another method to gain tractability, fix-

ing one of the parameters of the problem. We have seen
that fixing the input signature is not sufficient to decrease
complexity. We thus consider fixing either Q or Q′.

If Q is fixed, then Q can be taken to be a UCQ. By the
homomorphism theorem of Chandra and Merlin [5], contain-
ment of Q in Q′ reduces to evaluation of Q′ on every canon-
ical database of Q. Since the number of canonical databases
is fixed with Q, we have a reduction to the evaluation prob-
lem of NRDL, which is known to be in PSPACE [25]. On the
other hand, the problem of evaluating an NRDL program on
a fixed model is known to be PSPACE-hard [25]. Using this
we see that:

Proposition 16. For any fixed NRDL Q, the problem of
determining whether or not Q is contained in NRDL Q′ is in

PSPACE. There are NRDL queries Q such that the problem
is PSPACE-hard.

We now turn to the situations where the target query Q′

is fixed. We show the following:

Theorem 17. For any fixed NRDL query Q′, the problem
of checking whether or not NRDL Q is contained in Q′ is
PSPACE-complete.

In the appendix we explain an alternating polynomial
time algorithm that searches for a counterexample canon-
ical db of Q satisfying ¬Q′. This could be implemented
deterministically using a stack-based algorithm, where the
stack contains guesses for the rules generating the currently-
examined portion of the witness canonical db.

6. RELATED WORK
As mentioned in Section 2, work on the query contain-

ment problem began with the seminal paper of Chandra
and Merlin [5] for conjunctive queries. The homomorphism
technique introduced there was extended to unions of con-
junctive queries by Sagiv and Yannakakis [22], yielding the
same complexity bound. Later work analyzed the complex-
ity for richer languages, including extensions of unions of
conjunctive queries with inequalities [18], safe negation [24,
19], and regular expressions [11]. More recent work has
looked at containment and equivalence for queries involving
even more advanced features of SQL, including nesting [16]
and aggregation [8]. But view definitions are not addressed
in any of these works.

The impact of recursive view definitions on containment
has received considerable attention. After Shmueli’s initial
undecidability result for Datalog equivalence [23], Bonatti
et. al. [3] and Calvanese et. al [2] traced the borderline of
decidability. Chaudhuri and Vardi [6, 7] studied the rela-
tionship of recursive and nonrecursive Datalog extensively.
However, none of their results gives a tight bound in the
nonrecursive case. Similarly Dong and Su [10] consider con-
tainment problems in a setting that generalizes the one here,
considering more complex view definitions (admitting re-
cursion) as well as restrictions on predicates via constraints.
Due to the increased power of the formalism, they show that
the most general case of containment is undecidable. They
isolate collections of constraints that admit lower complex-
ity, but restrictions on the view definitions are not explored.

Oddly, even in very exhaustive surveys of the complexity
of logic programming [9] the complexity of equivalence and
containment for nonrecursive Datalog is not touched upon.

7. SUMMARY AND CONCLUSIONS
In this paper, we have given the first full analysis of the

complexity of the most basic query language with simple
view definitions – nonrecursive Datalog. The table below
gives a picture of the main results (i.e. excluding our re-
sults for fixed input signature and for monadic queries). In
the table Arb stands for arbitrary signature for intensional
predicates, Lin stands for linear rules, Fixed stands for fixed
signature (not necessarily monadic) for intensional predi-
cates, and CQ means that we restrict the query to be a
conjunctive query. The “reference” column points to the
result that proves completeness. Note that the PSPACE re-
sult for arbitrary NRDL Q and fixed Q′ implies a polynomial

303

time bound when we restrict further – so we omit the last
three rows of the table. Two results have no reference: the
upper bound in (1) follows since evaluation of linear NRDL
is in NP. The lower bound follows since this still subsumes
conjunctive query containment. In (2) the lower bound fol-
lows since the query complexity of CQ’s is NP-hard, while
the upper follows as in (1).

Q Q′ complexity reference
Arb Arb co-NEXPTIME Thm 3
Lin Arb PSPACE Thm 9
∧NRDL Arb PSPACE Prop 12

CQ Arb PSPACE Derivable from [25]
Fixed Arb PSPACE Derivable from [25]
Arb Lin co-NEXPTIME Thm 7
Lin Lin Πp

2 Thm 11
∧NRDL Lin NP Prop 13

CQ Lin NP See note (1)
Fixed Lin NP See note (2)
Arb CQ co-NEXPTIME Thm 7
Lin CQ Πp

2 Thm 11
∧NRDL CQ NP Prop 13

CQ CQ NP [5]
Fixed CQ NP [5]
Arb Fixed PSPACE Thm 17

Table 1: Complexity of Containment

We intend to revisit several applications of nonrecursive
Datalog in the data integration literature in light of our re-
sults. For example, [21] makes use of a variant of NRDL
containment in tackling questions on querying with materi-
alized views. It would be interesting to compare our results
with the much lower complexity bounds of [21] (e.g. The-
orem 3.2) to understand the distinction between the two
scenarios.

In the case of ∧NRDL Q and “small” Q′, we believe the
algorithms we provide here – although PSPACE in the worst
case – show promise. In particular the ∧NRDL algorithms
can be implemented via standard Datalog evaluators. Al-
though the worst-case bounds that we establish here for the
general problem are daunting, we are investigating heuris-
tics that exhibit low complexity in common cases, and that
could be shown complete for restricted classes of queries.
One particularly interesting direction is to devise a general-
ization of acyclic queries to the context of NRDL that implies
tractability of the containment problem (for the evaluation
problem, requiring acyclicity in each local rule is sufficient
to achieve tractability [12]).

8. REFERENCES
[1] M. Benedikt, G. Puppis, and H. Vuy. Positive Higher

Order Queries. In PODS, 2010. To appear.

[2] P. A. Bonatti. On the decidability of containment of
recursive datalog queries. In PODS, 2004.

[3] D. Calvanese, G. De Giacomo, and M. Y. Vardi.
Decidable containment of recursive queries. Theor.
Comput. Sci., 336(1):33–56, 2005.

[4] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y.
Vardi. View-based query containment. In PODS, 2003.

[5] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In STOC, 1977.

[6] S. Chaudhuri and M. Y. Vardi. On the complexity of
equivalence between recursive and nonrecursive
Datalog programs. In PODS, 1994.

[7] S. Chaudhuri and M. Y. Vardi. On the equivalence of
recursive and nonrecursive Datalog programs. JCSS,
54(1):61–78, 1997.

[8] S. Cohen, W. Nutt, and Y. Sagiv. Deciding
equivalences among conjunctive aggregate queries. J.
ACM, 54(2):5, 2007.

[9] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and Expressive Power of Logic
Programming. ACM Comp. Sur., 33(3):374–425, Sept.
2001.

[10] G. Dong and J. Su. Conjunctive query containment
with respect to views and constraints. Inf. Process.
Lett., 57(2):95–102, 1996.

[11] D. Florescu, A. Levy, and D. Suciu. Query
containment for conjunctive queries with regular
expressions. In PODS, 1998.

[12] J. Flum, M. Frick, and M. Grohe. “Query Evaluation
via Tree-Decompositions”. Journal of the ACM,
49(6):716–752, 2002.

[13] G. Gottlob and C. Papadimitriou. On the complexity
of single-rule datalog queries. Inf. Comput., 183(1),
2003.

[14] A. Gupta, Y. Sagiv, J. D. Ullman, and J. Widom.
Constraint checking with partial information. In
PODS, 1994.

[15] A. Y. Halevy. Answering queries using views: A
survey. The VLDB Journal, 10(4):270–294, 2001.

[16] T. S. Jayram, P. G. Kolaitis, and E. Vee. The
containment problem for real conjunctive queries with
inequalities. In PODS, 2006.

[17] D. S. Johnson. A catalog of complexity classes. In
Handbook of Theor. Comp. Sci. MIT Press, 1990.

[18] A. Klug. On Conjunctive Queries Containing
Inequalities. Journal of the ACM, 35(1):146–160, Jan.
1988.

[19] G. Lausen and F. Wei. On the containment of
conjunctive queries. In Computer Science in
Perspective, 2003.

[20] A. Y. Levy and Y. Sagiv. Queries independent of
updates. In VLDB, 1993.

[21] T. Millstein, A. Halevy, and M. Friedman. Query
containment for data integration systems. JCSS,
66(1):20–39, 2003.

[22] Y. Sagiv and M. Yannakakis. Equivalences among
relational expressions with the union and difference
operators. JACM, 27(4):633–655, 1980.

[23] O. Shmueli. Equivalence of datalog queries is
undecidable. J. Log. Program., 15(3):231–241, 1993.

[24] J. D. Ullman. Information integration using logical
views. In ICDT, 1997.

[25] S. Vorobyov and A. Voronkov. Complexity of
nonrecursive logic programs with complex values. In
PODS, 1998.

304

9. APPENDIX

9.1 Proof of Theorem 3
We refer to the construction of QI , Q

′
I from an ExpTile

instance I given in the body of the paper. Clearly the func-
tion giving the reduction in the previous subsection can be
implemented in polynomial time. We show that QI is not
contained in Q′I iff I is a yes instance of ExpTile.

Suppose that F is a solution to the tiling problem I. It is
easy to construct a D that satisfies QI ∧ ¬Q′I :

• Let the elements of 2n be the domain of the model.

• Let 0i(f) hold if f(i) = 0 and 1i(f) hold if f(i) = 1

• Let TiledByi(f, g) hold iff F (f, g) = i

It is easy to verify that the rules of QI hold and that Q′I
does not hold.

Suppose now that D is a database that satisfies QI ∧¬Q′I .
We show how to construct a tiling from D.

Let Indexed(D) be the set of x ∈ D such that for each
i ≤ n either 0i(x) holds or 1i(x) holds.

Note that it is clear that: no x can satisfy both 1i(x) and
0i(x), by Rule (ValuesDisjoint). Let Hom(x) associate each
x ∈ Indexed(D) with the unique function f in 2n such that
1i(x) holds iff f(i) = 1.

For f, g ∈ 2n, let f ≡i g mean that f(j) = g(j) for all
j ∈ [1, i]. We now note the following:

Claim 18. Let Eqi be the intensional predicate in either
Q or Q′. For any x, y ∈ Indexed(D) Eqi(x, y) holds iff
Hom(x) ≡i Hom(y).

The proof of the claim is a straightforward induction, us-
ing Rules (Equality) in Q and Q′. It follows from the claim
that ∀x, y ∈ Indexed(D) Eq1(x, y)↔ Hom(x) = Hom(y).

Let TiledPair(D) be the set of x, y ∈ Indexed(D) such that
TiledByj(x, y) holds for some j.

Let DomTiling(D) be the function mapping
(x, y) ∈ TiledPair(D) to the unique j such that TiledByj(x, y)
holds.

By rule (TileConsistency) and Claim 18, we see not only
is there a unique such j (i.e. the function above is well-
defined), but that: if Hom(x) = Hom(x′), Hom(y) = Hom(y′)
and TiledByj(x, y) holds, then we cannot have TiledByk(x′, y′)
holding for any k 6= j. Thus DomTiling depends only on the
image of each element in the pair under H.

We now claim:

Claim 19. For every f, g ∈ 2n, there are x, y ∈ TiledPair(D)
with Hom(x) = f,Hom(y) = g

To prove Claim 19, we prove by downward induction on
i ≤ n that for every x, y satisfying TiledAboveColi(x, y) for
every f ∈ 2n such that f ≡i−1 Hom(x) there is some x′ with
Hom(x′) = f and (x′, y) ∈ TiledPair(D).

We first show the base case i = n. If TiledAboveColn(x, y)
holds, this can only be derived from the first set of rules in
Ruleset (AllTiledRow). This asserts the existence of x1 and
x2 such that:

• (x1, y), (x2, y) ∈ TiledPair(D),

• Eqn−1(x, x1),Eqn−1(x, x2),

• Hom(x1) has nth bit 0 and Hom(x1) has nth bit 1.

The desired conclusion now follows using Claim 18. For
the inductive step, we note that if TiledAboveColi(x, y) holds,
it must follow from application of a rule in the second set in
(AllTiledRow). Hence there are x1 and x2 such that:

• Eqi−1(x, x1),Eqi−1(x, x2),

• TiledAboveColi(x1, y),TiledAboveColi(x2, y),

• Hom(x1) has ith bit 0 and Hom(x2) has ith bit 1.

By Claim 18 x1, x2 ≡i−1 x. If f ∈ 2n with f ≡i−1

Hom(x), then f ≡i Hom(x1) or f ≡i Hom(x2). Hence the
conclusion follows by induction.

From the above lemma it follows, using the last rule of
Rules (AllTiledRow), that for every x satisfying ColumnTiled
(y) and for every f ∈ 2n there is some x with Hom(x) = f
and (x, y) ∈ TiledPair(D).

We now prove by downward induction on i that for every
y satisfying TiledAboveRowi, for every f ∈ 2n such that
f ≡i Hom(y) there is some y′ with Hom(y′) = f ′ and such
that RowTiled(y) holds.

The base case for i = n follows from the first rule in
(AllTiled), while the inductive case follows from the second
set of rules in Ruleset (AllTiled).

Now, using the final rule in (AllTiled) and the two facts
above, we see that:

If predicate AllTiled holds in a database D, then the con-
clusion of Claim 19 holds. But D was assumed to satisfy
goal predicate Goal of query Q, and thus AllTiled must hold.

This completes the proof of Claim 19
From Claim 19 it follows that the function H maps the

domain of the function DomTiling onto 2n. Thus we can
define a function CellTiling(D) that maps a pair (f, g) ∈ 2n×
2n to the unique TiledByj such that there is are (x, y) with
Hom(x) = f,Hom(y) = g and DomTiling(x, y) = TiledByj .

We next claim:

Claim 20. The relation Succn(x, y) holds in D iff
Bin(Hom(y)) is the successor of Bin(Hom(y)).

Proof: For f ∈ 2n and i ≤ n let �i (f) be the restriction
of f to [1, i], seen as a string.

We show by induction that for i ≤ n Succi(x, y) holds in
D iff Bin(�i (Hom(y))) is the successor of Bin(�i (Hom(x))).

For i = 1 this is clear from the first rule in Ruleset
(Successor). For the induction step, we see from the sec-
ond set of rules in Ruleset (Successor) that Succi(x, y) holds
in D iff one of the following holds:

• x = 1i−1.0 and y = 0i−1.1. Clearly in this case y is the
successor of x.

• Succi−1(x, y), and the (i)th bits are the same. We con-
clude that y is a successor of x via induction and the
rules of addition.

It is likewise easy to show by induction that if the first i bits
of Hom(y) are the binary successor of the corresponding bits
of Hom(x), then the antecedent of one of the above rules
must hold, and hence Succi(x, y) holds in D.

We now claim that CellTiling(D) is a tiling.
The fact that the vertical and horizontal constraints are

satisfied follows immediately from Rules (TileCompatibility),
given Claim 20. The fact that the initial tiles are respected
follows from Rules (InitialTile).

305

9.2 Proof of Theorem 5
Recall the statement of the result: There is a fixed input

signature, such that NRDLCon restricted to this signature
remains co-NEXPTIME-hard. For hardness the intensional
predicates can be restricted to be binary.

For convenience we will give the proof with a signature
including a ternary predicate. The extension where all pred-
icates are binary is straightforward.

Again fix I to be an instance of the exponential tiling
problem. Recall that our input signature will contain pred-
icates:

1(x), 0(x),NumSucc(x, y),BitSet(x, y, z),TiledBy(x, y, z).
Note that, as promised, the signature is now independent

of the instance I. The intensional predicates for QI will be
as before, but will also include predicates

• IsNumi(x) for every i ≤ n
• 0i(x), 1i(x) for every i ≤ n
• TiledByi(x, y) for every i ≤ r
The idea will be that IsNumi is true of elements that play

the role of number i. Predicates TiledByi, 0i, 1i will be forced
to have the same role as the input predicates with those
names in the proof of Theorem 3.

This will be achieved by having the following rules in QI :

• (NumberDefinition)

1(x)→ IsNum1(x)
NumSucc(x, y), IsNumi(y)→ IsNumi+1(x)

• (BitSettingPredicates)

BitSet(x, y, z), IsNumi(y), 0(z)→ 0i(x)
BitSet(x, y, z), IsNumi(y), 1(z)→ 1i(x)

• (TilingPredicates)

TiledBy(x, y, z), IsNumi(z)→ TiledByi(x, y)

In addition, QI will contain the rules from Theorem 3,
with intensional predicates TiledByi, 0i, 1i replacing the ex-
tensional predicates.
Q′I will have the rules above and also those from Theorem

3.
The reader can easily verify that the mapping from I to

QI , Q
′
I is a polynomial time reduction.

9.3 Proof of Theorem 6
Recall the statement: NRDLCon restricted to signatures

forQ in which input predicates are monadic is co-NEXPTIME-
complete.
QI will have intensional predicates:

• binary predicates Eqxi,Eqyi for i ≤ n
• binary predicates TiledAboveColi for i ≤ n and unary

predicate RowTiled

• unary predicates TiledAboveRowi for i ≤ n and nullary
predicate AllTiled

• 0-ary predicate Goal, which will be the goal predicate.

We give the rules for QI , using c, c′, c1, c2, . . . as variables,
in order to suggest cells rather than co-ordinates:

1. (Equality)

0x
1(c), 0x

1(c′)→ Eqx1(c, c′)
1x

1(c), 1x
1(c′)→ Eqx1(c, c′)

0y
1(c), 0y

1(c′)→ Eqy1(c, c′)
1y

1(c), 1y
1(c′)→ Eqy1(c, c′)

For 1 ≤ i ≤ n− 1 the rules:

Eqxi(c, c
′), 0x

i+1(c), 0x
i+1(c′)→ Eqxi+1(c, c′)

Eqxi(c, c
′), 1x

i+1(c), 1x
i+1(c′)→ Eqxi+1(c, c′)

Eqyi(c, c
′), 0y

i+1(c), 0y
i+1(c′)→ Eqyi+1(c, c′)

Eqyi(c, c
′), 1y

i+1(c), 1y
i+1(c′)→ Eqyi+1(c, c′)

2. (AllTiledRow)

For j, k ≤ r the rules:

TiledByj(c1),TiledByk(c2),Eqyn(c, c1),Eqxn−1(c, c1),
Eqyn(c, c2),Eqxn−1(c, c2), 1x

n(c1), 0x
n(c2)

→ TiledAboveColn(c)

For j, k ≤ r and 2 ≤ i ≤ n the rules:

Eqyn(c, c1),Eqyn(c, c2),
Eqxi−1(c, c1),Eqxi−1(c, c2),
TiledAboveColi(c1),TiledAboveColi(c2),
1x
i(c1), 0x

i(c2)→ TiledAboveColi−1(c)

TiledAboveCol1(c)→ RowTiled(c)

3. (AllTiled)

Eqyn−1(c, c1),Eqyn−1(c, c2), 1y
n(c1), 0y

n(c2),
RowTiled(c1),RowTiled(c2)→ TiledAboveRown(c)

For each 2 ≤ i ≤ n, the rules:

Eqyi−1(c, c1),Eqyi−1(c, c2), 1y
i(c1), 0y

i(c2),
TiledAboveRowi(c1),TiledAboveRowi(c2)
→ TiledAboveRowi−1(c)

TiledAboveRow1(x)→ AllTiled

AllTiled () → Goal

Q′I will have intensional predicates:

• binary predicates Succxi,Eqxi, Succyi,Eqyi for i ≤ n
• nullary predicate Goal, which will be the goal predicate.

The rules for Q′I are modified in a similar way:

1. (ValuesDisjoint)

For each i ≤ n the rule:

0x
i(c), 1

x
i(c)→ Goal

0y
i(c), 1

y
i(c)→ Goal

2. (Successor)

The rules (Equality) as in QI , and in addition rules for
Succxi and Succyi that are copies of the (Successor) for
Succi in Theorem 3.

3. (TileConsistency)

For each i 6= j ≤ r, we have the rule:

Eqxn(c, c′),Eqyn(c, c′),TiledByi(c),TiledByj(c
′)→ Goal

4. (TileCompatibility)

For each (i, j) 6∈ H we have a rule:

Succxn(c, c′),Eqxn(c, c′),TiledByi(c),TiledByj(c
′)→ Goal

and for each (i, j) 6∈ V we have a rule

Succyn(c, c′),Eqyn(c, c′),TiledByi(c),TiledByj(c
′)→ Goal

5. (InitialTile)

For each j ≤ n, let fj ∈ 2n be such that Bin(fj) = j
and let k be any element ≤ r other than w(j). Then
we have the rule:

0y
1(c) . . . 0y

n(c), A1(c), . . . , An(c),TiledByk(c)→ Goal

where predicate Ai is 0x
i if fj(i) = 0 and 1y

i if fj(i) = 1

The correctness of the reduction now follows that of The-
orem 3.

306

9.4 Proof of Theorem 7
Recall the statement:
The following problem is co-NEXPTIME-hard: given Q

an NRDL query and Q′ a ∃+FO query, determine whether
Q is contained in Q′. Hardness holds even when Q′ is a
conjunctive query.

We will give the proof only in the case where Q′ is a UCQ;
the extension to eliminate disjunction uses the same idea
that is demonstrated below – coding the results of complex
boolean formulas using additional “boolean arguments” to
predicates; the extension is left to the reader.

We first show why the problem is hard in the case where
Q′ is a conjunction of UCQs. In this case we can reduce from
ExpTile using exactly the same signature as in Theorem 3.
For this argument to hold, we need Q′I to have as atoms the
predicates Eqi for i ≤ n defining equality on the first n bits.
These do not require views per se, rather each Eqi(x, y) can
be defined as a UCQ over the input predicates in the obvious
way ((01(x) ∧ 01(y)) ∨ . . .) leading to the conclusion above.

We now show how to modify the proof when Q′ is a UCQ.
We use the idea of “coding boolean operations in the in-

put”, also exploited in [13, 25]. As mentioned in Section 2,
we do make use of constants in this argument, but they can
be eliminated by making use of predicates, as described in
Section 2.

Again we will be coding an ExpTile instance I. We use
the input signature of Theorem 3, but with the following
modifications:

• We add ternary input predicates And and Or to the
input signature.

• We modify the prior input bit predicates by adding an
additional argument, so we now have 0j(x, t), 1j(x, t).

The tiling predicates TiledByi(x, y) for i ≤ r are left as
they are, with no additional argument.

We modify QI from Theorem 3 as follows:

• replacing all occurrences of Eqi(x, y) with Eqi(x, y, 1),
0j(x) with 0j(x, 1), and 1j(x) with 1j(x, 1).

• adding atomic facts for the truth table of And and Or.
That is, we add

And(1, 1, 1),And(0, 1, 0),And(1, 0, 0)
Or(0, 1, 1),Or(1, 0, 1),Or(0, 0, 0)

to the antecedent of the Goal predicate in QI .

Let And(x1, . . . xn, vn) abbreviate:
And(x1, x2, v1) ∧ And(v1, x3, v2) . . . ∧ And(vn−1, xn, vn)
and similarly for Or(x1 . . . xn, vn).

We modify the construction of Q′I as follows.
Let the rule (PseudoSuccessor) be formed from (Successor)

in the proof of Theorem 3, but replacing every atom Eqi(x, y)
with the sequence of atoms Eq′i(x, y, 1) described below.
Eq′i(x, y, v) has distinguished variables x, y, v and abbrevi-
ates:
01(x, s1), 01(y, s′1), 11(x, t1), 11(y, t′1), . . . ,
0i(x, si), 0i(y, s

′
i), 1i(x, ti), 0i(y, t

′
i),

And(s1, s
′
1, s
′′
1),And(t1, t

′
1, t
′′
1),Or(s′′1 , t

′′
1 , s
′′′
1), . . . ,

And(si, s
′
i, s
′′
i),And(ti, t

′
i, t
′′
i),Or(s′′i , t

′′
i , s
′′′
i),

Or(s′′′1 , . . . , s
′′′
i , v)

Q′I will also contain variants of the rules (InitialTile) and
(ValuesDisjoint), with the predicates 0i, 1i modified to in-
clude the additional argument, as in QI .

The argument for correctness is as follows.

If we have a tiling, then we can turn it into a model of
QI ∧¬Q′I in the obvious way, by letting 0i(x, 1) hold iff the
ith bit of x is 0 and similarly for 1, and letting Eqi(x, y, 1)
hold iff x and y agree on the first i bits. The tiling predicate
TiledByi(x, y) holds iff the cell with co-ordinates (x, y) is
tiled with tile i.

We now consider the other direction. If we have a model
of QI ∧ ¬Q′I , then we wish to construct a tiling.

Let (TrueSuccessor) be the modification of the (Successor)
where the predicates 0i, 1i are modified for the new signa-
ture. This is the rule that we would have liked to express in
Q′I , but could not do directly since Q′I could not make use
of view definitions.

We can proceed as in Theorem 3, provided that we know
that (TrueSuccessor) fails in the model.

If the rule for (TrueSuccessor) fired, then we would have
(PseudoSuccessor) holding, using the truth tables for And, Or
in QI to compute witnesses for the intermediate variables.
Thus the model satisfies Q′I , a contradiction.

We do not know if hardness holds for Q′ a CQ and Q an
NRDL query without constants at all.

9.5 Proof of Theorem 8
Recall the statement of the theorem:
NRDLCon restricted to signatures for Q in which all inten-

sional predicates are monadic is co-NEXPTIME-complete.
We will reduce to the exponential tiling problem as before.

The input signature has binary predicates 0i(x, y), 1i(x, y)
for i ≤ n and unary predicates TiledByi(x) for i ≤ r;

Intuitively the models of Q ∧ ¬Q′ will represent a node-
and edge-labeled tree where the edges are labeled by 0 and
1 while the leaves only are labeled with a color i < r. Q
will enforce that the depth of the tree is at most 2n and will
enforce that the graph contains forward paths with all com-
binations of edge labels (i.e. all binary sequences of length
2n). A leaf node will represent a tiled element, with the first
n edges in the path from the root to the leaf representing the
x coordinate of the element, the next n edges representing
the y coordinate. Q′ will enforce that the graph is a tree, by
forbidding cyclic paths, and will also ensure a correct tiling.
Q will have unary intensional predicates Ui, Vi for i ≤ n,

and will have rules:
Vn(x)→ Goal
0(x, y), Vi−1(y), 1(x, z), Vi−1(z)→ Vi(x) for 1 ≤ i ≤ n
Un(x)→ V0(x)
0(x, y), Ui−1(y), 1(x, z), Ui−1(z)→ Ui(x) for 1 ≤ i ≤ n
Tiledi(x)→ U0(x) for i ≤ r.
Q′ contains axioms whose negation will guarantee that:

• there is no nontrivial path – an upward path followed by
a downward path, where the first downward edge does
not match the last upward edge in label – of length at
most 2n from a node to itself.

• there is no non-leaf node that satisfies a tiling predicate.

• there are no downward paths of size above 2n.

• there cannot be two paths of size 2n with the same edge
labels leading to leaves with different tilings.

These rules can be easily encoded in NRDL.
Now it remains forQ′ to contain a family of axioms (Successor)

whose negation enforces that adjacent cells are tiled cor-
rectly. We explain how this works for vertically adjacent
pairs below. Using the fourth axiom above, it suffices to as-
sert that we cannot have an intermediate node v at depth n

307

which has two downward paths p, p′ from it where the edge
labels of p′ are the successor of the edge labels of p, where
p and p′ lead to leaves with incompatible tiles. So we will
have a rule:

DepthGten(x),Extends(y1, x),Extends(y2, x),
Succy(y1, y2, x),Tiledi(y1),Tiledj(y2)→ Goal

for every incompatible pair of tiles i and j, where the first
four predicates in the body are intensional, and are defined
so as to guarantee the following:

• DepthGten(x) will state that x is at least n from the
root.

• Extends(z, x) will state that there is a downward path
from x to z.

• Succy(y1, y2, x) will state that the last n edges leading
from x to y1 form a successor of those leading from x
to y2.

All of these are coded straightforwardly in NRDL.
The case for horizontally adjacent nodes is slightly more

complicated, since we cannot fix a single stem, but is han-
dled similarly.

9.6 Proof of Theorem 17
Recall the result:
For any fixed NRDL query Q′, the problem of checking

whether or not NRDL Q is contained in Q′ is PSPACE-
complete.

We first give the lower bound. Given any NRDL boolean
query Q and input database D for Q we can construct in
polynomial time a NRDL query Q∗ such that Q is true on
D iff Q∗ is contained in Q′ the empty query – that is, Q
is true on D iff Q∗ is unsatisfiable. Q∗ has an intensional
predicate R∗ for every input predicate R of Q, and constants
for all elements of D. It contains a copy of every rule of Q,
modified so that input predicates R are replaced by R∗ and
the goal predicate of Q is replaced by a new predicate Goal−.
It also contains a rule Goal−, build1 . . . buildn → Goal, where
buildi are atoms R∗(c1...cn) for every atom R(c1 . . . cn) in
D. That is, we build a copy of D in intensional predicates,
and then assert that Q holds on this copy. This shows that
the containment problem for fixed Q′ is at least as hard
as the complexity of NRDL evaluation for fixed D. But
the query complexity of NRDL evaluation is known to be
PSPACE-complete [25].

We now turn to the upper bound. For simplicity, we take
Q′ to be a CQ here, leaving the UCQ extension to the reader.
We can normalize Q so that it has at most two atoms in
each body, which are either both intensional or both input
predicates. For U an intensional predicate of Q, and Q′ any
other conjunctive query, a U,Q′ subgoal is any conjunction
of atoms C from Q′ along with a mapping h from a subset of
the variables of C to either free variables of U or constants
of Q. A U,Q′ subgoal family is a finite set of U -subgoals
(Ci, hi) : i ≤ n. Note that if Q′ is fixed the collection of
possible Ci’s is fixed, along with the number of domains
for the mappings hi. Hence the number of possible hi’s is
at most |Q|j for some j, and therefore the maximal size of
a U,Q′ subgoal family is polynomial in the size of Q. A
U,Q′ subgoal family is said to be omittable if there is a
canonical db D for U in which no hi cannot be extended to
a homomorphism of Ci onto D.

We create an alternating PTIME algorithm that takes as
input the program Q, intensional predicate U of Q, and a

U,Q′ subgoal family and determines whether it is omittable.
This can then be applied to the subgoal family consisting of
one subgoal, the full query Q′ and h the empty mapping
onto the goal predicate of Q.

Given U,Q′ subgoal family (Ci, hi) : i ≤ n, the algo-
rithm guesses a rule U(~x) → B1(~x, ~y), B2(~x, ~y) of Q. If
B1 and B2 are input predicates, the algorithm just checks
that each hi(Ci) is not satisfied in the canonical db given
by B1(~x, ~y), B2(~x, ~y). If B1 and B2 are intensional, then
the algorithm considers any pair h′, f where h′ extends h
by mapping additional variables in C to elements of ~x ∪
~y ∪ (constants of Q), and f assigns each atom in C to one
of B1(~x, ~y), B2(~x, ~y). Let D1 be the B1, Q

′ subgoal whose
query consists of all atoms that f assigns to B1 and whose
mapping is h′. Let D2 be similarly defined for B2. Then
the algorithm chooses one of the two subgoals D1 and D2.
Let F1 be all the subgoals that are chosen for B1 during this
process, and F2 be defined similarly for B2. The algorithm
recurses on the two B1, Q

′ subgoal family F1 and the B2

subgoal family F2. The fact that the algorithm returns true
iff the subgoal is omittable follows easily by induction on
the rank of Q′.

Acknowledgements. The authors wish to thank Huy
Vu for invaluable help and corrections on earlier drafts of
the paper. Michael Benedikt is affiliated with the Oxford
University Computing Laboratory. Benedikt is supported
in part by EPSRC EP/G004021/1 (the Engineering and
Physical Sciences Research Council, UK). Georg Gottlob is
affiliated with the Oxford University Computing Labora-
tory and the Oxford Man Institute of Quantitative Finance.
Gottlob’s work was supported by the European Research
Council under the European Communitys Seventh Frame-
work Programme (FP7/2007- 2013)/ERC grant no. 246858
DIADEM. G. Gottlob currently holds of a Royal Society
Wolfson Research Merit Award.

308

