
MRShare: Sharing Across Multiple Queries in MapReduce

Tomasz Nykiel
University of Toronto

tnykiel@cs.toronto.edu

Michalis Potamias ∗

Boston University

mp@cs.bu.edu

Chaitanya Mishra †

Facebook
cmishra@facebook.com

George Kollios ∗

Boston University

gkollios@cs.bu.edu

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

ABSTRACT
Large-scale data analysis lies in the core of modern enter-
prises and scientific research. With the emergence of cloud
computing, the use of an analytical query processing in-
frastructure (e.g., Amazon EC2) can be directly mapped
to monetary value. MapReduce has been a popular frame-
work in the context of cloud computing, designed to serve
long running queries (jobs) which can be processed in batch
mode. Taking into account that different jobs often perform
similar work, there are many opportunities for sharing. In
principle, sharing similar work reduces the overall amount of
work, which can lead to reducing monetary charges incurred
while utilizing the processing infrastructure. In this paper
we propose a sharing framework tailored to MapReduce.

Our framework, MRShare, transforms a batch of queries
into a new batch that will be executed more efficiently, by
merging jobs into groups and evaluating each group as a
single query. Based on our cost model for MapReduce, we
define an optimization problem and we provide a solution
that derives the optimal grouping of queries. Experiments
in our prototype, built on top of Hadoop, demonstrate the
overall effectiveness of our approach and substantial savings.

1. INTRODUCTION
Present-day enterprise success often relies on analyzing

expansive volumes of data. Even small companies invest
effort and money in collecting and analyzing terabytes of
data, in order to gain a competitive edge. Recently, Amazon
Webservices deployed the Elastic Compute Cloud (EC2) [1],
which is offered as a commodity, in exchange for money.
EC2 enables third-parties to perform their analytical queries
on massive datasets, abstracting the complexity entailed in
building and maintaining computer clusters.

Analytical queries are usually long running tasks, suitable

∗G. Kollios and M. Potamias were partially supported by
NSF grant CT-ISG-0831281.
†C. Mishra conducted this work at University of Toronto.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

for batch execution. In batch execution mode, we can avoid
redundant computations by sharing work among queries and
save on total execution time. Therefore, as has been argued
recently [16], it is imperative to apply ideas from multiple
query optimization (MQO) [12, 21, 25] to analytical queries
in the cloud. For EC2 users, reducing the execution time
is directly translated to monetary savings. Furthermore, re-
ducing energy consumption in data centers is a problem that
has recently attracted increased interest [4]. Therefore, in
this paper, we apply MQO ideas to MapReduce, the preva-
lent computational paradigm in the cloud.

MapReduce [11] serves as a platform for a considerable
amount of massive data analysis. Besides, cloud computing
has already turned MapReduce computation into commod-
ity, e.g., with EC2’s Elastic MapReduce. The MapReduce
paradigm has been widely adopted, mainly because it ab-
stracts away parallelism concerns and is very scalable. The
wide scale of MapReduce’s adoption for specific analytical
tasks, can also be credited to Hadoop [3], a popular open
source implementation. Yet, MapReduce does not readily
provide the high level primitives that have led SQL and re-
lational database systems to their success.

MapReduce logic is incorporated in several novel data
analysis systems [5, 8, 10, 13, 14, 19, 22, 24]. Beyond doubt,
high level language abstractions enable the underlying sys-
tem to perform automatic optimization [16]. Along these
lines, recently developed systems on top of Hadoop, such as
Hive [22] and Pig [14], speak HiveQL [22], an SQL-like lan-
guage, and Pig Latin [17], a dataflow language, respectively.
They allow programmers to code using high level language
abstractions, so that their programs can afterwards be com-
piled into MapReduce jobs. Already, standard optimiza-
tions, such as filter pushdown, are implemented in Pig [14,
16]. Pig also implements a number of work sharing opti-
mizations using MQO ideas. However, these optimizations
are usually not automatic; the programmer needs to specify
the details of sharing among multiple jobs [14].

We present MRShare, a novel sharing framework, which en-
ables automatic and principled work-sharing in MapReduce.
In particular, we describe a module, which merges MapRe-
duce jobs coming from different queries, in order to avoid
performing redundant work and, ultimately, save processing
time and money. To that end, we propose a cost model for
MapReduce, independent of the MapReduce platform. Us-
ing the cost model, we define an optimization problem to
find the optimal grouping of a set of queries and solve it,
using dynamic programming. We demonstrate that signifi-
cant savings are possible using our Hadoop based prototype

494

on representative MapReduce jobs.
We summarize our contributions:

1. We discuss sharing opportunities (Section 2), define
formally the problem of work-sharing in MapReduce,
and propose MRShare, a platform independent sharing
framework.

2. We propose a simple MapReduce cost-model (Section
3) and we validate it experimentally.

3. We show that finding the optimal groups of queries
(merged into single queries) according to our cost model
is NP-hard. Thus, we relax the optimization problem
and solve it efficiently (Section 4).

4. We implement MRShare on top of Hadoop (Section 5)
and present an extensive experimental analysis demon-
strating the effectiveness of our techniques (Section 6).

2. BACKGROUND
In this section, we review MapReduce and discuss sharing

opportunities in the MapReduce pipeline.

2.1 MapReduce Preliminaries
A MapReduce job consists of two stages. The map stage

processes input key/value pairs (tuples), and produces a new
list of key/value pairs for each pair. The reduce stage per-
forms group-by according to the intermediate key, and pro-
duces a final key/value pair per group. In brief, the stages
perform the following transformation to their input (see Ap-
pendix A for examples):

map(K1, V1)→ list(K2, V2)

reduce(K2, list(V2))→ (K3, V3)

The computation is distributed across a cluster of hosts,
with a designated coordinator, and the remaining slave ma-
chines. Map-Reduce engines utilize a distributed file system
(DFS), instantiated at the nodes of the cluster, for storing
the input and the output. The coordinator partitions the
input data Ii of job Ji into m physical input splits, where m
depends on the user-defined split size. Every input split is
processed as a map task by a slave machine.
Map tasks: A slave assigned a map task processes its cor-
responding input split by reading and parsing the data into
a set of input key/value pairs (K1, V1). Then, it applies the
user-defined map function to produce a new set of key/value
pairs (K2, V2). Next, the set of keys produced by map tasks
is partitioned into a user-defined number of r partitions.
Reduce tasks: A slave assigned a reduce task copies the
parts of the map output that refer to its partition. Once
all outputs are copied, sorting is conducted to co-locate oc-
currences of each key K2. Then, the user-defined reduce
function is invoked for each group (K2, list(V2)), and the
resulting output pairs (K3, V3) are stored in the DFS.

For ease of presentation, we will encode map and reduce
functions of job Ji in the form of map and reduce pipelines:

mappingi : Ii → (Ki1, Vi1)→ mapi → (Ki2, Vi2) (1)

reducingi : (Ki2, list(Vi2))→ reducei → (Ki3, Vi3) (2)

Note also that there are interesting MapReduce jobs, such
as joins, that read multiple inputs and/or have multiple
map pipelines. In this paper, we consider only single-input
MapReduce jobs. We do not consider reducing locally with
combiners. However, our techniques can be modified to han-
dle scenarios with combiners.

2.2 Sharing Opportunities
We can now describe how several jobs can be processed as

a single job in the MRShare framework, by merging their map
and reduce tasks. We identify several non-trivial sharing op-
portunities. These opportunities have also been exploited in
Pig [14]. For simplicity, we will use two jobs, Ji and Jj ,
for our presentation. Further details, together with exam-
ples can be found in Appendix B. We consider the following
sharing opportunities:

Sharing Scans. To share scans, the input to both mapping
pipelines for Ji and Jj must be the same. In addition, we
assume that the key/value pairs are of the same type. This
is a typical assumption in MapReduce settings [14]. Given
that, we can merge the two pipelines into a single pipeline
and scan the input data only once. Thus, the map tasks
invoke the user-defined map functions for both merged jobs:

mappingij : I → (Kij1, Vij1)→ mapi → tag(i) + (Ki2, Vi2)

mapj → tag(j) + (Kj2, Vj2)

Note that the combined pipeline mappingij , produces two
streams of output tuples. In order to distinguish the streams
at the reducer stage, each tuple is tagged with a tag() part,
indicating its origin. So at the reducer side, the original
pipelines are no longer of the form of Equation 2. Instead,
they are merged into one pipeline.

reducingij :
tag(i)+(Ki2,list(Vi2))→reducei→(Ki3,Vi3)
tag(j)+(Kj2,list(Vj2))→reducej→(Kj3,Vj3)

To distinguish between the tuples originating from two
different jobs, we use a tagging technique, which enables
evaluating multiple jobs within a single job. The details are
deferred to Section 5.

Sharing Map Output. Assume now, that in addition to
sharing scans, the map output key and value types are the
same for both jobs Ji and Jj (i.e. (Ki2, Vi2) ≡ (Kj2, Vj2)).
In that case, the map output streams for Ji and Jj can also
be shared. The shared map pipeline is described as follows:

mappingij : I → (Kij1, Vij1) →
mapi

mapj

→ tag(i) + tag(j) + (Kij2, Vij2)

Here, mapi and mapj are applied to each input tuple.
Then, the map output tuples coming only from mapi are
tagged with tag(i) only. If a map output tuple was produced
from an input tuple by both mapi and mapj , it is tagged
by tag(i)+ tag(j). Hence, any overlapping parts of the map
output will be shared. Producing a smaller map output
results to savings on sorting and copying intermediate data
over the network.

At the reduce side, the grouping is based on Kij2. Each
group contains tuples belonging to both jobs, with each tu-
ple possibly belonging to one or both jobs. The reduce stage
needs to dispatch the tuples and push them to the appro-
priate reduce function, based on tag.

reducingij : tag(i) + tag(j) + (Kij2, list(Vij2))→
reducei→(Ki3,Vi3)
reducej→(Kj3,Vj3)

Sharing Map Functions. Sometimes the map functions
are identical and thus they can be executed once. At the end
of the map stage two streams are produced, each tagged with
its job tag. If the map output is shared, then only one stream
needs to be generated. Even if only some filters are common

495

in both jobs, it is possible to share parts of map functions.
Details and examples can be found in the appendix.
Discussion. Among the identified sharing opportunities,
sharing scans and sharing map-output yield I/O savings. On
the other hand, sharing map functions, and parts of map
functions additionally yield CPU savings. The I/O costs,
which are due to reading, sorting, copying, etc., are usually
dominant, and thus, in the remainder of this paper, we con-
centrate on the I/O sharing opportunities. Nevertheless, we
believe that sharing expensive predicates (i.e., parts of map
functions) is a promising direction for future work.

3. A COST MODEL FOR MapReduce
In this section, we introduce a simple cost model for MapRe-

duce, based on the assumption that the execution time is
dominated by I/O operations. We emphasize that our cost
model is based on Hadoop but it can be easily adjusted to
the original MapReduce [11].

3.1 Cost without Grouping
Assume that we have a batch of n MapReduce jobs, J =

{J1, . . . , Jn}, that read from the same input file F . Recall
that a MapReduce job is processed as m map tasks and r
reduce tasks1. For a given job Ji, let |Mi| be the average
output size of a map task, measured in pages, and |Ri| be
the average input size of a reduce task. The size of the
intermediate data Di of job Ji is |Di| = |Mi| ·m = |Ri| · r.

We also define some system parameters. Let Cr be the
cost of reading/writing data remotely, Cl be the cost of read-
ing/writing data locally, and Ct be the cost of transferring
data from one node to another. All costs are measured in
seconds per page. The sort buffer size is B + 1 pages.

The total cost of executing the set of the n individual jobs
is the sum of the cost Tread to read the data, the cost Tsort

to do the sorting and copying at the map and reduce nodes,
and the cost Ttr of transferring data between nodes2. Thus,
the cost in Hadoop is:

T (J) = Tread(J) + Tsort(J) + Ttr(J) (3)

where:
Tread(J) = Cr · n · |F | (4)

Tsort(J) = Cl · Σn
i=1(|Di|2(dlogB |Di| − logB me+ dlogB me)) (5)

Ttr(J) = Σ
n
i=1Ct · |Di| (6)

In the case that no sorting is performed at the map tasks
[11], we consider a slightly different cost function for sorting:

Tsort(J) = Cl · Σn
i=1|Di| · 2 · (dlogB |Di|+ logBm− logBre) (7)

Since we implemented MRShare in Hadoop, for the remain-
der of this paper, we use Equation 6 to calculate the sorting
cost. However, all our algorithms can be adjusted to handle
the sorting cost (Equation 7) of the original MapReduce [11].
See Appendix C for further details of the cost model.

3.2 Cost with Grouping
Another way to execute J is to create a single group G

that contains all n jobs and execute it as a single job JG.
However, as we show next, this may not be always beneficial.

1We assume that all jobs use the same m, r parameters, since
m depends on the input size, and r is usually set based on the
cluster size.
2We omit the cost of writing the final output, since it is the same
for grouping and non-grouping scenarios.

Let |Xm| be the average size of the combined output of
map tasks, and |Xr| be the average input size of the com-
bined reduce tasks of job JG. The size of the intermediate
data is |XG| = |Xm| ·m = |Xr| · r. Reasoning as previously:

Tread(JG) = Cr · |F |
Tsort(JG) = Cl · |XG| · 2(dlogB |XG| − logB me+ dlogB me)
Ttr(JG) = Ct · |XG|
T (JG) = Tread(JG) + Tsort(JG) + Ttr(JG) (8)

We can determine if sharing is beneficial by comparing
Equation 3 with 8. Let pi = dlogB |Di|− logB me+dlogB me
be the original number of sorting passes for job Ji. Let
pG = dlogB |XG| − logB me + dlogB me be the number of
passes for job JG. Let Jj be the constituent job with the
largest intermediate data size |Dj |. Then, pj is the number
of passes it takes to sort Dj . No other original job takes

more than pj passes. We know that d |XG|
|Dj | e ≤ n. Then pG is

bounded from above by dlogB(n·|Dj |)−logB me+dlogB me.
Now, if n ≤ B, dlogB |Dj | − logB m + logBne+ dlogB me is
at most pj + 1. pG is clearly bounded from below by pj .
Hence, after merging all n jobs, the number of sorting passes
is either equal to pj or increases by 1.

We write pG = pj + δG, where δG = {0, 1}. Let di =
|Di|/|F |, di be the map-output-ratio of the map stage of
job Ji, and xG = |XG|/|F | be the map-output-ratio of the
merged map stage. The map-output-ratio is the ratio be-
tween the average map output size and the input size. Unlike
selectivity in relational operators, this ratio can be greater
than one since in MapReduce the map stage can perform
arbitrary operations on the input and produce even larger
output.

Let g = Ct/Cl and f = Cr/Cl. Then, sharing is beneficial
only if T (JG) ≤ T (J). From Equations 3 and 8 we have:

f(n− 1) + gΣn
i=1di + 2Σn

i=1(di · pi)− xG(g + 2 · pG) ≥ 0 (9)

We remark that greedily grouping all jobs (the GreedyShare
algorithm) is not always the optimal choice. If for some job
Ji it holds that pG > pi, Inequality 9 may not be satisfied.
The reason is that the benefits of saving scans can be can-
celed or even surpassed by the added costs during sorting
[14]. This is also verified by our experiments.

4. GROUPING ALGORITHMS
The core component of MRShare is the grouping layer. In

particular, given a batch of queries, we seek to group them
so that the overall execution time is minimized.

4.1 Sharing Scans only
Here, we consider the scenario in which we share only

scans. We first formulate the optimization problem and
show that it is NP-hard. In Section 4.1.2 we relax our orig-
inal problem. In Section 4.1.3 we describe SplitJobs, an
exact dynamic programming solution for the relaxed ver-
sion, and finally in Section 4.1.4 we present the final algo-
rithm MultiSplitJobs. For details about the formulas see
Appendix G.

4.1.1 Problem Formulation
Consider a group G of n merged jobs. Since no map out-

put data is shared, the overall map-output-ratio of G is the
sum of the original map-output-ratios of each job:

xG = d1 + · · ·+ dn (10)

496

Recall that Jj is the constituent job of the group, hence
pj = max{p1, . . . , pn}. Furthermore, pG = pj + δG. Based
on our previous analysis, we derive the savings from merging
the jobs into a group G and evaluating G as a single job JG:

SS(G) = Σn
i=1 (f − 2 · di · (pj − pi + δG))− f (11)

We define the Scan-Shared Optimal Grouping problem of
obtaining the optimal grouping sharing just the scans as:

Problem 1 (Scan-Shared Optimal Grouping). Given
a set of jobs J = {J1, . . . , Jn}, group the jobs into S non-
overlapping groups G1, G2, . . . , GS, such that the overall sum
of savings

P
s SS(Gs), is maximized.

4.1.2 A Relaxation of the Problem
In its original form, Problem 1 is NP-hard (see Appendix

D). Thus we consider a relaxation.
Among all possible groups where Jj is the constituent

job, the highest number of sorting passes occurs when Jj is
merged with all the jobs Ji of J that have map-output-ratios
lower than Jj (i.e., di < dj). We define δj = {0, 1} based on
this worst case scenario. Hence, for any group G with Jj as
the constituent job we assign δG to be equal to δj . Then,
δG depends only on Jj .

Thus, we define the gain of merging job Ji with a group
where Jj is the constituent job:

gain(i, j) = f − 2 · di · (pj − pi + δj) (12)

The total savings of executing G versus executing each
job separately is

Pn
i=1 gain(i, j) − f . In other words, each

merged job Ji saves one scan of the input, and incurs the
cost of additional sorting if the number of passes pj + δj is
greater than the original number of passes pi. Also, the cost
of an extra pass for job Jj must be paid if δj = 1. Finally,
we need to account for one input scan per group.

4.1.3 SplitJobs - DP for Sharing Scans
In this part, we present an exact, dynamic programming

algorithm for solving the relaxed version of Problem 1. With-
out loss of generality, assume that the jobs are sorted accord-
ing to the map-output-ratios (di), that is d1 ≤ d2 ≤ · · · ≤
dn. Obviously, they are also sorted on pi.

Our main observation is that the optimal grouping for the
relaxed version of Problem 1 will consist of consecutive jobs
in the list (see Appendix E for details.) Thus, the problem
now is to split the sorted list of jobs into sublists, so that
the overall savings are maximized. To do that, we can use
a dynamic programming algorithm that we call SplitJobs.

Define GAIN(t, u) =
P

t≤i≤u gain(i, u), to be the total
gain of merging a sequence of jobs Jt, . . . , Ju into a single
group. Clearly, pu = max{pt, . . . , pu}. The overall group
savings from merging jobs Jt, . . . , Ju become GS(t, u) =
GAIN(t, u) − f . Clearly, GS(t, t) = 0. Recall that our
problem is to maximize the sum of GS() of all groups.

Consider an optimal arrangement of jobs J1, . . . , Jl. Sup-
pose we know that the last group, which ends in job Jl,
begins with job Ji. Hence, the preceding groups, contain
the jobs J1, . . . , Ji−1 in the optimal arrangement. Let c(l)
be the savings of the optimal grouping of jobs J1, . . . , Jl.
Then, we have: c(l) = c(i− 1) + GS(i, l). In general, c(l) is:

c(l) = max1≤i≤l{c(i− 1) + GS(i, l)} (13)

Now, we need to determine the first job of the last group
for the subproblem of jobs J1, . . . Jl. We try all possible cases
for job Jl, and we pick the one that gives the greatest overall
savings (i ranges from 1 to l). We can compute a table of c(i)
values from left to right, since each value depends only on
earlier values. To keep track of the split points, we maintain
a table source(). The pseudocode of the algorithm is:

SplitJobs(J1, . . . , Jn)

1. Compute GAIN(i, l) for 1 ≤ i ≤ l ≤ n.
2. Compute GS(i, l) for 1 ≤ i ≤ l ≤ n.
3. Compute c(l) and source(l) for 1 ≤ l ≤ n.
4. Return c and source

SplitJobs has O(n2) time and space complexity.

4.1.4 Improving SplitJobs
Consider the following example: Assume J1, J2, . . . , J10

are sorted according to their map-output-ratio. Assume we
compute the worst case δj value for each job. Also, assume
the SplitJobs algorithm returns the following groups: J1,
J2, (J3J4J5), (J6J7), J8, J9, J10. We observe that for the
jobs that are left as singletons, we may run the SplitJobs

program again. Before that, we recompute δj ’s, omitting the
jobs that have been already merged into groups. Notice that
δj ’s will change. If Jj is merged with all jobs with smaller
output, we may not need to increase the number of sorting
passes, even if we had to in the first iteration. For example,
it is possible that δ10 = 1 in the first iteration, and δ10 = 0
in the second iteration.

In each iteration we have the following two cases:

• The iteration returns some new groups (e.g., (J1J2J8)).
Then, we remove all jobs that were merged in this it-
eration, and we iterate again (e.g., the input for next
iteration is J9 and J10 only).

• The iteration returns all input singleton groups (e.g.,
J1, J2, J8, J9, J10). Then we can safely remove the
smallest job, since it does not give any savings when
merged into any possible group. We iterate again with
the remaining jobs (e.g., J2, J8, J9, and J10).

In brief, in each iteration we recompute δj for each job
and we remove at least one job. Thus, we have at most
n iterations. The final MultiSplitJobs algorithm is the
following:

MultiSplitJobs(J1, . . . , Jn)
J← {J1, . . . , Jn} (input jobs)
G← ∅ (output groups)
while J 6= ∅ do

compute δj for each Jj ∈ J
ALL = SplitJobs(J)
G← G ∪ALL.getNonSingletonGroups()
SINGLES ← ALL.getSingletonGroups()
if |SINGLES| < |J| then
J← SINGLES

else
Jx = SINGLES.theSmallest()
G← G ∪ {Jx}
J← SINGLES \ Jx

end if
end while

return G as the final set of groups.

MultiSplitJobs yields a grouping which is at least as
good as SplitJobs and runs in O(n3).

497

4.2 Sharing Map Output
We move on to consider the problem of optimal grouping

when jobs share not only scans, but also their map output.
For further details about some of the formulas see Appendix
G.

4.2.1 Problem Formulation
The map-output-ratios, dis of the original jobs and xG of

the merged jobs no longer satisfy Equation 10. Instead, we
have:

xG =
|D1 ∪ · · · ∪Dn|

|F |
where the union operator takes into account lineage of

map output tuples. By Equation 9, the total savings from
executing n jobs together are:

SM(G) = (f(n− 1)− xG(g + 2pG)) +
`
gΣ

n
i=1di + 2Σ

n
i=1(dipi)

´

Our problem is to maximize the sum of savings over groups:

Problem 2 (Scan+Map-Shared Optimal Grouping).
Given a set of jobs J = {J1, . . . , Jn}, group the jobs into S
non-overlapping groups G1, G2, . . . , GS, such that the overall
sum of savings ΣsSM(Gs) is maximized.

First, observe that the second parenthesis of SM(G) is
constant among all possible groupings and thus can be omit-
ted for the optimization problem. Let nGs denote the num-
ber of jobs in Gs, and pGs the final number of sorting passes
for Gs. We search for a grouping into S groups, (where S is
not fixed) that maximizes:

SX

s=1

(f · (nGs − 1)− xGs (g + 2(pGs)) , (14)

which depends on xGs , and pGs . However, any algorithm
maximizing the savings now needs explicit knowledge of the
size of the intermediate data of all subsets of J. The cost
of collecting this information is exponential to the number
of jobs and thus this approach is unrealistic. However, the
following holds (see Appendix F for the proof):

Theorem 1. Given a set of jobs J = {J1, . . . , Jn}, for
any two jobs Jk and Jl, if the map output of Jk is entirely
contained in the map output of Jl, then there is some optimal
grouping that contains a group with both Jk and Jl.

Hence, we can greedily group jobs Jk and Jl, and treat
them cost-wise as a single job Jl, which can be further
merged with other jobs. We emphasize that the contain-
ment can often be determined by syntactical analysis. For
example, consider two jobs Jk, and Jl which read the input
T (a, b, c). The map stage of Jk filters tuples by T.a > 3, and
Jl by T.a > 2; both jobs perform aggregation on T.a. We
are able to determine syntactically that the map output of
Jk is entirely contained in the map output of Jl. For the re-
mainder of the paper, we assume that all such containments
have been identified.

4.2.2 A Single Parameter Problem
We consider a simpler version of Problem 2 by introducing

a global parameter γ (0 ≤ γ ≤ 1), which quantifies the
amount of sharing among all jobs. For a group G of n merged
jobs, where Jj is the constituent job, γ satisfies:

xG = dj + γ
nX

i=1,i6=j

di (15)

We remark that if γ = 1, then no map output is shared.
In other words, this is the case considered previously, where
only scans may be shared. If γ = 0 then the map output of
each “smaller” job is fully contained in the map output of
the job with the largest map-output. Our relaxed problem
is the following:

Problem 3 (γ Scan+Map-Shared Optimal Grouping).
Given a set of jobs J = {J1, . . . , Jn}, and parameter γ, group
the jobs into S non-overlapping groups G1, G2, . . . , GS, such
that the overall sum of savings is maximized.

By Equation 9 the total savings from executing n jobs
together are:

savings(G) = fn− f −
0
@g(γ − 1)

nX

i=1,i6=j

di + 2djδj + 2

nX

i=1,i6=j

(di(γ(pj + δj)− pi)

1
A

As before, we define the gain:

gain(i, j) = f − (g(γ − 1)di + 2 · di · (γ(pj + δj)− pi))

gain(j, j) = f − 2 · dj · δj (16)

The total savings of executing group G together versus
executing each job separately are:

savings(G) =
nX

i=1

gain(i, j)− f (17)

Due to the monotonicity of the gain() function, we can
show that Problem 3 reduces to the problem of optimal par-
titioning of the sequence of jobs sorted according to di’s.
We devise algorithm MultiSplitJobsγ based on algorithm
MultiSplitJobs from Section 4.1.3. GAIN , GS, and c are
defined as in Section 4.1.3, but this time, using Equation 16
for the gain. We just need to modify the computation of
the increase in the number of sorting passes (δj) for each
job (i.e., we consider the number of sorting passes when job
Jj is merged with all jobs with map-output-ratios smaller
than dj , but we add only the γ part of the map output of
the smaller jobs).

5. IMPLEMENTING MRSHARE
We implemented our framework, MRShare, on top of Hadoop.
However, it can be easily plugged in any MapReduce system.
First, we get a batch of MapReduce jobs from queries col-
lected in a short time interval T . The choice of T depends
on the query characteristics and arrival times [6]. Then,
MultiSplitJobs is called to compute the optimal grouping
of the jobs. Afterwards, the groups are rewritten, using a
meta-map and a meta-reduce function. These are MRShare

specific containers, for merged map and reduce functions of
multiple jobs, which are implemented as regular map and
reduce functions, and their functionality relies on tagging
(explained below). The new jobs are then submitted for ex-
ecution. We remark that a simple change in the infrastruc-
ture, which in our case is Hadoop, is necessary. It involves
adding the capability of writing into multiple output files
on the reduce side, since now a single MapReduce job pro-
cesses multiple jobs and each reduce task produces multiple
outputs.

Next, we focus on the tagging technique, which enables
evaluating multiple jobs within a single job.

498

5.1 Tagging for Sharing Only Scans
Recall from Section 2.2 that each map output tuple con-

tains a tag(), which refers to exactly one original job. We
include tag() in the key of each map output tuple. It con-
sists of b bits, Bb−1, . . . , B0. The MSB is reserved, and the
remaining b − 1 bits are mapped to jobs3. If the tuple be-
longs to job Jj , the j − 1th bit is set. Then, the sorting is
performed on the (key + tag()). However, the grouping is
based on the key only. This implies that each group at the
reduce side, will contain tuples belonging to different jobs.
Given n merged MapReduce jobs J1, . . . , Jn, where n ≤ b−1,
each reduce-group contains tuples to be processed by up to
n different original reduce functions (see also Appendix H).

5.2 Tagging for Sharing Map Output
We now consider sharing map output, in addition to scans.

If a map output tuple originates from two jobs Ji and Jj , the
tag() field, after merging, has both the i−1th and the j−1th

bits set. The most significant bit is set to 0, meaning that
the tuple belongs to more than one job. At the reduce stage,
if a tuple belongs to multiple jobs, it needs to be pushed to
all respective reduce functions.

6. EMPIRICAL EVALUATION
In this section, we present an experimental evaluation of

the MRShare framework. We ran all experiments on a clus-
ter of 40 virtual machines, using Amazon EC2 [1]. Our
real-world 30GB text dataset, consists of blog posts [2]. We
present our experimental setting and the measurements of
the system parameters in Appendix I. In 6.1 we validate ex-
perimentally our cost model for MapReduce. Then, in 6.2,
we establish that the GreedyShare policy is not always bene-
ficial. Subsequently, in 6.3 we evaluate our MultiSplitJobs
algorithm for sharing scans. In 6.4 we demonstrate that
sharing intermediate data can introduce tremendous sav-
ings. Finally, in 6.5 we evaluate our heuristic algorithm
MultiSplitJobsγ for sharing scans and intermediate data.
We show scale independence of our approach in Appendix I.

6.1 Validation of the Cost Model
First, we validate the cost model that we presented in

Section 3. In order to estimate the system parameters, we
used a text dataset of 10GBs and a set of MapReduce jobs
based on random grep-wordcount queries (see Appendix I)
with map-output-ratio of 0.35. Recall that the map-output-
ratio of a job is the ratio of the map stage output size to the
map stage input size. We run the queries using Hadoop on
a small cluster of 10 machines. We measured the running
times and we derived the values for the system parameters.

Then, we used new datasets of various sizes between 10
and 50 GBs and a new set of queries with map-output-ratio
of 0.7. We run queries on the same cluster and we measured
the running times in seconds. In addition, we used the cost
model from Section 3 to derive the estimated running times.
The results are shown in Figure 1(a). As we can see, the
prediction of the model is very close to the actual values.

6.2 The GreedyShare Approach
Here, we demonstrate that the GreedyShare approach for

sharing scans is not always beneficial. We created three ran-

3We decided to reserve a bit for future use of sharing among jobs
processing multiple inputs

Figure 1: (a) Cost Model (b) Non-shared vs
GreedyShare. Sharing is not always beneficial.

Table 1: GreedyShare setting
Series Size map-output-ratio di

H1 16 0.3 ≤ di ≤ 0.7
H2 16 0.7 ≤ di

H3 16 0.9 ≤ di

dom series of 16 grep-wordcount jobs (H1, H2, H3), which
we describe in Table 1, with constraints on the average map-
output-ratios (di). The maximum di was equal to 1.35.

For each of the series we compare running all the jobs sep-
arately versus merging them in a single group. Figure 1(b)
illustrates our results. For each group, the execution times
when no grouping was performed, is normalized to 1.00. The
measurements were taken for multiple randomly generated
groups. Even for H1, where the map output sizes were, on
average, half size of the input, sharing was not beneficial.
For H2 and H3, the performance decreased despite savings
introduced by scan-sharing, e.g., for H2, the 6% increase
incurs an overhead of more than 30 minutes.

Obviously, the GreedyShare yields poorer performance as
we increase the size of the intermediate data. This confirms
our claim, that sharing in MapReduce has associated costs,
which depend on the size of the intermediate data.

6.3 MultiSplitJobs Evaluation
Here, we study the effectiveness of the MultiSplitJobs al-

gorithm for sharing scans. As discussed in Section 3, the sav-
ings depend strongly on the intermediate data sizes. We cre-
ated five series of jobs varying the map-output-ratios (di), as
described in Table 2. Series G1, G2, G3 contained jobs with
increasing sizes of the intermediate data, while G4 and G5
consisted of random jobs. We performed the experiment for
multiple random series G1, . . . , G5 of grep-wordcount jobs.

Figure 2(a) illustrates the comparison between the perfor-
mance of individual-query execution, and the execution of
merged groups obtained by the MultiSplitJobs algorithm.
The left bar for each series is 1.00, and it represents the time
to execute the jobs individually. The left bar is split into two
parts: the upper part represents the percentage of the exe-
cution time spent for scanning, and the lower part represents
the rest of the execution time. Obviously, the savings cannot
exceed the time spent for scanning for all the queries. The
right bar represents the time to execute the jobs according
to the grouping obtained from MultiSplitJobs.

We observe that even for jobs with large map output
sizes (G1), MultiSplitJobs yields savings (contrary to the
GreedyShare approach). For G2 and G3, which exhibit
smaller map-output sizes, our approach yielded higher sav-
ings. For jobs with map-output sizes lower than 0.2 (G3)
we achieved up to 25% improvement.

In every case, MultiSplitJobs yields substantial savings

499

Figure 2: MultiSplitJobs (a) scans (b) map-output.

Table 2: MultiSplitJobs setup and grouping example
Series Size map-output-ratio di #groups Group-size
G1 16 0.7 ≤ di 4 5,4,4,3
G2 16 0.2 ≤ di ≤ 0.7 3 8,5,3
G3 16 0 ≤ di ≤ 0.2 2 8,8
G4 16 0 ≤ di ≤ max 3 7,5,4
G5 64 0 ≤ di ≤ max 5 16,15,14,9,5,4

with respect to the original time spent for scanning. For
example, for G4 the original time spent for scanning was
12%. MultiSplitJobs reduced the overall time by 10%,
which is very close to the ideal case. We do not report results
for SplitJobs since MultiSplitJobs is provably better.

In addition, Table 2 presents example groupings obtained
for each series G1, . . . , G5. Observe that in every case, the
optimal grouping consisted of groups of variable size. With
increasing intermediate data sizes, the number of groups in-
creases, and the groups become smaller. Indeed, merging
many jobs with high map-output-ratios is likely to increase
the number of sorting passes, and degrade the performance.

6.4 Map Output Sharing Utility
Here, we demonstrate that sharing intermediate data (i.e.,

map output) introduces additional savings. For the purpose
of this experiment we used the same series of jobs as in the
previous Section (Table 2). We used the same groupings
obtained by MultiSplitJobs. We enable the sharing-map-
outputs feature and we compare it to sharing scans only.

Our results are illustrated in Figure 2(b). For G1, where
map output sizes were large, the jobs shared large portions
of intermediate data. The execution time dropped by 67%.
Recall, that sharing intermediate data, introduces savings
on copying data over the network and sorting. G2 and G3
had smaller intermediate map output sizes and the savings
were lower, but still significant. For G4 (fully random jobs)
we achieved savings up to 65%. Clearly, the greater the
redundancy among queries, the more the savings. We em-
phasize that the degree of sharing of the intermediate data is
query dependent. Note also that MultiSplitJobs does not
provide the optimal solution in this case (i.e., some other
grouping could yield even higher savings), since it has no
information on the degree of sharing among map outputs.
Even so, our experiments show significant savings.

6.5 MultiSplitJobsγ Evaluation
Finally, we study the performance of the MultiSplitJobsγ

algorithm, where γ is the global parameter indicating the
desired aggressiveness of sharing. We ran the series of jobs
G1, . . . , G3 described before, and set γ = 0.5. Our objective,
is to study the possible outcomes when using MultiSplitJobsγ .

With respect to the value for γ we remark the following.
In some cases, we are able to determine γ syntactically, e.g.,
when the aggregation key is different for each job, then no

Figure 3: MultiSplitJobsγ behaviour

map output sharing is possible and γ = 1.00. On the other
hand, if filters in the map stage for different jobs have hier-
archical structure (each job’s map stage produces a superset
of map output of all jobs with smaller map output), we can
set γ = 0.00. By tuning γ, we can be more pessimistic or
more optimistic. In principle, a good γ can be learned from
the data (e.g., sampling of the current workload, statistics
from previous runs), but this issue is out of the scope of this
paper. However, we note that when gamma is set to 1 the
scheme performs at least as well as MultiSplitJobs.

Figure 3 illustrates the results. We compare MultiSplitJobs
with the map-output-sharing feature disabled (left bar) and
enabled (center), with MultiSplitJobsγ for γ = 0.5 (right),
which allows for more aggressive merging.

For G1 we achieved further savings. For G2 the aver-
age execution time increased with respect to the original
solution with map-output-sharing enabled; γ = 0.5 was too
optimistic, since the jobs shared less on average. It caused
more aggressive merging, and, in effect, degraded the per-
formance. For G3 setting γ = 0.5 did not cause any changes.

We conclude that MultiSplitJobsγ can introduce addi-
tional savings, if the choice of γ is appropriate. If the choice
is too pessimistic, the additional savings may be moderate.
If it is too optimistic, the savings might decrease with re-
spect to MultiSplitJobs.

6.6 Discussion
Overall, our evaluation demonstrated that substantial sav-

ings are possible in MapReduce. Our experimental evalua-
tion on EC2 utilized 8000 machine hours, with a cost of
$800. Introducing even 20% savings in the execution time,
translates into $160. Our experiments confirm our initial
claim, that work-sharing in the MapReduce setting, may
yield significant monetary savings.

7. RELATED WORK
MapReduce. Since its original publication [11], MapRe-

duce style computation has become the norm for certain
analytical tasks. Furthermore, it is now offered as a cloud
service from Amazon EC2 [1]. Moreover, MapReduce logic
has been integrated as a core component in various projects
towards novel, alternative data analysis systems [5, 8, 10, 14,
13, 19, 22, 24]. Hadoop [3] is the most popular open source
implementation of MapReduce and serves as the platform
for many projects [5, 10, 14, 22], including ours.

MapReduce systems. There has been an increased
interest in combining MapReduce and traditional database
systems in an effort to maintain the benefits of both. Projects
such as Pig [17], Hive [22], and Scope [8] focus on pro-
viding high-level SQL-like abstractions on top of MapRe-
duce engines, to enable programmers to specify more com-
plex queries in an easier way. SQL/MapReduce [13] in-

500

tegrates MapReduce functionality for UDF processing in
Asterdata’s nCluster, a shared nothing parallel database.
Greenplum’s [10] approach is similar. HadoopDB [5] is an
architectural hybrid of MapReduce and relational databases,
that is based on the findings of an experimental comparison
between Hadoop and parallel database systems [18] and tries
to combine the advantages of both approaches. MapReduce-
Merge extends MapReduce by adding a merger step which
combines multiple reducers’ outputs [23]. Our framework,
MRShare, enables work-sharing within MapReduce, and re-
lies only on the core MapReduce functionality. Thus, it is
complementary to all aforementioned systems.

Work sharing. Cooperative scans have been stud-
ies in traditional database systems [20, 26]. Among the
MapReduce systems, Hive [22] supports user-defined scan-
sharing. Given two jobs reading from the same file, Hive
adds a new, preprocessing MapReduce job. This job reads
and parses the data in order to create two temporary files,
which the original jobs will eventually read. No automatic
optimization is supported, and the execution time can be
worse than without sharing, due to the newly added job.
Contrary to Hive, MRShare shares scans by creating a single
job for multiple jobs, with no use of temporary files. Besides
both our cost model and our experimental analysis confirm
that greedily sharing scans is not always beneficial. Pig [14]
supports a large number of sharing mechanisms among mul-
tiple queries, including shared scans, partial sharing of map
pipelines, and even partial sharing of the reduce pipeline,
by executing multiple queries in a single group. However no
cost-based optimization takes place. In this paper, we pro-
vide novel algorithms that provably perform automatic ben-
eficial sharing. We perform cost-based optimization without
the user’s interference, for a set of ad-hoc queries. On an-
other perspective, scheduling scans for MapReduce has been
considered by Agrawal et al. [6] for a dynamic environment.
Their objective is to schedule jobs, so that more scans will
get to be shared eventually, while making sure that jobs
will not suffer from starvation. Finally, in dynamic settings,
work-sharing can be performed at runtime [15, 7].

8. CONCLUSION AND FUTURE WORK
This paper described MRShare - the first principled anal-

ysis for automatic work-sharing across multiple MapReduce
jobs. Based on specific sharing opportunities that we iden-
tified and our cost model for MapReduce we defined and
solved several optimization problems. Moreover, we de-
scribed a system that implements the MRShare functional-
ity on top of Hadoop. Our experiments on Amazon EC2
demonstrated that our approach yields vast savings.

There are plenty of directions for future work – this work
is a first step towards automatic optimization for MapRe-
duce. We have not yet considered scenarios where the jobs
operate on multiple inputs (e.g., joins). Also, sharing parts
of map functions was identified as a sharing opportunity,
but not addressed. Finally, we aim to handle sequences of
jobs, which are common in systems like Hive [22] or Pig [17].

9. REFERENCES
[1] Amazon EC2. http://aws.amazon.com/ec2/.
[2] Blogscope. http://www.blogscope.net/.
[3] Hadoop project. http://hadoop.apache.org/.
[4] Saving energy in datacenters.

http://www1.eere.energy.gov/industry/datacenters/.

[5] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Rasin,
and A. Silberschatz. HadoopDB: An architectural hybrid of
mapreduce and dbms technologies for analytical workloads.
In VLDB, 2009.

[6] P. Agrawal, D. Kifer, and C. Olston. Scheduling shared
scans of large data files. Proc. VLDB Endow.,
1(1):958–969, 2008.

[7] G. Candea, N. Polyzotis, and R. Vingralek. A scalable,
predictable join operator for highly concurrent data
warehouses. In VLDB, 2009.

[8] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets. Proc.
VLDB Endow., 1(2):1265–1276, 2008.

[9] S. Chaudhuri and K. Shim. Optimization of queries with
user-defined predicates. ACM Trans. Database Syst.,
24(2):177–228, 1999.

[10] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and
C. Welton. Mad skills: New analysis practices for big data.
PVLDB, 2(2):1481–1492, 2009.

[11] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI ’04, pages 137–150.

[12] S. Finkelstein. Common expression analysis in database
applications. In SIGMOD ’82, pages 235–245, 1982.

[13] E. Friedman, P. Pawlowski, and J. Cieslewicz.
Sql/mapreduce: A practical approach to self-describing,
polymorphic, and parallelizable user-defined functions. In
VLDB, 2009.

[14] A. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. Narayanam, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava. Building a highlevel dataflow system on top
of mapreduce: The pig experience. PVLDB,
2(2):1414–1425, 2009.

[15] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe:
a simultaneously pipelined relational query engine. In
SIGMOD ’05, pages 383–394, 2005.

[16] C. Olston, B. Reed, A. Silberstein, and U. Srivastava.
Automatic optimization of parallel dataflow programs. In
USENIX Annual Tech. Conf., pages 267–273, 2008.

[17] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In SIGMOD, pages 1099–1110, 2008.

[18] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker. A comparison of
approaches to large-scale data analysis. In SIGMOD ’09,
pages 165–178, 2009.

[19] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with sawzall.
Scientific Programming, 13(4):277–298, 2005.

[20] L. Qiao, V. Raman, F. Reiss, P. J. Haas, and G. M.
Lohman. Main-memory scan sharing for multi-core cpus.
Proc. VLDB Endow., 1(1):610–621, 2008.

[21] T. K. Sellis. Multiple-query optimization. ACM Trans.
Database Syst., 13(1):23–52, 1988.

[22] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive - a
warehousing solution over a map-reduce framework. In
VLDB, 2009.

[23] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-reduce-merge: simplified relational data processing on
large clusters. In SIGMOD, pages 1029–1040, 2007.

[24] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey. Dryadlinq: A system for
general-purpose distributed data-parallel computing using a
high-level language. In OSDI, pages 1–14, 2008.

[25] J. Zhou, P.-A. Larson, J.-C. Freytag, and W. Lehner.
Efficient exploitation of similar subexpressions for query
processing. In SIGMOD ’07, pages 533–544, 2007.

[26] M. Zukowski, S. Héman, N. Nes, and P. Boncz.
Cooperative scans: dynamic bandwidth sharing in a dbms.
In VLDB ’07, pages 723–734, 2007.

501

APPENDIX
A. EXAMPLES OF MapReduce JOBS

As an example, in a wordcount job, the map stage reads
the input text, line by line, and emits a tuple (word, 1) for
each word. The reduce stage counts all tuples corresponding
to a particular word, and emits a final output tuple (word,
group cardinality).

An aggregation on a relational table can be evaluated in
a similar way [22]. Each input tuple represents a relational
tuple with a specified schema. After parsing the input tuple,
the map stage emits a key/value pair of the form (aggr col,
aggr value). The reduce stage groups all tuples correspond-
ing to a particular value in the aggregation column, and
computes the final value of the aggregate function.

B. EXAMPLES OF SHARING OPPORTU-
NITIES

In this section we provide several useful examples of shar-
ing opportunities. For illustration purposes we use SQL no-
tation. An SQL group-by query, over a table T (a, b, c):

SELECT T.a, aggr(T.b)
FROM T
WHERE T.c > 10
GROUP BY T.a

can be translated into the following MapReduce job:
Map tasks: A slave assigned a map task reads the cor-
responding input split and parses the data according to
T (a, b, c) schema. The input key/value pairs are of the form
(∅, (T.a, T.b, T.c)). Each tuple is checked against T.c > 10,
and if it passes the filter, a map output tuple of the form
(T.a, T.b) is produced. The output is partitioned into a user-
defined number of r partitions.
Reduce tasks: A slave assigned a reduce task copies the
parts of the map output corresponding to its partition. Once
the copying is done, the outputs are sorted to co-locate
occurences of each key T.a. Then, the aggregate function
aggr() is applied for each group, and the final output tuples
are produced.

Example 1 (Sharing Scans - Aggregation). Consider
an input table T (a, b, c), and the following queries:

SELECT T.a, sum(T.b) SELECT T.c, avg(T.b)
FROM T FROM T
WHERE T.c > 10 WHERE T.a = 100
GROUP BY T.a GROUP BY T.c

The original map pipelines are:

mappingi : T → (∅, (T.a, T.b, T.c)) → filter(T.c > 10) → (T.a, T.b)

mappingj : T → (∅, (T.a, T.b, T.c)) → filter(T.a = 100) → (T.c, T.b)

The shared scan conditions are met. Thus, the merged
pipeline is:

mappingij : T → (∅, (T.a, T.b, T.c)) →
→ filter(T.c>10)→tag(i)+(T.a,T.b)

filter(T.a=100)→tag(j)+(T.c,T.b)

The reduce stage groups tuples based on their key. If a
tuple contains tag(i), the reduce stage pushes the tuple to
reducei, otherwise it pushes the tuple to reducej.

reducingij :
tag(i) + (T.a, T.b) → sum(T.b) → (T.a, sum)

tag(j) + (T.c, T.b) → avg(T.b) → (T.c, avg)

In this scenario, the savings result from scanning and pars-
ing the input only once. Clearly, this sharing scheme can be
easily extended to multiple jobs. Note that there is no shar-
ing at the reduce stage. After grouping at the reduce side,
each tuple has either tag(i) or tag(j) attached, hence we can
easily push each tuple to the appropriate reduce function.
The size of the intermediate data processed is the same as
in the case of two different jobs, with a minor overhead that
comes from the tags.

Example 2 (Sharing Map Output - Aggregation).
Consider an input table T (a, b, c), and the following queries:

SELECT T.a, sum(T.b) SELECT T.a, avg(T.b)
FROM T FROM T
WHERE T.a>10 AND T.a<20 WHERE T.b>10 AND T.c<100
GROUP BY T.a GROUP BY T.a

The map pipelines are described as follows:

mappingi : T → (∅, (T.a, T.b, T.c)) →
→ filter(T.a > 10), filter(T.a < 20) → (T.a, T.b)

mappingj : T → (∅, (T.a, T.b, T.c)) →
→ filter(T.b > 10), filter(T.c < 100) → (T.a, T.b)

The map functions are not the same. However, the filter-
ing can produce overlapping sets of tuples. The map output
key (T.a) and value (T.b) types are the same. Hence, we
can share the overlapping parts of map output.

mappingij : T → (∅, (T.a, T.b, T.c)) → filter(T.a>10,T.a<20)
filter(T.b>10,T.c<100)

→ tag(i) + tag(j) + (T.a, T.b)

The reduce stage applies the appropriate reduce function
by dispatching the tuples based on tag():

reducingij : tag(i) + tag(j) + (T.a, T.b) → sum(T.b) → (T.a, sum)

avg(T.b) → (T.c, avg)

Producing a smaller map output results to savings on sort-
ing and copying intermediate data over the network. This
mechanism can be easily generalized to more than two jobs.

Example 3 (Sharing Map - Aggregation). Consider
an input table T (a, b, c), and the following queries:

SELECT T.c, sum(T.b) SELECT T.a, avg(T.b)
FROM T FROM T
WHERE T.c > 10 WHERE T.c > 10
GROUP BY T.c GROUP BY T.a

The map pipelines are described as follows:

mappingj : Ij → (∅, (T.a, T.b, T.c)) → filter(T.c > 10) → (T.c, T.b)

mappingi : Ii → (∅, (T.a, T.b, T.c)) → filter(T.c > 10) → (T.a, T.b)

The map pipelines are identical. Note that in this case,
by identical map pipelines we mean the parsing and the set
of filers/transformations in the map function - the map out-
put key and value types are not necessarily the same. After
merging we have:

mappingij : T → (∅, (T.a, T.b, T.c)) → filter(T.c > 10) →

→ tag(i) + (T.c, T.b)

tag(j) + (T.a, T.b)

If, additionally, the map output key and value types are
the same, we can apply map output sharing as well. In our

502

example, assuming that the second query groups by T.c in-
stead of T.a, we would have:

mappingij : T → (∅, (T.a, T.b, T.c)) → filter(T.c > 10) →
→ tag(i) + tag(j) + (T.c, T.b)

The reducing pipeline is similar to the previous examples.

Example 4 (Sharing Parts of Map - Aggregation).
Consider an input table T (a, b, c), and the following queries:

SELECT T.a, sum(T.b) SELECT T.a, avg(T.b)
FROM T FROM T
WHERE T.c>10 AND T.a<20 WHERE T.c>10 AND T.c<100
GROUP BY T.a GROUP BY T.a

The map pipelines are described as follows:

mappingi : T → (∅, (T.a, T.b, T.c)) →
→ filter(T.c > 10), filter(T.a < 20) → (T.a, T.b)

mappingj : T → (∅, (T.a, T.b, T.c)) →
→ filter(T.c > 10), filter(T.c < 100) → (T.a, T.b)

In this case, the map pipelines are not the same. However,
some of their filters overlap:

mappingij : T → (∅, (T.a, T.b, T.c)) → filter(T.c > 10) →
→ filter(T.a<20)

filter(T.c<100) →
tag(i)+(T.a,T.b)
tag(j)+(T.a,T.b)

Also in this case, the key and value types of map output
tuples are the same, and we can apply map output sharing:

mappingij : T → (∅, (T.a, T.b, T.c)) → filter(T.c > 10) →
→ filter(T.a<20)

filter(T.c<100) → tag(i) + tag(j) + (T.a, T.b)

We remark that sharing parts of map functions has many
implications. It involves identifying common subexpressions
[12, 21] and filter reordering [9], which are hard problems.

C. COST MODEL FOR MapReduce DETAILS
Recall that for a given job Ji, |Mi| is the average output

size of a map task, measured in pages, and |Ri| is the average
input size of a reduce task. The size of the intermediate data
Di of job Ji is |Di| = |Mi| ·m = |Ri| · r. In the no-grouping
scenario, the cost of reading the data is:

Tread(J) = Cr · n · |F |

Hadoop buffers and sorts map outputs locally at the map
task side. We recall that The cost of sorting and writing
the data at the output of the map tasks for the n jobs is
approximately:

Tsort−map(J) = Cl · Σn
i=1(m× |Mi|(2 + 2(dlogB

|Mi|
(B+1) e)))

= Cl · Σn
i=1(|Di|(2 + 2(dlogB

|Di|
(B+1)×m

e)))
≈ Cl · Σn

i=1(|Di|d2(logB |Di| − logB m)e) (18)

At the reduce task side we start with m sorted runs. A
merge step of the m runs involves dlogB me passes. There-
fore the sorting cost at the reduce tasks is:

Tsort−red(J) = Cl · Σn
i=1(r × |Ri|d2 logB me)

= Cl · Σn
i=1(|Di|d2 logB me)

Thus the total cost of sorting is:

Tsort(J) = Cl · Σn
i=1(|Di|2(dlogB |Di| − logB me+ dlogB me)) (19)

Finally, the cost of transferring intermediate data is:

Ttr(J) = Σ
n
i=1Ct · |Di| (20)

The overall cost is the sum of the above:

T (J) = Tread(J) + Tsort(J) + Ttr(J) (21)

D. HARDNESS OF PROBLEM 1
Theorem 2. Scan-Shared Optimal Grouping (Problem 1)

is NP-hard.

Proof. We reduce the Set-Partitioning (SP) problem to
the Scan-Shared Optimal Grouping (SSOG) problem. The
SP problem is to decide whether a given multiset of integers
{a1, . . . , an} can be partitioned into two “halves” that have

the same sum t =
Pn

i=1 ai

2
. Without loss of generality we can

assume that ∀i ai < t, otherwise the answer is immediate.
Every instance of the SP problem, can be transformed into

a valid instance of the SSOG as follows. Let the size of the
sort buffer B be equal to t, and the size of the input data be
equal to 2 · t. We construct a job Ji for each of ai in the set.
Let the map output size for each job Ji be |Di| = ai, then the
map-output-ratio of Ji is di = ai

2·t . The number of sorting
passes for each job Ji is pi = dlogB |Di|−logB me+dlogB me.
Let m = 1, then pi = dlogB |Di|e. Since ∀i ai < t, hence
∀i ai < B, then ∀i pi = 0 – the map output of each job Ji

is sorted in memory. We also set f = 1.00. This is a valid
instance of the SSOG problem.

An optimal solution for SSOG with two group exists, if
and only if, there exists a partitioning of the original SP
problem. For a group Gs of nGs jobs, pGs = dlogB |XGs |e.
Hence, pGs = 1 for all Gs such that |XGs | > B (aka xGs >
0.5) – if the size of the intermediate data exceeds the buffer
size we need one additional sorting pass. By our assump-
tion on f , for any such group Gs, the savings are SS(Gs) =
(nGs · f − 2 · xGs · pGs)− f < 0. Hence, it is better to exe-
cute the jobs in Gs separately. We conclude that the final
solution will have only groups Gs with pGs = 0, and for
any group Gs in the solution SS(Gs) = nGs × f − f . We
maximize SS(Gs) over all S groups, but ΣS

s=1nGs · f is con-
stant among all groupings, hence our problem is equivalent
to minimizing the number of groups.

If the optimal solution consists of only two groups G1

and G2, then there exists a partitioning of jobs Ji into two
sets, such that ΣJi∈G1Di = ΣJi∈G2Di = B = t , which is a
solution to the original SP problem. Since we are minimizing
the number of groups (subject to constraints), then if there
is a partitioning of the original SP problem, our algorithm
will return two groups (as three groups would yield lower
savings). We conclude that the exact SSOG problem is NP-
hard.

E. RELAXED PROBLEM 1 PROPERTY

Theorem 3. Given a list of jobs J = {J1, . . . , Jn} and as-
suming that the jobs are sorted according to the map-output-
ratios (di), each group of the optimal grouping of the relaxed
version of Problem 1 will consist of consecutive jobs as they
appear in the list.

Proof. Assume the optimal solution contains the follow-
ing group: Gs = (t, . . . , u − 1, u + 1, . . . , v), which is sorted

503

by the indices (and thus dis, and pi + δis). Observe that
group Gs does not contain u.

i) {u} is a singleton group. If gain(u, v) > 0 then putting
u into this group would yield higher savings (as we will have
one less group), hence the solution can not be optimal. If
gain(u, v) < 0, then also gain(u−1, v) < 0. Hence executing
{u − 1} as a singleton would give higher savings. Same for
all {t, . . . , u − 1}. The given solution when {u} would be a
singleton cannot be the optimal solution.

ii) {u} is not a singleton group.

• {u} is in Gs+1 = (u, w, . . . , z) where z > v. If pv +δv =
pz + δz (the final number of sorting passes are equal)
then Gs+1 and Gs can be merged with no cost yielding
higher savings (having one scan versus two). Hence
this would not be the optimal solution. By our sorting
criterion: pz+δz > pv+δv ≥ pu+δu, hence gain(u, z) <
gain(u, v). Putting {u} to Gs yields higher savings,
hence the partitioning is not optimal.

• {u} is in Gs−1 = (w, . . . , x, u, z) where z < v. Again
we know that pv + δv > pz + δz ≥ pu + δu. But then
gain(u − 1, z) > gain(u − 1, v). Putting {u − 1} (all
{t, . . . u−1}) to Gs−1 yields higher savings. Similarly, if
Gs−1 = (w, . . . , x, u) (u is the constituent job), putting
{u− 1} to Gs−1 yields higher savings.

F. PROOF OF THEOREM 1
Proof. Assume that the optimal solution S contains two

groups G1 and G2, such that Jk ∈ G1 and Jl ∈ G2. Then
SM(G1) = f · (nG1 − 1) − xG1(g + 2(pG1)), and same for
G2. By switching Jk to G2, we obtain SM(G2 ∪ {Jk}) =
SM(G2) + f , since xG2∪{Jk} = xG2 . However, SM(G1 \
{Jk}) ≥ SM(G1)− f , since xG1\{Jk} ≤ xG1 . By switching
Jk to G2 we obtain a solution at least as good as S and thus
still optimal. 2

G. DESCRIPTION OF THE FORMULAS
In this section, we describe in detail several formulas used

in our algorithms.

• SS(G) = Σn
i=1 (f − 2 · di · (pj − pi + δG)) − f (Equa-

tion 11): recall that Jj is the constituent job of group
G, i.e., it has the largest intermediate data size (dj),
incurring the highest number of passes (pj). δG in-
dicates if the final number of sorting passes increases
with respect to pj . Each job Ji in G introduces savings
of (f − 2 · di · (pj − pi + δG)), where f accounts for the
input scan, and −2 · di · (pj − pi + δG) is subtracted to
account for additional cost of sorting – if the original
number of passes pi of job Ji is lower than the final
number of passes pj + δG. Overall savings SS(G) for
group G is a sum over all jobs minus f for performing
a single input scan when executing G.

• gain(i, j) = f − 2 · di · (pj − pi + δj) (Equation 12):
represents savings introduced by job Ji merged with a
group where Jj is a constituent job in a sharing scans
only scenario. Originally, job Ji sorts its intermediate
data in pi passes, and job Jj in pj passes. Here, δj is
only dependent on Jj , and is either 0 or 1. gain(i, j)
quantifies savings incurred by one input scan (f) minus
the cost of additional sorting of Ji’s map output – if the
original number of passes pi is lower than pj + δj .

• GAIN(t, u) =
P

t≤i≤u gain(i, u) (Section 4.1.3): quan-
tifies savings of merging a sequence of jobs Jt, . . . , Ju

into a single group, without accounting the single in-
put scan that needs to be performed for this group.
GS(t, u) = GAIN(t, u)− f accounts for one additional
input scan per group.

• c(l) = max1≤i≤l{c(i−1)+GS(i, l)} (Equation 13): rep-
resents the maximal savings over all possible groupings
of a sequence of jobs J1, . . . , Jl. To obtain it in our dy-
namic program, we need to try all possible is ranging
from 1 to l, and pick the one that yields the highest
c(l).

• gain(i, j) = f − (g(γ − 1)di + 2 · di · (γ(pj + δj)− pi))
(Equation 16): quantifies savings introduced by job Ji

merged with a group where Jj is a constituent job in a
sharing map output scenario, where we assume that
(1 − γ) part of Ji’s map output is shared with Jj .
Hence, merging Jj with the group introduces savings
on scanning the input f , plus the savings on copying
(1 − γ) part of the Ji’s map output, minus the cost of
additional sorting (which can be negative in this case).
−g(γ−1)di quantifies the savings on copying the inter-
mediate data. 2 · di · (γ(pj + δj)− pi) is the difference
of sorting cost in the shared scenario, where we need
to sort only the γ part of Ji’s map output in pj + δj

passes, and the non-shared scenario, where we sort the
entire map output of Ji in pi passes.

H. EXAMPLES OF TAGGING SCHEMES
There are two cases for which MRShare automatically com-

bines the processing logic of two jobs: (i) If we know that the
parsing of the input is identical then scan sharing is applied
- the map output tuples are tagged as shown in Example
5. (ii) If, in addition, the two map functions produce iden-
tical tuples from the same input tuple, then we also share
the common map output - Example 6 depicts how the map
output tuples are tagged in this case. In both cases the orig-
inal map functions are treated as black boxes and they are
combined by the meta-map wrapper function.

In both cases, we do not consider separating the map out-
put after the map stage. This would require substantial
changes in the MapReduce architecture and counter our goal
of developing a framework that minimally modifies the ex-
isting MapReduce architecture. Other side-effects of such an
approach would be: more files would need to be managed
which means more overhead and errors; running multiple
reduce stages would cause network and resource contention.

Example 5 (Tagging for Sharing Scans). Table 3
is an example of tagging for sharing scans. The appropriate
reduce function is indicated for each tuple, based on the tag()
field. Each tuple within a group will be processed by exactly
one of the original reduce functions. Since tuples are sorted
according to the (key + tag()), the reduce functions will be
executed sequentially. First, all tuples belonging to J3 will be
processed, then J2, etc. At any point in time, only the state
of one reduce function must be maintained. In this example,
tag() is one byte long. Also, B7 is always set to 1, meaning
that a tuple belongs to exactly one job. B6 . . . B0 determines
the job, in which the tuple belongs.

Example 6 (Tagging for Sharing Map Output).
Table 4 describes tuples produced by n mapping pipelines

504

Table 3: Sharing-scans tagging
key B7 B6 . . . B0 value reduce function
key 1 0000100 v1 reduce3
key 1 0000100 v2 reduce3
key 1 0000100 v3 reduce3
key 1 0000010 v4 reduce2
key 1 0000010 v5 reduce2
key 1 0000001 v6 reduce1

from one input tuple, sorted according to key. The tag()
field is byte long (B7, . . . , B0), as before.

Table 4: Map output of n pipelines
job key B7 B6 . . . B0 value
1 1 1 0000001 v1
3 1 1 0000100 v1
2 1 1 0000010 v1
4 2 1 0001000 v2
6 2 1 0100000 v2
5 3 1 0010000 v3

Going back to our example, the output produced by the
mapping pipelines can be shared as shown in Table 5. Ob-
serve that the MSB of tag() is set according to the number
of originating pipelines.

Table 5: Merged map output
job key B7 B6 . . . B0 value

1,2,3 1 0 0000111 v1
4,6 2 0 0101000 v2
5 3 1 0010000 v3

Table 6 depicts some groups’ examples, processed at the
reduce side. The last column indicates the reduce functions
to which each tuple needs to be pushed. We remark that
we need to maintain the states of multiple reduce functions.
However, since the group is sorted also on tag(), we are able
to finalize some reduce functions as the tuples are processed.

I. EXPERIMENTAL EVALUATION

I.1 Experimental Setting
We ran all experiments on a cluster of 40 virtual machines,

using Amazon EC2 [1], unless stated otherwise. We used the
small size instances (1 virtual core, 1.7 GB RAM, 160GB of
disk space). All settings for Hadoop were set to defaults.
Our real-world 30GB text dataset, consists of blog posts [2].
We utilized approximately 8000 machine hours to evaluate
our framework. We ran each experiment three times and
averaged the results.

We ran wordcount jobs, which were modified to count
only words containing given regular expressions (aka grep-
wordcount). Hence, we were able to run jobs with vari-
ous intermediate data sizes, depending on the selectivity
of the regular expression. We remark that wordcount is a
commonly used benchmark for MapReduce systems. How-
ever, we cannot use it in our experiments because we cannot
control the map-output sizes. Another reason for choosing
grep-wordcount is that it is a generic MapReduce job. The
map stage filters the input (by the given regular expres-
sion), while the reduce stage performs aggregation. In other
words, any group-by-aggregate job in MapReduce is simi-
lar in its structure to grep-wordcount. We clarify that we
produced random jobs with various intermediate data sizes.
In real-world settings, however, the information about ap-
proximate intermediate data sizes would have been obtained

Table 6: Processing a group at the reduce side
key B7 B6 . . . B0 value reduce function
k 1 0100000 v1 reduce6
k 1 0010000 v2 reduce5
k 0 0001001 v3 reduce1; reduce4
k 0 0000111 v4 reduce1; reduce2; reduce3

Figure 4: MRShare scale independence.

either from historical data, or by sampling the input, or by
syntactical analysis of the jobs.

I.2 System Dependent Parameters
The first step of our evaluation was to measure the system

dependent parameters, f and g, by running multiple grep-
wordcount jobs. Our experiments revealed that the costs of
reading from the DFS and the cost of reading/writing locally
during sorting, were comparable, hence we set f = 1.00.
This is not surprising, since Hadoop favors reading blocks
of data from the DFS, which are placed locally. Hence, the
vast majority of data scans are local.

The cost of copying the intermediate data of jobs over
the network was approximately g = 2.3 times the cost of
reading/writing locally. This is expected, since copying in-
termediate data between map and reduce stages involves
reading the data on one machine, copying over the network,
and writing locally at the destination machine.

We remark that our experiments revealed that the cost
of scanning the input is rarely dominant, unless the map
output sizes are very small. For example, when we ran a
series of random grep-wordcount jobs, the average cost of
scanning was approximately 12% of the total execution time
of a job. Thus, even if there is no scanning at all, the overall
savings from sharing scans cannot exceed this threshold.

I.3 MRShare Scale Independence
We demonstrate the scalability of MRShare with respect

to the size of the MapReduce cluster. In particular, we show
that the relative savings, using MultiSplitJobs for sharing
scans, do not depend on the size of the cluster. We ran
queries G4 with random map-output-ratio (see Table 2), and
measured the resulting savings for 4 cluster sizes, 40,60,80,
and 100. Figure 4 illustrates our results. In each case, the
left bar represents the normalized execution time, when no
sharing occurs. The relative saving from sharing scans were
approximately the same in each case, independent of the size
of the cluster. Indeed, our cost model does not depend on
the number of machines and this is confirmed by our results.
The overall cost is only distributed among the machines in
the cluster. However, the relative savings from sharing e.g.,
scans do not depend on the cluster’s size.

505

