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ABSTRACT 7o
We consider the problem of efficiently finding the tbpanswers o
for join queries over web-accessible databases. Classical algo- a
rithms for finding topk answers use branch-and-bound techniques
to avoid computing scores of all candidates in identifying thekop-
answers. To be able to apply such techniques, it is critical to effi- b [@2.d3jod
ciently compute (lower and upper) bounds and expected scores of _ o o o )
candidate answers in an incremental fashion during the evaluation,Figure 1: An example of join graph depicting the join relations
In this paper, we describe novel techniques for these problems. ~ between tables
The first contribution of this paper is a method to efficiently com-
pute bounds for the score of a query result when tuples in tables
rom e FROWT cause e ciscoyered remental 1Yoush 1 (e0.1)  possile o uery would be o rerieve he vale o an-
. . . - other attribute€.g, c) connected to the first attribute via a join path
gorithm that, given a set of partially evaluated candidate answers, o ‘.. _, .,) Animportant observation is that given a source and
determines a good order in which to access the tables to minimize  jegtination attribute, there may exist multiple join paths connect-

Wasteld effgrts in the computafﬂon O,f téparésijers. we engLCJiate ing them. We consider that each join pattuchedor the quality
our algorithms on a variety of queries and data sets and demon-¢he generated join result. Therefore, in addition to the attribute

strate the significant benefits they provide. value in the destination node, the user may be also interested in the
1. INTRODUCTION tuples (.e., edges) that support the join result. In this paper, we

While search engines are becoming increasingly good at return-COnSIder the answer (which we calbinding to the join query as

ing the most relevant pages for a set of keywords, they are less able® combination of tuples from each participating table and compute

to integrate information from multiple sources in a well-structured ?;zf.oget.;m;hiﬂnféng gaez(t?gr?g t;r? ds%?rrﬁ(;lf eggpntgglh%yr\]/e show
way. For wide-interest domains - the so-called “verticals” - a cer- valing example | : y detl g

tain degree of integration is built into the engines. Information rel- in iefhtli:n ?;zér we consider the maior bottleneck of too-k ioin
evant to that field is downloaded from multiple sources and joined paper, naj f lop-X |
inside the search engine’s index. However, the process of decidingquery_processmg to be tuple accessing of web-accessible datqbases.
which attributes to extract and integrate is mostly manual, and the If, for instance, the tables involved in one query are stored on differ-

approach does not extend to more obscure areas of human interest nt servers, and can only be accessed via a Web interface, execut-

We focus on efficiently computing answers for join queries that ing a single join between two tables may become very expensive,

involve Web-accessible databases. Consider the join graph showr®S Web accesses exhibit high and variable latency. In addition, the

in Figure 1 as an example. Assume that edges represent tables ofluery optimizer in one databas_e will generally have no statistics
user interest extracted from the web and nodes represent attribute?bOUt tableststored t?\t remote sites ar;]d thus be unable to offer any
on which two tables join. We consider that each tuplg{(a1, b1) 'm_ﬁ)_(';%\_’:r}:)?: guoevri/rprgcgzls\/ii;%?/r;arcar;ked inputs has been stud-
from T7) carries a score that represents the quality of the tuple. In- ied in literature (.g.[3, 8]). llyas et al. [3] propose a rank-join
*Mobility research program supported by the European Commis- algorithm that makes use of the individual orders of its inputs to
sion (Grant FP6-MOIF-CT-2006-041000) produce join results ordered on a user-specified scoring function.
Despite the performance advantage, the rank-join algorithm suffers

- - ) . from two limitations. First, the join queries considered in [3] in-
Permission to make digital or hard copies of all or part of this work for L .
personal or classroom use is granted without fee provided that copies areVOlve tables tha,t form only one J,O'n path. lnlcpntraSt' we consider
not made or distributed for profit or commercial advantage and that copies @ more general join graph, allowing multiple join paths between the
bear this notice and the full citation on the first page. To copy otherwise, to source and destination attributes.
republish, to post on servers or to redistribute to lists, requires prior specific  The second limitation of rank-join algorithm is that it is essen-
permission and/or a fee. Articles from this volume were presented at The tjg|ly considering inner-join, which requires the join answer to have
36th International Conference on Very Large Data Bases, September 13-17,61n instantiated tuple on each join edge along the join path. The

Izp?égéesd'?n%a;pg{fhe VLDEB Endowmevisl. 3. No. 1 study in [5] shows that inner join may produce answers with scores

Copyright 2010 VLDB Endowment 2150-8097/10/095.10.00. that are too low to be of interest. Consider the join graph in Fig-

€

tuitively, the score for a join of multiple tuples is computed as the
product of the scores of each tuple. Given a value for an attribute
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ure 1. Assume we find one complete join answer with score 0.1 on  Suppose that the following structured data is accessible from
each edge and another partial join answer with score 0.9 on edgethese websites.
e1 andez andnul | on all other edges. Clearly the latter join an- - Table Research with attributes{person, conf, o}, wherec
swer has a higher score and therefore is of more interest to the useris the tuple score, normalized between 0 and 1: Tuples connect re-
Even if the rank-join algorithm could be applied to the join graph searchers to conferences. The vaduis a measure of the strength
considered in our case, it could not produce the latter answer sinceof this connection, based on their roles in that conference (author,
it containsnul | tuples on some of the join edges. For compari- tutorial giver, organizer etc.). For exampled, VLD B09,0.9) €
son purposes, we extended the rank-join approach to more generalResearch may mean that researchet will give a tutorial at
join graphs. Our experimental results show that our approach is VLDBO09. Intuitively, this means he is very likely to attend
significantly better than the rank-join based approach. VLDBO09, so the tuple has a high score. Tuple, ICDFE09,0.5)

Our contributions. In this paper, we propose a novel branch- may mean that researchdr has one accepted paper at ICDEQ9,
and-bound algorithm for computing the top-k answers for join with another co-author.
queries over Web-accessible databases. Rather than computing all - Table T'ravel with attributes{person, loc, o }: Tuples in this
the results of the join query, our strategy dynamically retrieves a table reflect how cost-effective it is for a researcher to travel to a
subset of tuples from each table, and maintains lower and upperlocation. For exampleg,A, Shanghai,0.1) means that researcher
scores bounds for the query results that include the retrieved tuples.A has only expensive options for traveling to Shanghai, while
By ordering the retrieval of table tuples based on the score bounds (A, Providence,0.9) means that researchet has at least one
of the partial results, our algorithm results in significant savings in cheap option for going to Providence; e.g., researcheray live
the number of Web accesses. We make the following contributions: in New Jersey and travel by train.

- Table People with attributes{person, advisor,c}: Tuples
in this table reflect the strength of the professional connection be-
tween a person and their advisor. This strength may be measured
as, e.g., the percentage of papers a person co-authored with their
advisor in the past 5 years; or as the inverse of the number of years

e We propose a model for scoring answers of arbitrary join
graphs based on network reliability. We also develop meth-
ods for computing score bounds for partial answers.

e We present a novel branch-and-bound algorithm which aims
to minimize the number of Web accesses required for com- since the person graduated.

puting the top-k answgrs. _ _ - TableCon ference with attributes{ con f, loc, o }: Tuples con-
» We evaluate our algorithms on a variety of queries and data tain information on the conference name and location. The value
sets and demonstrate the significant benefits they provide.  reflects the importance of the conference in its field.

The rest of this paper is struct_ured as foIIo_ws. Section 2 presentsSELEcT TOP 100 C. conf
a real-life example that we use in our experimental study. The ex- gravi Research R Travel T, Conference C,
ample illustrates the concepts that we formally define in Section 3. Peopl e P, Research Rl, Travel Tl
Section 4 presents our dynamic probing techniques that efficiently WWERE ((R conf =C. conf)

. . or (R person=T.person and T.loc=C. |oc
compute the top-k results. We present our experimental study in ER- gersonzP. Serson )

Section 5. A brief review of related work appears in Section 6, and and ((P.advisor=T1. person and T1.l|oc=C.| oc)

we conclude in Section 7. or (P.advisor=Rl.person and Rl.conf=C conf))))
and R person | N PREDEF- SET

2. ILLUSTRATIVE EXAMPLE Figure 2: Query retrieving top 100 conferences that researchers

_ . in PREDEF-SET are likely to attend, based on factors F1-F4.
Suppose that a sophisticated marketer wants to design person-

alized promotional packages for attendees of certain scientific con- Note that in our model we assume, as in other prior work [9, 1],
ferences. To optimize his strategy, he would like to find out who are that the scores of tuples in each table are available. Such scores
the researchers most likely to attend which conferences, and whatmay be computed based on surveys (&@n ference.o); by ma-

are their main reasons. The marketer decides that he could esti-chine learning methods (e.g., examine historical attendance records
mate the answer with reasonable accuracy by taking into accountto learn a model foRResearch.o); or by formulas provided by the

the following factors: query issuer (e.g., the marketer believes tRabple.c should be
F1: Travel cost for each potential attendee to each conferencecOmputed agyears) ™", whereyears is the number of years since
site: a person’s graduation; if tablBeople contains attributgears in-

Ftead ofo, theno is computed on the fly). A full discussion on
rhodeling tuple scores is beyond the scope of this paper. If all ta-
committee member bles were stored in a single DBMS, the marketer would issue the

SQL query in Figure 2.
F3: How important the conference is in its field. QL query g %

F4: Whether the attendee is likely to attend in order to meet with m

F2: Whether a potential attendee has at least one accepted pape
has a tutorial; is a conference organizer; or is a conference

a close collaborator such as his Ph.D. advisor; and how likely person—=advisor——= con
the collaborator is to attend. \ l% /
The marketer finds several sites that each contains part of the & loc &
data he needs. For example, a list of researchers’ contributions
to various conferences can be obtained from DBLif€éhe same Figure 3: Query graph for the example query

site also has information on researchers’ affiliation, and thus their  Query graphs It is easier to visualize this SQL query as the
location. Travel sites return travel costs between any two locations. query graph in Figure 3. Each edge corresponds to a table, while
Conference locations can be obtained from the DBLP website, and each node corresponds to an attriButétwo edges share a node,
IA Genealogy has a fairly large list of researchers’ Ph.D. advisors.

2\\e restrict the model to binary tables. Tables with more join at-
hitp://dblife.cs.wisc.edu/ tributes can be modeled as multiple binary tables.
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then there is a join on that attribute between the two tables. Fo that edge. An SA probe, on the other hand, returns the tuple with
example, edges corresponds to tabl®esearch, and edgess to highest score that has not been accessed so far. We use the notations
tableT'ravel. Edgees also corresponds tbravel. The reason we RA(e) andSA(e) to denote random and sorted accesses on edge
represent this table by two edges is that the table appears twice inrespectively.

the query, a§" and7'1. Whenever a tuple is returned as part of an RA or SA result,
Nodes connected by a path correspond to a logical ‘and’ betweenwe assume that its scosd ) is also returned. An RA probe may

their corresponding joins. Thus, the paidrson - loc - con f cor- return more than one tuple. Aftuples are returned, the cost of the

responds to the clauseperson=T.person and T.loc=C.loEdges operation isCostra + a(k — 1)Costra, WhereCostra is the

emanating from the same node correspond to a logical ‘or’ be- cost of one Web access, afd « < 1is a dampening factor. The

tween the clauses that start with the corresponding tables. Thus rationale is that having a Web request processed by a remote site is
since edgess andes start two paths from the same node, the cor- the main bottleneck, and the number of results returned adds only a
responding clauseR.conf=C.conf)and (R.person=T.person and  small overhead. By contrast, an SA probe only returns one request

T.loc=C.loc)are connected by ‘or'. at a time. However, since these results are accessed sequentially, it
We use directions on the edges to ensure that certain paths arés reasonable to assume that multiple results are sent at once, and
impossible. For example, the pathrson - loc - advisor - con f cached on the query processor’s site. Therefore, we assume that

would be a valid path in an undirected graph. However, this would Costsa = BCostra, for somed < 3 < 1.

correspond to a claug®.person=T.person and T.loc=T1.loc and .

T1.person=R1.person and R1.conf=C1.cdr#)ng ‘or’-connected 3.2 Blndlngs

to the other conditions. Such a clause breaks the semantics of We define ajuery resulto be a set of tuples, one from each table

the SQL query: forR.person = A, T.loc = Shanghai, and in the ‘FROM’ list R, such that the tuples satisfy the conditions in

C.conf = ICDE09, there are many valuéBl.person = B that the ‘WHERE’ clauseC. The set of values for the columns in the

satisfy this clause, because there are many other researchers that atEELECT’ list £ can easily be computed from the query result. A

connected td C DE09. However, this should not contribute to the  brief justification for this definition is provided in Remark 1 at the

likelihood thatA will attend IC DE09. To insure the equivalence  end of this subsection. This set of tuples induces a binding of all

between the query semantics and the paths in the query graph, wenodes in the graph to some specific values. In addition, it also in-

impose directions on edges. Nevertheless, our methods are directlyduces corresponding scores on the edges. Conversely, a binding of

applicable to undirected graphs, as well. nodes to values and edges to scores, if it is consistent with the query
Finally, in order to fix the source and destination nodes, we use conditions, induces a unique query answer (and its score). For the

the techniques proposed in [14]. The source attributes are the onessake of clarity, we therefore refer to query resultsasplete bind-

that have selection conditions in the “WHERE" clause, and the ings, defined below.

destination attributes are the ones that appear on the “SELECT"

clause. For instance, the example query abovephason in the DEFINITION 1. LetG = (V, E) be a directed query graph,
“WHERE” clause with selection condition andn f in the “SE- whereV' = {v1,...,v.} and E = {e1,...,em}. Acomplete
LECT” clause, therefore we fix them as source and destination Pindingof G is a vector

nodes respectively. For simplicity, we assume there are exactly B=(a1,...,an,01,...,0m), ai € Val(v;)

one source and one destination (otherwise, add new nodedt; _

connects to all sources via edges with scores 1; connect all desti- such that, for any edge; = v; — v, if the tuple(a;, ax ) belongs

nations tot via edges with scores 1). to Tup(e;) theno; = o((a;, ax)); and otherwiseg; = 0. We say
that edgee; is bound to the tupléa;, ax ), and nodes;, resp. v,

3. DEFINITIONS g pléa;, ax) i 18SP- v

- ; are bound to the values;, resp.ay.

We study join queries of typBELECTL from R whereC, where
R is a list of tables,C is a list of attributes fronfR, andC is a Note that we must allow zero-score values on edges in order to
set of join conditions over attributes frof, connected by and/or  model situations in which not all paths can be instantiated. For ex-
operators. For the remainder of this paper, we assume that the joinample, the vectotA, SIGPOD09, Providence, B, 0,0.8,0.9,
query is represented as a query graph, as described in the previous 4, 0.9, 0.7) is a complete binding of the query graph in Figure 3.
section. Tuple (A, SIGPODO09) is not an instance of tablg . Therefore,

Let G = (V, E) be the (directed or undirected) query graph, o, = 0. Tuple (A, Providence) is an instance oé,, with score
with source nodes anddestination node; s,¢ € V. Each edge 0.8.
e € F corresponds to a table accessible via a Web site, and thus  Qur branch-and-bound strategy involves exploring and possibly
has an associated set of tuples dendfeg(e). For each tupler, discarding a subset of complete bindings (i.e., complete results) at
leto(7) € [0, 1] denotes the score of Similarly, each node € V/ each step. We represent such subsets as partial bindings (i.e., partial
corresponds to an attribute and has an associated domain denotegbsylts), defined below.
Val(v). The domain contains all possible values for that attribute,

over all the tables that have that attribute. For any edgeé its DEFINITION 2. LetG = (V, E) be a query graph, wherg =
endpoints are nodasandwv, thenTup(e) C Val(u) x Val(v). {vi,...,vn}and E = {e1,...,em}. We denote by *" a new
symbol, such that ¢ (U_;Val(v;)). A partial bindingof G is
31 COSt MOdel the vector
Our goal is to minimize the number of Web accesses necessary p,p _ (bt b [01, Ll - [y Lom]), b € (Val(v:)Ufs)),

to compute the query results. As in [7], we consider two types of

probes:random access probes (Ra)dsorted access probes (SA)  such that for each < j < m, [¢;, L;] C [0, 1] and [¢;, L;] con-

We first define them below, and then explain their contribution to tains at least one score(r) of a tupler € Tup(e;).

the cost function. For any v; € V, we usePB[v;] to denote the value aPB
In an RA probe, we know the value for at least one position in corresponding ta; (i.e., PB[v;] = b;). Similarly, for anye; € E,

the tuple, and we ask for all the tuples that match that value, along P Ble;] denotes the rangg,, L;] corresponding t@;.
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Figure 4: Generating bindings for a simplified version of the graph

in Figure 3 (dashed edges are unbound): (a) the graph and its

associated edge tuples and scores; (b), (c) two different partial bindings.

Note that, unlike a complete binding, a partial binding allows a
node instanceé; to be the new symbol *. This signifies that node
v; has not been bound to any instance froa (v;). For the range
of an edges;, we will only allow two cases: Eithef; = 0 < L;, in
which case we say that is unbound or ¢; = L; = o(7), where
o(r) is the score of a tuple € T'up(e;). In the latter case, we say
thate; is boundto the tupler, and denote it by; — 7.

As we detail in Section 4, our algorithm generates new partial
bindings PB’ from a current partial binding® B using probes on
unbound edges;. In general, in the new partial bindings edge
will be bound to one of the tuples € T'up(e;) returned by the
probe (some exceptions occur for SA probes).

Executing one edge binding: We use the notation
PB' = (PB,e; — 1) to signify that PB’ was created from
PB by binding edgee; to 7. Edgee; must be unbound i B.
More precisely,PB’ is computed as followsP B'[e;] = o(7);
if e, = v; — vy and7 = (a,b), then PB'[v;] = a and
PB'[v] = b; all other entries in° B’ are the same as iRB. This
edge binding operation is well-defined onlyriis compatible with
PB,i.e.,PB[v;] € {a,*} and PB[uvi] € {b, *}. In other words,
we only execute an edge bindiag — 7 if the endpoints ot; are
either unbound, or bound to the same values as in

EXAMPLE 2: Consider the query graph from Figure 4(a). A
complete binding for this graph is, e.g.,

B = (ag, bz7 Ci, d17 0.17 0.37 0.97 17 1).

Two partial bindings for the graph are illustrated in Figures 4(b)
and (c): unbound edges are dashed, while bound ones are solid;
ranges/scores are indicated along the edges; and the binding val-
ues for nodes are indicated by small arrows. Hence, Figure 4(b)
illustrates the partial binding

PB1 = (a37 bz7 Ci, d17 [07 0.7]7 0.37 0.97 1, 1),
and Figure 4(c) corresponds to

PB; = (as, b2, c1,d1,0.1,[0,1],0.9,1,1).

PB;y; = (ci1,...,¢n,[r1, Ri],. .., [Tm, Rm]).

We say thatP B; is included inPBs, and write PB; C PBa, if
forall 1 <1i < n,eitherc; =b; orc; = x;andforalll < j < m,
[¢;, Li] C [rs, R;). If, in particular, P B, is a complete binding and
is included inPBs, we say thatP B, belongs toP B, and write
PB; € PBs.

REMARK 1. In the example from Section 2, there is a unique
complete binding for each paifR.person,C.conf). However,
this is not usually the case. Suppose that tableivel has an
extra attributeOptionI D, and that it contains tupleg; and ¢
as(ID1, A, Providence, 0.9) and(I D2, A, Providence, 0.88).
Then the answe(A, SIGPOD09) is obtained via 2 complete
bindings B: and B2: B; hinds edgee» to ¢1 with a score 0f0.9,
while B> binds it tot, with a score 00.88. ReturningB; and Bs
as separate results gives the marketer additional information; e.g.,
he may have airline clients interested in it. Moreover, our algo-
rithms can still be adapted to return jugtl, SIGPOD09), with
scorescore(Bi), i.e., the maximum score of all complete bindings
generating the pair.

3.3 Computing Scores of Bindings

Let G = (V, E) be a query graph with specifiethurce nodes
anddestination node; s, ¢ € V. GraphG can be seen as a commu-
nication network, in whichs transmits a signal thatmust receive.
The signal can travel along any edge. An edge E fails (gets
disconnected) with probability — = (e), wherer (e) is thesuccess
probability of e. The probabilities of different edges are assumed
to be independent. The probability that a p&h= ejes. .. ex
succeeds, i.e., that the signal travels from one end to the other of
P, is thereforer (P) = TI5_,7(e;). Thereliability of networkG
is the probability that at least one of the paths betweandt suc-
ceeds; equivalently, it is the probability th@tremains connected.
Given the equivalence between the boolean conditions in a SQL
query@, and the structure of its corresponding query gréhhve
propose scoring the answer @ as the network reliability of7.

Note that, even though the nodes are bound to the same values ir]\/lore precisely,

all 3 cases, the bindings are different, because they were gener-
ated via different edge bindings. For example,= (PB1,e1 —
(ag, bg)) = (PBQ,@Q — (bz,cl)), bUtPBl andPBg cannot be
generated from each other via edge bindings.
An example of invalid edge binding in this figurg BB1, e1 —
(a2, b2)), since it conflicts with the binding of nod¢o a3 in P B .
Intuitively, a partial binding is a short-hand notation for a sub-
set of complete bindings. It is therefore natural to talk about an
inclusion relationship between bindings, as follows.

DEFINITION 3. Let PB; and PB; denote two partial bind-
ings, such that

PB; = (b1,...,bn, [l1, L], ..., [lm, Lm])
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DEFINITION 4. LetB = (a1,...,an,01,...,0m) be a com-
plete binding ofG. For any edgee;, we define its success proba-
bility as 7(e;) = o (recall thato; € [0,1]). We define the score
of B, denotedscore(B), to be the reliability of networky under
these edge probabilities.

For partial bindings
PB = (b1,...,bn,[l1,L1],.. ., [lm, Lm]),

we will compute a range of scor¢sin(PB), max(PB)] as fol-
lows: Let theminimum network of B, resp.maximum network of
P B, be the networlG where the success probability of any edge



is defined asr(e;) = ¢;, resp.m(e;) = L;. Thenmin(PB), resp. upper bounds for the scores of all objects in a set. Each such set
mazx(PB), is the reliability of the minimum, resp. maximum, net- has a succint representation as a partial binding. We may store more
work of PB. The following result will be used in Section 4 to  thank (complete or partial) bindings at any given point. While we
explain our strategy for choosing edge probes. still do sorted access in parallel over all edges, we do not follow
such a step by compulsory RA probes on all edges. Instead, we
PROPOSITION 1. Let PB1, P B, be two partial bindings such  design and study several strategies for deciding what RA probes to

that PB; C PBs. Then: execute.

(i) [min(PB1), max(PB1)] C [min(PBz), max(PBs)]. In Throughout this section, we use the query graph from Figure 4(a)
particular, if PB; is a complete bindings, thestore(PB1) € to illustrate these ideas. This graph is obtained from the query
[min(P Bz), max(PBa)]. graph in Figure 3, where edgg was removed for simplicity. As

(ii) If there exists at least one pathR such that all edges oP mentioned above, we assume that each edge in the graph has a

are bound to non-zero values inB1, but at least one such edge is  sorted list of tuple scores, in descending order of scores. Ties are
unbound inP Bz, thenmin(PB1) > min(PB3). If no such path broken in an arbitrary but fixed manner. We say that the topmost
exists, themin(PB1) = min(PBz). tuple has level 1, the next tuple has level 2, a.s.0. We will maintain
: a global levels, which is originally set to 0, i.e., the pointer in each
PROOF. See Appendix A. L] sorted list lies above the first tuple. To execute SA probes in paral-
Computing the reliability of a general network is NP-Hard [13] || on all edges, we incremeatand access the tuple at levebn
The Monte-Carlo algorithm in [4] approximates the reliability of a each edge. If an edge has fewer taaevels, then the result of its

network with arbitrarily high precision. Multiple iterations are ex-  SA probe is undefined, and no further SA probes are executed.
ecuted, and the precision increases with the number of iterations.

Note that one could also compute the network reliability in a deter- PBi,0 = (% %,%%0,1],[0,1],[0, 1], [0,1], [0, 1])
ministic way by the inclusion/exclusion formula over paths. How- PB, 1 = (x,*,%,%,[0,0.9],[0,1],10,0.9], [0, 1], [0, 1])
ever, the complexity of this approach grows exponentially with the PB, 2= (x,x,%,x%,0,0.7],[0,0.5], [0,0.8], [0,0.9], [0, 1])
number of paths, and quickly becomes impractical. Therefore, we PBy 3 = undefined
will .em.ploy the Monte-Carlo algorithm for pomputing the scores Table 1: AllStar bindings for the graph in Figure 4(a).
of bindings, and assume that enough iterations are executed so that ) o
all approximation errors are negligible. . Ol;]r. arl]golrllthrr(ljemploa/s zarallel SA pt;obe?j tobgtenzrate bindings
in which all nodes and edges are unbound, but edge ranges are
4. TOP-K ALGORITHM progressively tighter. We call such bindingdiStar. More pre-
In this section, we present our algorithm for efficiently comput- cisely, theAllStar of levels is defined asPB.,s = (x,...,x,
ing the topk complete bindings of a query graph. Our cost model [0,c7],...,[0,0,.]), whereo; is the score of the tuple on level
assumes that tuple scores are stored remotely and are expensive te in the sorted list ofe;. Fors = 0, PB.o = (%,...,x,
access. To this end, we design an efficient edge probing strategy(0, 1], ..., [0, 1]).

that computes the top-bindings based on a subset of tuple scores.  EXAMPLE 3: The graph in Figure 4(a) has AllStar bindings of

Our strategy generalizes Fagin’s Threshold Algorithm (TA) [2]. levels 0, 1, and 2. They are depicted in Table 1.
The TA algorithm assumes that each object in a databasenhas Our overall approach is described in Algorithm 1 shown in Ap-
attributes stored inn lists. The score of an object is computed pendix B. It takes as input a query gragh which comprises, in
using some monotonic aggregation functifnsuch as min or av- addition to its node and edge structure, information about the data
erage. The algorithm works by doing sorted access in parallel to sources from which edge tuples can be retrieved (via edge probes).
each of them sorted lists. For each obje@ that is seen under The algorithm maintains a set of partial binding§sand a set of
sorted access, TA then does a random access to the other lists teomplete binding . Initially, S = {PB., PB*, ..., PB*},
find the corresponding scores for objégtand computes its over-  where P B is the partial binding having the source node bound to
all scoref(B). Only thek objects with highest overall score are theith value in PREDEF-SET, and all other nodes and edges un-
stored, at any given time. TA defines ttieeshold valuer to be bound; andl” = . As the algorithm executes thehile loop, par-
f(z1,...,zm) (Wherez; is the last object seen under sorted access tial bindings fromS are replaced by new bindings with fewer un-
onlist 7) and halts when thé highest scores are at least equatto bound edges. Eventually, some of the partial bindingS become

In our setting, the objects correspond to complete bindings, and complete bindings, and may be addedZto The set7 stores at
them attributes of an objecB correspond to the: edge bindings mostk complete bindings at any given time, and they are the bind-
in B. The value of an attribute is the score of the corresponding ings with highest scores. The algoritm terminates whEh= k.
edge binding. The monotonic functighis score(B). However, a It may also terminate sooner & becomes empty, which occurs if
direct application of the TA algorithm is impossible in our model, the query graph has fewer tharcomplete bindings (Step 25).
as we explain below. Suppose we started by doing a sorted access During each iteration, we select the bindiRd3’ with maximum
in parallel on all edges, i.e., an SA probe on each edge. For eachupper boundnaz(PB’). If PB’ is a complete binding, we add it
binding e; — SA(e;) that is retrieved under sorted access, we to 7. Otherwise,PB’ is replaced with one or more bindingsB"”
would need to know the objed to which it belongs. However, in  such thatPB” C PB’ (when addingPB” to S, we also com-
our case, one edge binding may be part of many complete bindings,pute [min(PB"), max(PB")]). Each such computation requires
and we have no way of identifying them at this point. Even if an either a round of parallel SA probes, or an RA probe, depending on

edge binding occurred in only one complete bindidor which whether or notP B’ is AllStar. We explain each case below.

we could somehow obtain an identifier, the TA algorithm would Replacing an AllStar (Steps 9-14)/e first increment the level

still require random accesses on all other edges (uBisgd) to and execute all SA probes in parallel, as explained above. If at least
find all the edge bindings iB and their scores. Clearly, thiswould  one probe is undefined, then we do not generate any new bindings.
lead to many expensive edge probes. In this case, no subsequent iteration will enter Step 10 (note that

Instead, our approach modifies the TA method in several crucial PB’ is deleted fromS in Step 6). If, however, all probes are valid,
ways: We maintain sets of objects together, and compute lower andwe add the new AllStar t§. We also bind each edgein turn to its
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tuple of levels, i.e., toSA(e;, s). In total, we add exactlyE| + 1 PB' = PB; =
new partial bindings in Steps 12 and 13. It is trivial to verify that all
these new bindings are includedfhB’. We make the observation
that the setS contains exactly one AllStar as long as the algorithm
passes the test in Step 11, and no AllStar thereafter.

EXAMPLE 4: Table 2 shows three of the six bindings added to
S during the first iteration, as a result of selectidy3’ = PB. o

in Step 5. Refer also to the graph in Figure 4(a).

(*, b1, c2,*,[0,0.7],0.5, [0,0.8], ]0,0.9], [0, 1])
PB(; = (PBs761 — (al,b1))'
(a1,b1,¢2,%,0.9,0.5,[0,0.8],[0,0.9], [0, 1])

Table 4: Enforcing the inclusion property for the graph in Fig-
ure 4(a): PBs € PBs, S0P Bg is not added toS.

%

4 person—=advisor——= coni

A

loc
(b) Real-life query graph

REMARK 2. In Step 13 of Algorithm 1, we could also take an
“eager” approach, by creating partial bindings in which several
compatible edges are simultaneously bound. We show that such an
approach is actually more inefficient than the “lazy” approach we
employed. See Appendix C for details.

5
(a) Synthetic join graph

Figure 5: Graphs used in experiments

6

Replacing other bindings (Steps 15-23or ease of presenta-
tion, we have omitted some details in Step 16 of Algorithm 1. More iteration i. Thenscore(B) > max(PB) for any partial binding
precisely, the edgechosen in this step must have at least one of its P B that belongs teS at the end of any iteratiog, j > i.
endpoints bound to a value, since otherwise we cannot execute an

RA probe. Suppose that= v — v. If both v andv are bound to
valuesa, resp.b, then the RA probe asks whether the tufileb)
exists on edge. If it does, there is bound to the score((a,b));
otherwiseg is bound to 0; the bindings af andv remain the same
in either case. If only one endpoint efis bound, it is possible
that the RA probe returns multiple tuples. In that case, we bind
in turn to each such tuple. In general, there are multiple unbound
edges with one bound endpoint. We choose one randomly from
among them.

The resulting new bindings are addeddp provided that they
satisfy the conditions in Step 19. We discuss the second condition
first. Clearly, this condition ensures that we ke®ms small as

possible, and that we do not run unnecessary iterations by selectmgHence <

duplicate bindings in Step 5. Moreover, it also ensures that we do
not double-count complete bindings in the resultBeT he test can

be executed very efficiently by keeping a hash table on the bindings
in S. The next example illustrates how duplicates may arise.

EXAMPLE 5: Consider two different iterations over the graph
from Figure 4(a): In the first iterations, we choo#®3’ = P By in
Step 5, while in the other iteration, we chod3®’ = P B. in Step
5; PB; and P B; are the bindings defined in Table 2. Suppose that
for P By, we choose the edge= e, in Step 16, and foP B, we
choosee = e; in Step 16. Table 3 shows the bindings generated
during Steps 15-23 of each iteration. Sineds is generated as a
duplicate during the second iteration, it is not addedStagain.

We now discuss the first condition in Step 19. Recall that we
wish to generate new binding3B” from PB’ such thatPB” C
PB’. The testr (1) < L(e) ensures this for all bindings generated
in Step 20. The following example illustrates a situation when the
test fails, i.e.o (1) > L(e).

EXAMPLE 6: Consider the iteration over the graph from Fig-
ure 4(a), in which Step 5 choosd3B’ = PB; as depicted in
Table 4. (BindingPBs was added taS in Step 13 of an ear-
lier iteration, sincePBs = (PBx,2,e2 — (b1,c2)).) Suppose
that for PBs, we choose the edge = e; in Step 16. Then
L(e1) = 0.7, since the range foe; is PBs[e1] = [0,0.7]. The
RA probeRA(e1,u — b1) returns the tuplgas, b1), with score
0.9 > 0.7. Therefore, binding® Bs is not added taS. Note that
PBs C PB4, wherePB, € Sis defined as in Table 3. Hence, all
complete bindings contained iRBs are also contained P By,
and we do not miss any information by ignorifds. On the con-

traTy we eliminate a redundant partial binding.
0 prove that Algorithm 1 works correctly we need the following

two lemmas.

LEMMA 1. Let B be a complete binding added 0 in some
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LEMMA 2. Let B be a complete binding that is never added to
7. Then at the end of each iteration in Algorithm 1, there exists
at least one binding®B € S such thatB € PB (and therefore,
score(B) € [min(PB), max(PB))).

PROOF. See Appendix D [

Let B be a complete binding. We claim thatff ¢ 7 at the end
of Algorithm 1, then all complete bindings @f have scores larger
or equal toscore(B). Let B’ € T be an arbitrary complete bind-
ing. SinceB ¢ 7, Lemma 2 implies that after tHast iteration,
S contains a partial bindind®B such thatB € PB. Therefore,
score(B) < maz(PB). By Lemma 1,maz(PB) < score(B’).
core(B) < score(B’), and this is true for any’ € 7.
We conclude with the following.

THEOREM 1. For any query graphG that admits at leask
complete bindings, the s&t returned by algorithm top(G) con-
tains the topk complete bindings of.

5. EXPERIMENTAL EVALUATION

In this section we report the results of the extensive experimental
study we conducted to evaluate the benefits of our approach for
various query graphs and data distributions. We implemented our
method using Java with SDK 1.5 and ran experiments on a CentOS
machine with 3.0 GHz Intel Xeon CPU and 16 GB RAM.

5.1 Experiment setup

We implemented Algorithm 1, which throughout this section is
referred as th&MART method. In all experiments, PREDEF-SET
is the entire domain of the source attribute. We also implement a
rank-join [3] based approaclR]) as follows: The rank-join algo-
rithm is first applied to each join path to generate thetgpin re-
sults with the scoring function being the product of all edge scores.
We then apply the rank-join algorithm to the graph treating each
path as data sources to produce the overallktgpin results with
the scoring function being the network reliability. Note that we ex-
tend the original rank-join algorithm to consider random access as
well as sorted access. We do not compare with the naive approach
which instantiates and sorts all join results because both approaches
we study are orders of magnitude better.

We consider various graphs in our experiments. We evaluate our
approach using both synthetic and real world datasets (the moti-
vating example) as detailed in Appendix E. Due to space con-
straints, we show experimental results only for one synthetic join
graph (see Figure 5(a)), and for the join graph over real world



PB.1 = (x%,%,x%,10,0.9],1]0,1],]0,0.9], [0, 1], [0, 1])
PB, = (PB*,1761 _ (a17bl)) = (a17b17 *, %, 0.9, [07 1]7 [0709]7 [07 1]7 [07 1])
PB; = (PB*ylveQ _ (b17cl)) = (*7b17617 *, [0709]7 17 [0709]7 [07 1]7 [07 1])

Table 2: Bindings computed during the first iteration for the graph in Figure 4(a).

Step 5: PB" = PB; = (al,bl, *, %, 0.9, [0, 1}, [ ,0.9]7 [0, 1}, [0, 1})
99 PBS:(a17b17017*70~9717[070'9}7[071}7 071])
Steps 15-23 |5 —(ay. b1 2, %.0.9.0.5,10,0.9], [0, 11, [0, 1]

[
I
Step 5 PB’ = PBy = (x,b1,¢1,%,0,0.9],1,[0,0.9], [0,1],[0,1])
Fails Step 19:| PB3 = (a1, b1, c1, *,0.9,1,[0,0.9], [0, 1], [0, 1])

Table 3: Bindings generated in Steps 15-23 of two different it@tions, for the graph in Figure 4(a): P Bs is generated twice, but only
added once toS.

datasets from Figure 5(b). For synthetic datasets, we consider vari- We show in Appendix E how we extract real world datasets. Ta-

ous types of data distribution (uniform v.s. skewed, uncorrelated ble 5 shows the top-3 bindings as well as the edge scores for the
v.s. correlated). We evaluate the performance by counting the real dataset experiment. As shown, our algorithm returns reason-
number of SA and RA probes, as defined in Section 3.1. We set able results for such a real life query. In particular, all edges are

a=0.1and3=0.1 and reporfoin Cost =3 p, .op. COStRA + instantiated for each of the 3 bindings, indicating that every path

>oa probe Costsa. contributes to the final score of the bindings. Although the third
binding has the highest score on one of the paths (the single edge

5.2 Uniform Datasets pathei), the other two bindings have relatively high scores on all

. . aths, therefore and result in higher overall score.
Figure 6(a) shows the Join Cost for tB&ART and RJ meth- P uitinhig v

ods for the uniform uncorrelated dataset. The x-axis is the num-
ber of top4 answers computed. We vakyfrom 10 to 100. As

shown, theSMART method clearly outperforms tHe] method in

all four distributions. In addition, the cost of iR method is the ~-RJ -m-SMART

same over alk values. This can be explained as follows. First 30000

of all, since multiple paths may share the same edge an&the 25000 | ¢————0—0—0—0—0—¢
method is applied to each path of the graph, it incurs cost on the 20000

same edge repeatedly (ejgatha — b — canda — g — f share 15000

edgea). More importantly, theRJ method computes the topre- 10000 ./.—.—.—l—-'-’.—.'—.—.
sult on the path level, making it difficult to decrease theeshold 5000

value [3]. AssumeR] joins pathp; andp. and it computes the 0o B
threshold value asnax(f(E,gi;, ng)wm), f(Egi)w.mt, Etfg,)), 10 20 30 40 50 60 70 8 90 100
whereEt(?p andEﬁf)Mem refer to the edge scores of the top-1 and

current join result on patp;, and f is the computation of network

reliability. Even if the current join result on pagh has a low score, Figure 7: Cost of top-k join queries for the real-world dataset

it could still have high scores on a few edges along the path, making
the score of the overall join result high. In fact, we observe in the  Figure 7 shows the cost of tt8VART andRJ approaches for the

experiments that even the top-1 join query requiresRhenethod real-world experiments. Similar as the synthetic experiments, the
to retrieve all join results on each path, which explains whyRhe SMART method achieves significant cost savings compared with the
method has the same cost overfallalues. Compared with tHeJ RJ method. On average, tI8MART method beats thRJ as much

method, theSMART method reduces the cost by 68% on average. as 70%. This demonstrate that our algorithm is practical when used
in real life applications.

5.3 Skewed and Correlated Datasets 6. RELATED WORK

Figure 6(b), 6(c) and 6(d) show the performance comparison for  Top-% query processing has been studied extensively in various
skewed and correlated datasets. As shown, the performance gaiyreas; see, e.g., [2, 7, 12]). In the typical toguery model, the
of the SMART method magnifies as the datasets have skewed andscore of each object is computed based on a number of attributes
correlated distribution. Th&J method performs similarly over  gtored at data sources. The best known Itoplgorithm is the
skewed, correlated, and uniform datasets, largely due to the factiyreshold algorithm (TA) proposed by Fagin et al. in [2], which
that it has to instantiate all the join results on each path. By contrast, requires both sorted and random accesses. The NRA algorithm im-
the SMART method performs better over the skewed (32%) and cor- proves over TA by considering only sorted access, which is cheaper
related dataset (24%), versus the uniform dataset. We attribute thisthan random access. Marian et al. [7] proposed the Upper strategy
cost reduction to the fact that in the skewed dataset the tuple scoregor the case when only random access is available. Theobald et
drop faster, and thus the SA probes could effectively reduce the | [12] studied topk queries with probabilistic guarantees and pro-
upper bound of unseen bindings. For the correlated dataset, ouryosed a series of approximate variants of TA to reduce the run-time
SMART method benefits by identifying early a few partial bindings  cost. However, all these studies assume that a universal ID for each
instantiated from the correlated path edges that are likely to have gpject is available in each data source, which is not practical in our

very high scores. join query scenario. In fact, under the join model in our work, an
. object - which in this case is a complete binding - is only known
5.4 Real-World EXpe”mentS after the scores on all data sources are probed.
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Figure 6: Cost of top+ join queries for synthetic join graph: (a) Uniform Uncorrelated; (b) Skewed Uncorrelated; (c) Uniform
Correlated; (d) Skewed Correlated

Bindings (e1, €2, €3, €4, €5, €6) score

(“Tao Li", “Washington”, “Mitsunori Ogihara”, “CIKM 2004” ) (0.833, 0.34,0.75, 0.8, 0.833, 0.34)0.9627
(“Tao Li", “Toronto”, “Mitsunori Ogihara”, “SIGIR 2003" ) (0.667,0.7,0.8,0.8,0.667,0.7)] 0.9471
(“Daphne Koller”, “Seattle”, “Joseph Y. Halpern”, “IJCAI 2001") | (0.9, 0.142, 0.9, 0.003, 0.9, 0.041)) 0.9137

Table 5: Top-3 Bindings of real-world experiments

Algorithms for topk join query processing have been proposed
in [3, 8]). llyas et al. [3] introduced a rank-join algorithm that We proposed a novel branch-and-bound approach fok fom
makes use of the individual orders of its inputs to produce join query processing, under a cost model in which data access is ex-
results ordered on a user-defined scoring function. The rank-join pensive. Each data instance has an associated score. We model
algorithm [3] outperforms theg* algorithm [8] by using a score- the score of the overall answer as a network reliability problem.
guided join strategy, effectively reducing the score threshold. How- Our algorithm dynamically retrieves a subset of the data on each
ever, as we mentioned in Section 1, these two approaches are dejoin edge, and maintains tight upper and lower bounds for sets of
signed for a single join path and cannot be directly applied to the answers. We conduct experiments with different types of datasets
join graph considered in this paper. In addition, both of their mod- and query graphs, and show that our algorithm significantly out-
els consider inner join, assuming that each answer in thé tegt- performs the rank-join algorithm. The benefits further improve if
meets the join condition and instantiate scores on each data sourcegata scores are correlated and/or skewed, which is often the case

whereas in our join graph model, a binding could instantiate a sub- for real-life datasets.
set of the data sources and still have a high score.

A complete binding of the query graph can be translated into g,
a DNF formula, with one clause corresponding to each source-
to-sink path. In this context, Ré et al. [9] proposed a novel ap-
proach for topk queries in probabilistic databases. The method
runs several Luby-Karp simulations [4] in parallel, to approximate
the score for each answer. However, their approach requires that [3]
all answers be computed a priori, and the goal is to minimize the ]
number of simulations. In our model, pre-computing all answers
means accessing all scores in each remote data source, which sim-s5
plifies to theNai ve approach. In fact, our explicit goal is to min-
imize the number of such source probes. Note, though, that the (6]
two approaches are orthogonal: one could combine them in order 71
to minimize both probing and computation costs.

Top-k query processing in probabilistic database is studied
in [10, 6, 15]. In probabilistic databases, the rank of an item is
decided by its score in combination with its probability. Soliman et
al. [10] investigate two tog semantics (U-Top and U%Ranks)
in uncertain databases and propose new formulations fok top-
queries. Yi et al. [15] propose an improved version of algorithms
for the same query. Li et al. [6] propose two parameterized rank-
ing functions PRFEF* and P RF ) for top-k query in probabilistic [12]
databases and present novel generating function-based algorithms
for efficient query processing. [13]

Theobald et al. [11] design the TopX retrieval engine for the top- [14]
k query processing for semistructured data. In their work, they
adopt theeagerstrategy to join tuples obtained from sources after [15]
a round of sorted access, which as we have discussed (Remark 2?
could be incorrect. In addition, TopX assumes that there exists 16]
a unique ID for each documenddc id and it is accessible from
each tuple, which makes it not directly applicable to our problem.

As such, theeagerstrategy is limited to join tuples from sources
that are neighbors of each other.

(1]

(2]

(8]
E)
[10]

[11]

7. CONCLUSIONS
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APPENDIX
A. PROOF OF PROPOSITION 1

PROOF. SincePB; C PBs, claim (i) is immediate.

To see why (ii) is true, suppose first that there exists a path
satisfying the conditions as stated. legte P be an edge which
is unbound inPB;. This implies thatP Bz[e;] = [0, L;], so in
the minimum network ofPB., w(e;) = 0. Therefore, pathP
always fails, so it contributes nothing to the network reliability
min(PBz). By contrast, sincé’Bi[e;] = o; > 0 for all edges
e; € P, itfollows thatm(P) > 0in the minimum network o By,
so P contributes towards the network reliabilityin(PB:). Be-
causePB; C PB,, any other pattP’ has at least the same proba-
bility in the minimum network ofP B, as in the minimum network
of PBs. This implies thatnin(PB;) > min(PB2). For the last
claim, if no pathP satisfies the stated conditions, it follows that:
either P contains an unbound edge in baB; and PB.; or all
edges ofP are bound in boti? B; and P B. In the first situation,
m(P) = 0 in both minimum networks, while in the second situ-
ation, 7(P) is the same in both minimum networks. Since this is
true for all pathsP, min(PB1) = min(PB2). O

B. TOP-K ALGORITHM

Algorithm 1 Finding top4 Complete Bindings
top-k(G)[H]
1. S — {PB.,, PB',...,PB"}
{wherePB‘ = (Val;, ,...,%,[0,1],...,[0,1])}
{Val;: ith value in PREDEF-SET
2:T 10
3: s < 0 {level of SA probe$
4: while |T| < kdo
pick PB' € S s.t. maxz(PB') = maxppes maz(PB)
deletePB’ from S
if PB’is complete bindinghen
T —TU{PB'}
else if PB’ is AllStarthen
s < s+ 1; do SA probes of levet on all edges
if all SA probes are definetien
S — SU{PB. s}
S — SU{(PBu,s,e; — SA(ei, s))}, Ve; : edge
end if
else
choose unbound edge PB’[e] = [0, L(e)]
do RA probe ore
for each tupler € RA(e) do
if o(7) < L(e) AND (PB’,e — 1) ¢ S then
S—SU{(PB'e—T1)}

5
6
7
8
9
10
11
12
13
14
15:
16:
17
18
19
20
21
22
23
24

end if

end for
end if

. if S ==0then

25: return7

26: endif
27: end while

28: returnT

C. EAGERVS. LAZY APPROACHES

In Step 13 of Algorithm 1, we could also take an “eager” ap-

proach, by attempting to create partial bindings in which several
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compatible edges are simultaneously bound. In Example 4, such
a blndlng could bePBLg = (PB*A,l,el — (ahbl),eg —
(b1, c1)), which is valid, since both edge bindings require the value
in nodeu to beb; . Instead, we ignore this possibility, and allow the
algorithm to generat® B, » in Step 20 of a later iteration, either as
(PBi1,e2 — (b1,c1)), or as(PBaz,e1 — (a1,b1)). Suppose that
PB» is generated a§PB1, e2 — (b1,c1)), during the iteration
for which PB; is chosen in Step 5. This will require executing the
RA probeRA(e2,u — b1) in Step 17 of that iteration. Hence, we
will access the tupléb:, c1) for a second time (the first time was
as the result of the prob8A(ez, 1).) Therefore, we appear to be
inefficient when it comes to minimizing the number of edge probes.

There are two reasons for which we choose this “lazy” approach
to edge binding in Step 13. First, notice that executing the RA
probeRA(e2,u — b1) in a subsequent iteration is not superfluous,
as this probe also returns the tupbe, c2), which is not returned by
the probeSA(ez, 1). In fact, if after the first iteratio contained
only PB; 2, but not PBi, then we could not later generate any
complete bindings in which; — (a1,b1) andez — (b1, c2). But
discarding such complete bindings at this point is incorrect, as we
cannot guarantee that they are not among thektof-he correct
alternative is to put bot B, » and PB; in S, thus increasing the
size of S. This is a non-trivial problem: In the extreme case, all
|E| edge bindings:; — SA(e;, 1) may be mutually compatible
(instead of juste; andez). In such a case, the eager approach
would have to ad@!'”! partial bindings taS in order to maintain
correctness (each of these bindings would leave a different subset
of edges unbound).

Second, note that P B; € S, it may still be selected in Step 5 of
a later iteration, which may still trigger the RA probA (e2, v —
b1). We conclude that the lazy approach is in fact more efficient
than the eager one.

D. PROOF OF LEMMA 1 AND 2

PrROOF Lemma 1 We use induction on iteration Forj =
1. B is added to7 if and only if B is selected in Step 5, so
score(B) = maxz(B) > max(PB) for any PB that belongs
to S initerationi. Suppose the claim is true for some iteratjorin
iterationj + 1, the only new partial binding®B" in S are those
generated either in Steps 9-14, or in Steps 15-23, from the binding
PB’ chosen in Step 5. As discussed abad3” C PB’, which
impliesmaz(PB") < maxz(PB’). SinceP B’ belongs taS after
iterationj, max(PB’) < score(B), and the claim follows. [

PrROOF Lemma 2:Each edge:; in B is bound to a tuple; €
Tup(e;), with tuples on adjacent edges having compatible node
bindings. Lets; be the level of tuple; in the sorted list on edge.
Without loss of generality, assume that< ... < s,,. Then along
each edge;, any tupple on a leved < s; — 1 has score at least
as large az(7;). We deduce thaB € PB,  forall s < s; —

1. Moreover, the algorithm passes the test in Step 11 during any
iteration prior to choosing®B’ = PB. s, —1 in Step 5. Therefore,

S contains oneP B, 5, with s < s1 — 1, during all such iterations,

(If the algorithm returns without ever choosid®B.. s, —1 in Step

5, then our claim holds).

OncePB, -1 is chosen in Step 5, Steps 9-14 are executed.
The test in Step 11 is still true, since there exist tupleat levels
s; > s1 on all edges;. Therefore,PB1 = (PBx,s,,e1 — T1)
is added taS. Note thatPB; binds edge:; to tupler;, the same
asB. Foralli > 2, PBi[e;] = [0, Ls, (e;)], whereLg, (e;) is the
score of the tuple on level; in e;. Sincer; has levels; > s1, it
follows thato () € [0, Ls, (e;)]. We deduce thaB € PBs.

The binding P B, remains inS until PB; is chosen in Step 5



of a later iteration. Then, Steps 15-23 are executed e, elenote Nodes| Edges| Paths| Cuts
the edge chosen in Step 16; must be adjacent te;, so we can Graph 1 6 8 8 9
do an RA probe. Since; is compatible withry, tupler;, is among Graph 2 8 11 9 27
those returned by the RA probe. Moreove(r:) < Ls, (ex), as Graph3| 7 10 16 8

discussed above. Therefol®Bs = (PBx,s,, €1 — Ti, €5 — Tk)

is added taS, and B € PB>. We can now repeat this argument o
with PB, instead ofPB;. By induction, we show that after any Table 6: Graph Statistics
iteration there exist® B, € S with » bound edges; < m, such

thatB € PB,. If r = m andPB,, = B is added taS, then it is

never deleted, sincB is never selected itr. L[] their corresponding scores. Let;(w;, score) denote a scored

tuple, wherev; andv; represent the values of the tuple correspond-
ing to the end nodes of its edge, aswdre is its score. Each tuple
E. GRAPHS AND DATASETS USED IN EX- may join with multiple tuples on other edges. In our dataset, we
PERIMENTS set the number of tuples on each edge to 200 and the average fan-
out of each tuple to 4. The tuple scores are generated randomly,
as explained below. We are interested in studying the effect of the
following two parameters on the efficiency of the methods:

e Uniform vs. Skewed score distributionWe generate two
datasets: In the first dataset, scores on an edge are drawn
(b) Graph 2 from the uniform distribution off0, 1]. In the second dataset,
scores on an edge follow the Zipf’s distribution [16]. With
a traditional Zipf’s distribution £ = 1), the tuple score is the

%
/91_%\ inverse of its rank.

person—s-advisor—— con e Edge-Correlated vs. Uncorrelated scoreJuples that join,
\ l% / from adjacent edges, may or may not have correlated scores.
% loc & We test the performance of our approach in both scenarios.
For correlated datasets, we pick a join path for which a high-
score tuple from one edge implies high scores of the join part-

ners from other edges. We limit the correlations to be among
the top few (10%) tuples on the selected path.

(c) Graph 3 (d) Real-life query graph
Figure 8: Graphs used in experiments

For testing purposes, we created three different graphs, in or- [Real-world Dataset]: We use the motivating example dis-
der to study the effect of various graph properties on the efficiency cussed in Section 2 for the real-world experiment (Figure 8(d)). In
of each method. Figure 8 shows the three graphs used in our ex-such a query, we are trying to find the téfindings person, loca-
periments (with numbers annotating nodes and letters annotatingtion, advisor, conferenge In particular, edge scores are computed
edges). Because of limitation of space, we only present results as follows.
for Graph 1. In all three graphs, we assume the leftmost and the
rightmost nodes are the source and destination nodes, respectively.
Rather than assigning directions to edges in some arbitrary manner,
we choose to use undirected edges. This is because the number of
undirected paths between the source and destination is higher than
the number of directed paths, making each instance more challeng-
ing. We want to point out, however, that our methods are directly
applicable to both directed and undirected graphs.

Graph 1 has 8 distinct paths between the source and destination e The scores of edge: andes are computed as 100 divided by

e The scores of edges andes are computed based on the re-
searcher’s papers accepted by the conference. For each paper,
the researcher gets a score of 1 divided by the number of au-
thors of the paper. For example, a researcher gets a score of
0.7 if he has two papers with 2 and 5 authors accepted by the
conference. Since this score can reach a value greater than 1,
we set an upper bound of 0.9.

nodes, such ag — b —canda —g — e — h — c. Italso has 9 the distance (in miles) between the researcher and the confer-
minimum cuts; for instancea( d) or (c, h, d). Graphs 2 and 3 are ence location, with an upper bound of 0.7.

designed to have comparable number of nodes and edges as Graph 4 \we assign a score between 0.3 to 0.9 to edgeased on the

1, but to significantly differ in either the number of paths, or the conference reputation.

number of cuts. Recall that, by Proposition 1(ii), the lower bound . . .

on the score of a binding increases only when an entire new path ~ ® The relation score between a researcher and his or her advisor
is bound. In graphs with more paths, we expect the lower bounds (edgee.) is based on the graduation year: it gets a score of 0.8
to increase more quickly. Conversely, one can see that the upper when the researcher was still under supervision and decrease
bound decreases quickly if we bind an edge that belongs to many by a factor of 2 every year after graduation.

cuts. We expect this to happen for Graph 3, We list the number of  \yg exiracted data from a snapshot of the DBLife dataset, which
nodes, edges, paths and cuts of the three graphs in Table 6. Graph,nains the publication and conference information up to the year
1 has similar number of cuts and paths; Graph 2 has more cuts thanyt 5006, In order to find genealogy information of researchers, we
paths; while Graph 3 has more paths than cuts. use the data from the Al Genealogy Profesthich provides ge-

We test our algorithm using both synthetic and real world o410qy information for researchers in Al area. By corroborating
dataset. the data from Al Genealogy and DBLife, we were able to check out

[Synthetic Dataset]: We generate a variety of datasets for our gg | researchers, as well as their advisors. We manually retrieved
experiments, which model different types of real-life instances. For

each edge in one of the three graphs, we must generate tuples andhttp://aigp.eecs.umich.edu/
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Figure 9: Cost of top+ join queries for the large scale dataset: (a) Uniform uncorrelated; (b) Uniform correlated; (c) Skewed
uncorrelated; (d) Skewed correlated

the affiliation of the researchers and conference locations and com-
puted the distance between researchers and conferences for edge
e2 andeg. Our real world datasétontains information for 91 re-
searchers and 110 conferences.

F. LARGE DATASETS
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Figure 10: Cost of top+ join queries as a function of fanout

In previous section, we show the performance of our approaches
in a fairly small dataset, with each edge hosting 200 tuples with a
fanout of 4. Despite the superiority of tIBART method, we are
also interested in how it scales in large dataset and with large fanout
value. Figure 10 plots the cost for tR8 andSMART methods over
uniform uncorrelated dataset for a fanout value from 2 to 8. As the
fanout value grows, the cost for t8ART grows steadily in a slow
pace. Compared with a fanout of 2, the cost 8ART method
grows to 5.2 times for a fanout of 8. On the contrary, the cost
for the RJ grows more than 34 times for the same fanout change.
These results demonstrate that our approach is extremely suitable
in datasets where heavy joins are expected (arge fanout).

Figure 9 plots the cost for thRJ and theSMART methods in
large datasets, with the number of tuples on each edge ranging from
20 to 20000 and a fixed fanout of 4. Under four different types
of datasets, th&MART method unanimously demonstrates further
benefits compared the other two methods. By increasing the size
of the dataset by 1000 times, the cost of 8MART method only
grows 117.53, 137.33, 2.22, 3.05 times for each of the four datasets
respectively. This is because tB&ART method can prune out a
large set of unnecessary binding processing by maintaining a tight
upper bound. On the contrary, the cost of Rlemethod grows by
a factor of 1084 times among all the four datasets simply because
it has to expand all partial bindings on each join path.

“http://paul.rutgers.edw/alexng/dataset.txt
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