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ABSTRACT
We consider the problem of efficiently finding the top-k answers
for join queries over web-accessible databases. Classical algo-
rithms for finding top-k answers use branch-and-bound techniques
to avoid computing scores of all candidates in identifying the top-k
answers. To be able to apply such techniques, it is critical to effi-
ciently compute (lower and upper) bounds and expected scores of
candidate answers in an incremental fashion during the evaluation.
In this paper, we describe novel techniques for these problems.

The first contribution of this paper is a method to efficiently com-
pute bounds for the score of a query result when tuples in tables
from the “FROM” clause are discovered incrementally, through ei-
ther sorted or random access. Our second contribution is an al-
gorithm that, given a set of partially evaluated candidate answers,
determines a good order in which to access the tables to minimize
wasted efforts in the computation of top-k answers. We evaluate
our algorithms on a variety of queries and data sets and demon-
strate the significant benefits they provide.

1. INTRODUCTION
While search engines are becoming increasingly good at return-

ing the most relevant pages for a set of keywords, they are less able
to integrate information from multiple sources in a well-structured
way. For wide-interest domains - the so-called “verticals” - a cer-
tain degree of integration is built into the engines. Information rel-
evant to that field is downloaded from multiple sources and joined
inside the search engine’s index. However, the process of deciding
which attributes to extract and integrate is mostly manual, and the
approach does not extend to more obscure areas of human interest.

We focus on efficiently computing answers for join queries that
involve Web-accessible databases. Consider the join graph shown
in Figure 1 as an example. Assume that edges represent tables of
user interest extracted from the web and nodes represent attributes
on which two tables join. We consider that each tuple (e.g., (a1, b1)
from T1) carries a score that represents the quality of the tuple. In-
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Figure 1: An example of join graph depicting the join relations
between tables

tuitively, the score for a join of multiple tuples is computed as the
product of the scores of each tuple. Given a value for an attribute
(e.g., a), a possible join query would be to retrieve the value of an-
other attribute (e.g., c) connected to the first attribute via a join path
(i.e., e1 → e2). An important observation is that given a source and
a destination attribute, there may exist multiple join paths connect-
ing them. We consider that each join pathvouchesfor the quality
of the generated join result. Therefore, in addition to the attribute
value in the destination node, the user may be also interested in the
tuples (i.e., edges) that support the join result. In this paper, we
consider the answer (which we call abinding) to the join query as
a combination of tuples from each participating table and compute
the score for the binding based on the score of each tuple. We show
a motivating example in Section 2 and formally define thebinding
in Section 3.2.

In this paper, we consider the major bottleneck of top-k join
query processing to be tuple accessing of web-accessible databases.
If, for instance, the tables involved in one query are stored on differ-
ent servers, and can only be accessed via a Web interface, execut-
ing a single join between two tables may become very expensive,
as Web accesses exhibit high and variable latency. In addition, the
query optimizer in one database will generally have no statistics
about tables stored at remote sites and thus be unable to offer any
improvements over the naive approach.

Top-k join query processing over ranked inputs has been stud-
ied in literature (e.g., [3, 8]). Ilyas et al. [3] propose a rank-join
algorithm that makes use of the individual orders of its inputs to
produce join results ordered on a user-specified scoring function.
Despite the performance advantage, the rank-join algorithm suffers
from two limitations. First, the join queries considered in [3] in-
volve tables that form only one join path. In contrast, we consider
a more general join graph, allowing multiple join paths between the
source and destination attributes.

The second limitation of rank-join algorithm is that it is essen-
tially considering inner-join, which requires the join answer to have
an instantiated tuple on each join edge along the join path. The
study in [5] shows that inner join may produce answers with scores
that are too low to be of interest. Consider the join graph in Fig-
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ure 1. Assume we find one complete join answer with score 0.1 on
each edge and another partial join answer with score 0.9 on edge
e1 ande2 andnull on all other edges. Clearly the latter join an-
swer has a higher score and therefore is of more interest to the user.
Even if the rank-join algorithm could be applied to the join graph
considered in our case, it could not produce the latter answer since
it containsnull tuples on some of the join edges. For compari-
son purposes, we extended the rank-join approach to more general
join graphs. Our experimental results show that our approach is
significantly better than the rank-join based approach.

Our contributions. In this paper, we propose a novel branch-
and-bound algorithm for computing the top-k answers for join
queries over Web-accessible databases. Rather than computing all
the results of the join query, our strategy dynamically retrieves a
subset of tuples from each table, and maintains lower and upper
scores bounds for the query results that include the retrieved tuples.
By ordering the retrieval of table tuples based on the score bounds
of the partial results, our algorithm results in significant savings in
the number of Web accesses. We make the following contributions:

• We propose a model for scoring answers of arbitrary join
graphs based on network reliability. We also develop meth-
ods for computing score bounds for partial answers.

• We present a novel branch-and-bound algorithm which aims
to minimize the number of Web accesses required for com-
puting the top-k answers.

• We evaluate our algorithms on a variety of queries and data
sets and demonstrate the significant benefits they provide.

The rest of this paper is structured as follows. Section 2 presents
a real-life example that we use in our experimental study. The ex-
ample illustrates the concepts that we formally define in Section 3.
Section 4 presents our dynamic probing techniques that efficiently
compute the top-k results. We present our experimental study in
Section 5. A brief review of related work appears in Section 6, and
we conclude in Section 7.

2. ILLUSTRATIVE EXAMPLE
Suppose that a sophisticated marketer wants to design person-

alized promotional packages for attendees of certain scientific con-
ferences. To optimize his strategy, he would like to find out who are
the researchers most likely to attend which conferences, and what
are their main reasons. The marketer decides that he could esti-
mate the answer with reasonable accuracy by taking into account
the following factors:

F1: Travel cost for each potential attendee to each conference
site;

F2: Whether a potential attendee has at least one accepted paper;
has a tutorial; is a conference organizer; or is a conference
committee member.

F3: How important the conference is in its field.

F4: Whether the attendee is likely to attend in order to meet with
a close collaborator such as his Ph.D. advisor; and how likely
the collaborator is to attend.

The marketer finds several sites that each contains part of the
data he needs. For example, a list of researchers’ contributions
to various conferences can be obtained from DBLife1. The same
site also has information on researchers’ affiliation, and thus their
location. Travel sites return travel costs between any two locations.
Conference locations can be obtained from the DBLP website, and
IA Genealogy has a fairly large list of researchers’ Ph.D. advisors.

1http://dblife.cs.wisc.edu/

Suppose that the following structured data is accessible from
these websites.

- TableResearch with attributes{person, conf, σ}, whereσ
is the tuple score, normalized between 0 and 1: Tuples connect re-
searchers to conferences. The valueσ is a measure of the strength
of this connection, based on their roles in that conference (author,
tutorial giver, organizer etc.). For example,(A, V LDB09, 0.9) ∈
Research may mean that researcherA will give a tutorial at
VLDB09. Intuitively, this means he is very likely to attend
VLDB09, so the tuple has a high score. Tuple(A, ICDE09, 0.5)
may mean that researcherA has one accepted paper at ICDE09,
with another co-author.

- TableTravel with attributes{person, loc, σ}: Tuples in this
table reflect how cost-effective it is for a researcher to travel to a
location. For example,(A, Shanghai, 0.1) means that researcher
A has only expensive options for traveling to Shanghai, while
(A, Providence,0.9) means that researcherA has at least one
cheap option for going to Providence; e.g., researcherA may live
in New Jersey and travel by train.

- Table People with attributes{person, advisor, σ}: Tuples
in this table reflect the strength of the professional connection be-
tween a person and their advisor. This strength may be measured
as, e.g., the percentage of papers a person co-authored with their
advisor in the past 5 years; or as the inverse of the number of years
since the person graduated.

- TableConference with attributes{conf, loc, σ}: Tuples con-
tain information on the conference name and location. The valueσ
reflects the importance of the conference in its field.

SELECT TOP 100 C.conf
FROM Research R, Travel T, Conference C,

People P, Research R1, Travel T1
WHERE ((R.conf=C.conf)

or (R.person=T.person and T.loc=C.loc)
or (R.person=P.person

and ((P.advisor=T1.person and T1.loc=C.loc)
or (P.advisor=R1.person and R1.conf=C.conf))))

and R.person IN PREDEF-SET

Figure 2: Query retrieving top 100 conferences that researchers
in PREDEF-SET are likely to attend, based on factors F1–F4.

Note that in our model we assume, as in other prior work [9, 1],
that the scores of tuples in each table are available. Such scores
may be computed based on surveys (e.g.,Conference.σ); by ma-
chine learning methods (e.g., examine historical attendance records
to learn a model forResearch.σ); or by formulas provided by the
query issuer (e.g., the marketer believes thatPeople.σ should be
computed as(years)−1, whereyears is the number of years since
a person’s graduation; if tablePeople contains attributeyears in-
stead ofσ, thenσ is computed on the fly). A full discussion on
modeling tuple scores is beyond the scope of this paper. If all ta-
bles were stored in a single DBMS, the marketer would issue the
SQL query in Figure 2.
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Figure 3: Query graph for the example query

Query graphs It is easier to visualize this SQL query as the
query graph in Figure 3. Each edge corresponds to a table, while
each node corresponds to an attribute2. If two edges share a node,

2We restrict the model to binary tables. Tables with more join at-
tributes can be modeled as multiple binary tables.
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then there is a join on that attribute between the two tables. For
example, edgee6 corresponds to tableResearch, and edgee3 to
tableTravel. Edgee5 also corresponds toTravel. The reason we
represent this table by two edges is that the table appears twice in
the query, asT andT1.

Nodes connected by a path correspond to a logical ‘and’ between
their corresponding joins. Thus, the pathperson - loc - conf cor-
responds to the clauseR.person=T.person and T.loc=C.loc. Edges
emanating from the same node correspond to a logical ‘or’ be-
tween the clauses that start with the corresponding tables. Thus,
since edgese6 ande3 start two paths from the same node, the cor-
responding clauses(R.conf=C.conf)and (R.person=T.person and
T.loc=C.loc)are connected by ‘or’.

We use directions on the edges to ensure that certain paths are
impossible. For example, the pathperson - loc - advisor - conf
would be a valid path in an undirected graph. However, this would
correspond to a clause(R.person=T.person and T.loc=T1.loc and
T1.person=R1.person and R1.conf=C1.conf)being ‘or’-connected
to the other conditions. Such a clause breaks the semantics of
the SQL query: forR.person = A, T.loc = Shanghai, and
C.conf = ICDE09, there are many valuesT1.person = B that
satisfy this clause, because there are many other researchers that are
connected toICDE09. However, this should not contribute to the
likelihood thatA will attendICDE09. To insure the equivalence
between the query semantics and the paths in the query graph, we
impose directions on edges. Nevertheless, our methods are directly
applicable to undirected graphs, as well.

Finally, in order to fix the source and destination nodes, we use
the techniques proposed in [14]. The source attributes are the ones
that have selection conditions in the “WHERE” clause, and the
destination attributes are the ones that appear on the “SELECT”
clause. For instance, the example query above hasperson in the
“WHERE” clause with selection condition andconf in the “SE-
LECT” clause, therefore we fix them as source and destination
nodes respectively. For simplicity, we assume there are exactly
one source and one destination (otherwise, add new nodess andt;
connects to all sources via edges with scores 1; connect all desti-
nations tot via edges with scores 1).

3. DEFINITIONS
We study join queries of typeSELECTL fromR whereC, where
R is a list of tables,L is a list of attributes fromR, andC is a
set of join conditions over attributes fromR, connected by and/or
operators. For the remainder of this paper, we assume that the join
query is represented as a query graph, as described in the previous
section.

Let G = (V, E) be the (directed or undirected) query graph,
with source nodes anddestination nodet; s, t ∈ V . Each edge
e ∈ E corresponds to a table accessible via a Web site, and thus
has an associated set of tuples denotedTup(e). For each tupleτ ,
letσ(τ ) ∈ [0, 1] denotes the score ofτ . Similarly, each nodev ∈ V
corresponds to an attribute and has an associated domain denoted
V al(v). The domain contains all possible values for that attribute,
over all the tables that have that attribute. For any edgee, if its
endpoints are nodesu andv, thenTup(e) ⊆ V al(u)× V al(v).

3.1 Cost Model
Our goal is to minimize the number of Web accesses necessary

to compute the query results. As in [7], we consider two types of
probes:random access probes (RA)andsorted access probes (SA).
We first define them below, and then explain their contribution to
the cost function.

In an RA probe, we know the value for at least one position in
the tuple, and we ask for all the tuples that match that value, along

that edge. An SA probe, on the other hand, returns the tuple with
highest score that has not been accessed so far. We use the notations
RA(e) andSA(e) to denote random and sorted accesses on edgee
respectively.

Whenever a tupleτ is returned as part of an RA or SA result,
we assume that its scoreσ(τ ) is also returned. An RA probe may
return more than one tuple. Ifk tuples are returned, the cost of the
operation isCostRA + α(k − 1)CostRA, whereCostRA is the
cost of one Web access, and0 < α < 1 is a dampening factor. The
rationale is that having a Web request processed by a remote site is
the main bottleneck, and the number of results returned adds only a
small overhead. By contrast, an SA probe only returns one request
at a time. However, since these results are accessed sequentially, it
is reasonable to assume that multiple results are sent at once, and
cached on the query processor’s site. Therefore, we assume that
CostSA = βCostRA, for some0 < β < 1.

3.2 Bindings
We define aquery resultto be a set of tuples, one from each table

in the ‘FROM’ listR, such that the tuples satisfy the conditions in
the ‘WHERE’ clauseC. The set of values for the columns in the
‘SELECT’ list L can easily be computed from the query result. A
brief justification for this definition is provided in Remark 1 at the
end of this subsection. This set of tuples induces a binding of all
nodes in the graph to some specific values. In addition, it also in-
duces corresponding scores on the edges. Conversely, a binding of
nodes to values and edges to scores, if it is consistent with the query
conditions, induces a unique query answer (and its score). For the
sake of clarity, we therefore refer to query results ascomplete bind-
ings, defined below.

DEFINITION 1. Let G = (V, E) be a directed query graph,
whereV = {v1, . . . , vn} and E = {e1, . . . , em}. A complete
bindingof G is a vector

B = (a1, . . . , an, σ1, . . . , σm), ai ∈ V al(vi)

such that, for any edgeei = vj → vk, if the tuple(aj , ak) belongs
to Tup(ei) thenσi = σ((aj, ak)); and otherwise,σi = 0. We say
that edgeei is bound to the tuple(aj , ak), and nodesvj , resp.vk,
are bound to the valuesaj , resp.ak.

Note that we must allow zero-score values on edges in order to
model situations in which not all paths can be instantiated. For ex-
ample, the vector(A, SIGPOD09, P rovidence, B, 0, 0.8, 0.9,
0.4, 0.9, 0.7) is a complete binding of the query graph in Figure 3.
Tuple(A, SIGPOD09) is not an instance of tablee1. Therefore,
σ1 = 0. Tuple(A, Providence) is an instance ofe2, with score
0.8.

Our branch-and-bound strategy involves exploring and possibly
discarding a subset of complete bindings (i.e., complete results) at
each step. We represent such subsets as partial bindings (i.e., partial
results), defined below.

DEFINITION 2. LetG = (V, E) be a query graph, whereV =
{v1, . . . , vn} and E = {e1, . . . , em}. We denote by ’*’ a new
symbol, such that∗ 6∈ (∪n

i=1V al(vi)). A partial bindingof G is
the vector

PB = (b1, . . . , bn, [ℓ1, L1], . . . , [ℓm, Lm]), bi ∈ (V al(vi)∪{∗}),

such that for each1 ≤ j ≤ m, [ℓi, Li] ⊆ [0, 1] and [ℓi, Li] con-
tains at least one scoreσ(τ ) of a tupleτ ∈ Tup(ei).

For any vi ∈ V , we usePB[vi] to denote the value ofPB
corresponding tovi (i.e.,PB[vi] = bi). Similarly, for anyej ∈ E,
PB[ej ] denotes the range[ℓj , Lj ] corresponding toej .
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Figure 4: Generating bindings for a simplified version of the graph in Figure 3 (dashed edges are unbound): (a) the graph and its
associated edge tuples and scores; (b), (c) two different partial bindings.

Note that, unlike a complete binding, a partial binding allows a
node instancebi to be the new symbol *. This signifies that node
vi has not been bound to any instance fromV al(vi). For the range
of an edgeei, we will only allow two cases: Eitherℓi = 0 < Li, in
which case we say thatei is unbound; or ℓi = Li = σ(τ ), where
σ(τ ) is the score of a tupleτ ∈ Tup(ei). In the latter case, we say
thatei is boundto the tupleτ , and denote it byei → τ .

As we detail in Section 4, our algorithm generates new partial
bindingsPB′ from a current partial bindingPB using probes on
unbound edgesei. In general, in the new partial bindings edgeei

will be bound to one of the tuplesτ ∈ Tup(ei) returned by the
probe (some exceptions occur for SA probes).

Executing one edge binding: We use the notation
PB′ = (PB, ei → τ ) to signify that PB′ was created from
PB by binding edgeei to τ . Edgeei must be unbound inPB.
More precisely,PB′ is computed as follows:PB′[ei] = σ(τ );
if ei = vj → vk and τ = (a, b), then PB′[vj ] = a and
PB′[vk] = b; all other entries inPB′ are the same as inPB. This
edge binding operation is well-defined only ifτ is compatible with
PB, i.e.,PB[vj ] ∈ {a, ∗} andPB[vk] ∈ {b, ∗}. In other words,
we only execute an edge bindingei → τ if the endpoints ofei are
either unbound, or bound to the same values as inτ .

EXAMPLE 2: Consider the query graph from Figure 4(a). A
complete binding for this graph is, e.g.,

B = (a3, b2, c1, d1, 0.1, 0.3, 0.9, 1, 1).

Two partial bindings for the graph are illustrated in Figures 4(b)
and (c): unbound edges are dashed, while bound ones are solid;
ranges/scores are indicated along the edges; and the binding val-
ues for nodes are indicated by small arrows. Hence, Figure 4(b)
illustrates the partial binding

PB1 = (a3, b2, c1, d1, [0, 0.7], 0.3, 0.9, 1, 1),

and Figure 4(c) corresponds to

PB2 = (a3, b2, c1, d1, 0.1, [0, 1], 0.9, 1, 1).

Note that, even though the nodes are bound to the same values in
all 3 cases, the bindings are different, because they were gener-
ated via different edge bindings. For example,B = (PB1, e1 →
(a3, b2)) = (PB2, e2 → (b2, c1)), but PB1 andPB2 cannot be
generated from each other via edge bindings.

An example of invalid edge binding in this figure is(PB1, e1 →
(a2, b2)), since it conflicts with the binding of nodes toa3 in PB1.

Intuitively, a partial binding is a short-hand notation for a sub-
set of complete bindings. It is therefore natural to talk about an
inclusion relationship between bindings, as follows.

DEFINITION 3. Let PB1 and PB2 denote two partial bind-
ings, such that

PB1 = (b1, . . . , bn, [ℓ1, L1], . . . , [ℓm, Lm])

PB2 = (c1, . . . , cn, [r1, R1], . . . , [rm, Rm]).

We say thatPB1 is included inPB2, and writePB1 ⊆ PB2, if
for all 1 ≤ i ≤ n, eitherci = bi or ci = ∗; and for all1 ≤ j ≤ m,
[ℓi, Li] ⊆ [ri, Ri]. If, in particular, PB1 is a complete binding and
is included inPB2, we say thatPB1 belongs toPB2 and write
PB1 ∈ PB2.

REMARK 1. In the example from Section 2, there is a unique
complete binding for each pair(R.person, C.conf). However,
this is not usually the case. Suppose that tableTravel has an
extra attributeOptionID, and that it contains tuplest1 and t2
as(ID1, A,Providence, 0.9) and(ID2, A, Providence, 0.88).
Then the answer(A,SIGPOD09) is obtained via 2 complete
bindingsB1 andB2: B1 binds edgee2 to t1 with a score of0.9,
while B2 binds it tot2 with a score of0.88. ReturningB1 andB2

as separate results gives the marketer additional information; e.g.,
he may have airline clients interested in it. Moreover, our algo-
rithms can still be adapted to return just(A, SIGPOD09), with
scorescore(B1), i.e., the maximum score of all complete bindings
generating the pair.

3.3 Computing Scores of Bindings
Let G = (V, E) be a query graph with specifiedsource nodes

anddestination nodet; s, t ∈ V . GraphG can be seen as a commu-
nication network, in whichs transmits a signal thatt must receive.
The signal can travel along any edge. An edgee ∈ E fails (gets
disconnected) with probability1−π(e), whereπ(e) is thesuccess
probability of e. The probabilities of different edges are assumed
to be independent. The probability that a pathP = e1e2 . . . ek

succeeds, i.e., that the signal travels from one end to the other of
P , is thereforeπ(P ) = Πk

i=1π(ei). The reliability of networkG
is the probability that at least one of the paths betweens andt suc-
ceeds; equivalently, it is the probability thatG remains connected.
Given the equivalence between the boolean conditions in a SQL
queryQ, and the structure of its corresponding query graphG, we
propose scoring the answer toQ as the network reliability ofG.
More precisely,

DEFINITION 4. Let B = (a1, . . . , an, σ1, . . . , σm) be a com-
plete binding ofG. For any edgeei, we define its success proba-
bility as π(ei) = σi (recall thatσi ∈ [0, 1]). We define the score
of B, denotedscore(B), to be the reliability of networkG under
these edge probabilities.

For partial bindings

PB = (b1, . . . , bn, [ℓ1, L1], . . . , [ℓm, Lm]),

we will compute a range of scores[min(PB), max(PB)] as fol-
lows: Let theminimum network ofPB, resp.maximum network of
PB, be the networkG where the success probability of any edgeei
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is defined asπ(ei) = ℓi, resp.π(ei) = Li. Thenmin(PB), resp.
max(PB), is the reliability of the minimum, resp. maximum, net-
work of PB. The following result will be used in Section 4 to
explain our strategy for choosing edge probes.

PROPOSITION 1. Let PB1, PB2 be two partial bindings such
thatPB1 ⊆ PB2. Then:

(i) [min(PB1), max(PB1)] ⊆ [min(PB2), max(PB2)]. In
particular, if PB1 is a complete bindings, thenscore(PB1) ∈
[min(PB2), max(PB2)].

(ii) If there exists at least one pathP such that all edges ofP
are bound to non-zero values inPB1, but at least one such edge is
unbound inPB2, thenmin(PB1) > min(PB2). If no such path
exists, thenmin(PB1) = min(PB2).

PROOF. See Appendix A.

Computing the reliability of a general network is NP-Hard [13].
The Monte-Carlo algorithm in [4] approximates the reliability of a
network with arbitrarily high precision. Multiple iterations are ex-
ecuted, and the precision increases with the number of iterations.
Note that one could also compute the network reliability in a deter-
ministic way by the inclusion/exclusion formula over paths. How-
ever, the complexity of this approach grows exponentially with the
number of paths, and quickly becomes impractical. Therefore, we
will employ the Monte-Carlo algorithm for computing the scores
of bindings, and assume that enough iterations are executed so that
all approximation errors are negligible.

4. TOP-K ALGORITHM
In this section, we present our algorithm for efficiently comput-

ing the top-k complete bindings of a query graph. Our cost model
assumes that tuple scores are stored remotely and are expensive to
access. To this end, we design an efficient edge probing strategy
that computes the top-k bindings based on a subset of tuple scores.

Our strategy generalizes Fagin’s Threshold Algorithm (TA) [2].
The TA algorithm assumes that each object in a database hasm
attributes stored inm lists. The score of an object is computed
using some monotonic aggregation functionf , such as min or av-
erage. The algorithm works by doing sorted access in parallel to
each of them sorted lists. For each objectB that is seen under
sorted access, TA then does a random access to the other lists to
find the corresponding scores for objectB and computes its over-
all scoref(B). Only thek objects with highest overall score are
stored, at any given time. TA defines thethreshold valueτ to be
f(x1, . . . , xm) (wherexi is the last object seen under sorted access
on list i) and halts when thek highest scores are at least equal toτ .

In our setting, the objects correspond to complete bindings, and
them attributes of an objectB correspond to them edge bindings
in B. The value of an attribute is the score of the corresponding
edge binding. The monotonic functionf is score(B). However, a
direct application of the TA algorithm is impossible in our model,
as we explain below. Suppose we started by doing a sorted access
in parallel on all edges, i.e., an SA probe on each edge. For each
binding ei → SA(ei) that is retrieved under sorted access, we
would need to know the objectB to which it belongs. However, in
our case, one edge binding may be part of many complete bindings,
and we have no way of identifying them at this point. Even if an
edge binding occurred in only one complete bindingB for which
we could somehow obtain an identifier, the TA algorithm would
still require random accesses on all other edges (usingB’s id) to
find all the edge bindings inB and their scores. Clearly, this would
lead to many expensive edge probes.

Instead, our approach modifies the TA method in several crucial
ways: We maintain sets of objects together, and compute lower and

upper bounds for the scores of all objects in a set. Each such set
has a succint representation as a partial binding. We may store more
thank (complete or partial) bindings at any given point. While we
still do sorted access in parallel over all edges, we do not follow
such a step by compulsory RA probes on all edges. Instead, we
design and study several strategies for deciding what RA probes to
execute.

Throughout this section, we use the query graph from Figure 4(a)
to illustrate these ideas. This graph is obtained from the query
graph in Figure 3, where edgee6 was removed for simplicity. As
mentioned above, we assume that each edge in the graph has a
sorted list of tuple scores, in descending order of scores. Ties are
broken in an arbitrary but fixed manner. We say that the topmost
tuple has level 1, the next tuple has level 2, a.s.o. We will maintain
a global levels, which is originally set to 0, i.e., the pointer in each
sorted list lies above the first tuple. To execute SA probes in paral-
lel on all edges, we increments and access the tuple at levels on
each edge. If an edge has fewer thans levels, then the result of its
SA probe is undefined, and no further SA probes are executed.

PB∗,0 = (∗, ∗, ∗, ∗, [0, 1], [0, 1], [0, 1], [0, 1], [0, 1])
PB∗,1 = (∗, ∗, ∗, ∗, [0, 0.9], [0, 1], [0, 0.9], [0, 1], [0, 1])
PB∗,2 = (∗, ∗, ∗, ∗, [0, 0.7], [0, 0.5], [0, 0.8], [0, 0.9], [0, 1])
PB∗,3 = undefined

Table 1: AllStar bindings for the graph in Figure 4(a).

Our algorithm employs parallel SA probes to generate bindings
in which all nodes and edges are unbound, but edge ranges are
progressively tighter. We call such bindingsAllStar. More pre-
cisely, theAllStar of levels is defined asPB∗,s = (∗, . . . , ∗,
[0, σs

1], . . . , [0, σs
m]), whereσs

i is the score of the tuple on level
s in the sorted list ofei. For s = 0, PB∗,0 = (∗, . . . , ∗,
[0, 1], . . . , [0, 1]).

EXAMPLE 3: The graph in Figure 4(a) has AllStar bindings of
levels 0, 1, and 2. They are depicted in Table 1.

Our overall approach is described in Algorithm 1 shown in Ap-
pendix B. It takes as input a query graphG, which comprises, in
addition to its node and edge structure, information about the data
sources from which edge tuples can be retrieved (via edge probes).

The algorithm maintains a set of partial bindingsS , and a set of
complete bindingsT . Initially, S = {PB∗,0, PB1, . . . , PBk},
wherePBi is the partial binding having the source node bound to
the ith value in PREDEF-SET, and all other nodes and edges un-
bound; andT = ∅. As the algorithm executes thewhile loop, par-
tial bindings fromS are replaced by new bindings with fewer un-
bound edges. Eventually, some of the partial bindings inS become
complete bindings, and may be added toT . The setT stores at
mostk complete bindings at any given time, and they are the bind-
ings with highest scores. The algoritm terminates when|T | = k.
It may also terminate sooner ifS becomes empty, which occurs if
the query graph has fewer thank complete bindings (Step 25).

During each iteration, we select the bindingPB′ with maximum
upper boundmax(PB′). If PB′ is a complete binding, we add it
to T . Otherwise,PB′ is replaced with one or more bindingsPB′′

such thatPB′′ ⊆ PB′ (when addingPB′′ to S , we also com-
pute[min(PB′′), max(PB′′)]). Each such computation requires
either a round of parallel SA probes, or an RA probe, depending on
whether or notPB′ is AllStar. We explain each case below.

Replacing an AllStar (Steps 9-14): We first increment the levels
and execute all SA probes in parallel, as explained above. If at least
one probe is undefined, then we do not generate any new bindings.
In this case, no subsequent iteration will enter Step 10 (note that
PB′ is deleted fromS in Step 6). If, however, all probes are valid,
we add the new AllStar toS . We also bind each edgeei in turn to its
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tuple of levels, i.e., toSA(ei, s). In total, we add exactly|E|+ 1
new partial bindings in Steps 12 and 13. It is trivial to verify that all
these new bindings are included inPB′. We make the observation
that the setS contains exactly one AllStar as long as the algorithm
passes the test in Step 11, and no AllStar thereafter.

EXAMPLE 4: Table 2 shows three of the six bindings added to
S during the first iteration, as a result of selectingPB′ = PB∗,0

in Step 5. Refer also to the graph in Figure 4(a).

REMARK 2. In Step 13 of Algorithm 1, we could also take an
“eager” approach, by creating partial bindings in which several
compatible edges are simultaneously bound. We show that such an
approach is actually more inefficient than the “lazy” approach we
employed. See Appendix C for details.

Replacing other bindings (Steps 15-23): For ease of presenta-
tion, we have omitted some details in Step 16 of Algorithm 1. More
precisely, the edgee chosen in this step must have at least one of its
endpoints bound to a value, since otherwise we cannot execute an
RA probe. Suppose thate = u → v. If both u andv are bound to
valuesa, resp.b, then the RA probe asks whether the tuple(a, b)
exists on edgee. If it does, thene is bound to the scoreσ((a, b));
otherwise,e is bound to 0; the bindings ofu andv remain the same
in either case. If only one endpoint ofe is bound, it is possible
that the RA probe returns multiple tuples. In that case, we binde
in turn to each such tuple. In general, there are multiple unbound
edges with one bound endpoint. We choose one randomly from
among them.

The resulting new bindings are added toS , provided that they
satisfy the conditions in Step 19. We discuss the second condition
first. Clearly, this condition ensures that we keepS as small as
possible, and that we do not run unnecessary iterations by selecting
duplicate bindings in Step 5. Moreover, it also ensures that we do
not double-count complete bindings in the result setT . The test can
be executed very efficiently by keeping a hash table on the bindings
in S . The next example illustrates how duplicates may arise.

EXAMPLE 5: Consider two different iterations over the graph
from Figure 4(a): In the first iterations, we choosePB′ = PB1 in
Step 5, while in the other iteration, we choosePB′ = PB2 in Step
5; PB1 andPB2 are the bindings defined in Table 2. Suppose that
for PB1, we choose the edgee = e2 in Step 16, and forPB2 we
choosee = e1 in Step 16. Table 3 shows the bindings generated
during Steps 15-23 of each iteration. SincePB3 is generated as a
duplicate during the second iteration, it is not added toS again.

We now discuss the first condition in Step 19. Recall that we
wish to generate new bindingsPB′′ from PB′ such thatPB′′ ⊆
PB′. The testσ(τ ) ≤ L(e) ensures this for all bindings generated
in Step 20. The following example illustrates a situation when the
test fails, i.e.,σ(τ ) > L(e).

EXAMPLE 6: Consider the iteration over the graph from Fig-
ure 4(a), in which Step 5 choosesPB′ = PB5 as depicted in
Table 4. (BindingPB5 was added toS in Step 13 of an ear-
lier iteration, sincePB5 = (PB∗,2, e2 → (b1, c2)).) Suppose
that for PB5, we choose the edgee = e1 in Step 16. Then
L(e1) = 0.7, since the range fore1 is PB5[e1] = [0, 0.7]. The
RA probeRA(e1, u → b1) returns the tuple(a1, b1), with score
0.9 > 0.7. Therefore, bindingPB6 is not added toS . Note that
PB6 ⊆ PB4, wherePB4 ∈ S is defined as in Table 3. Hence, all
complete bindings contained inPB6 are also contained inPB4,
and we do not miss any information by ignoringPB6. On the con-
trary, we eliminate a redundant partial binding.

To prove that Algorithm 1 works correctly we need the following
two lemmas.

LEMMA 1. Let B be a complete binding added toT in some

PB′ = PB5 = (∗, b1, c2, ∗, [0, 0.7], 0.5, [0, 0.8], [0, 0.9], [0, 1])
PB6 = (PB5, e1 → (a1, b1)):

(a1, b1, c2, ∗, 0.9, 0.5, [0, 0.8], [0, 0.9], [0, 1])

Table 4: Enforcing the inclusion property for the graph in Fig-
ure 4(a): PB6 6⊆ PB5, soPB6 is not added toS .
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Figure 5: Graphs used in experiments

iteration i. Thenscore(B) ≥ max(PB) for any partial binding
PB that belongs toS at the end of any iterationj, j ≥ i.

LEMMA 2. LetB be a complete binding that is never added to
T . Then at the end of each iteration in Algorithm 1, there exists
at least one bindingPB ∈ S such thatB ∈ PB (and therefore,
score(B) ∈ [min(PB), max(PB)]).

PROOF. See Appendix D

Let B be a complete binding. We claim that ifB 6∈ T at the end
of Algorithm 1, then all complete bindings ofT have scores larger
or equal toscore(B). Let B′ ∈ T be an arbitrary complete bind-
ing. SinceB 6∈ T , Lemma 2 implies that after thelast iteration,
S contains a partial bindingPB such thatB ∈ PB. Therefore,
score(B) ≤ max(PB). By Lemma 1,max(PB) ≤ score(B′).
Hence,score(B) ≤ score(B′), and this is true for anyB′ ∈ T .
We conclude with the following.

THEOREM 1. For any query graphG that admits at leastk
complete bindings, the setT returned by algorithm top-k(G) con-
tains the top-k complete bindings ofG.

5. EXPERIMENTAL EVALUATION
In this section we report the results of the extensive experimental

study we conducted to evaluate the benefits of our approach for
various query graphs and data distributions. We implemented our
method using Java with SDK 1.5 and ran experiments on a CentOS
machine with 3.0 GHz Intel Xeon CPU and 16 GB RAM.

5.1 Experiment setup
We implemented Algorithm 1, which throughout this section is

referred as theSMART method. In all experiments, PREDEF-SET
is the entire domain of the source attribute. We also implement a
rank-join [3] based approach (RJ) as follows: The rank-join algo-
rithm is first applied to each join path to generate the top-k join re-
sults with the scoring function being the product of all edge scores.
We then apply the rank-join algorithm to the graph treating each
path as data sources to produce the overall top-k join results with
the scoring function being the network reliability. Note that we ex-
tend the original rank-join algorithm to consider random access as
well as sorted access. We do not compare with the naive approach
which instantiates and sorts all join results because both approaches
we study are orders of magnitude better.

We consider various graphs in our experiments. We evaluate our
approach using both synthetic and real world datasets (the moti-
vating example) as detailed in Appendix E. Due to space con-
straints, we show experimental results only for one synthetic join
graph (see Figure 5(a)), and for the join graph over real world
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PB∗,1 = (∗, ∗, ∗, ∗, [0, 0.9], [0, 1], [0, 0.9], [0, 1], [0, 1])
PB1 = (PB∗,1, e1 → (a1, b1)) = (a1, b1, ∗, ∗, 0.9, [0, 1], [0, 0.9], [0, 1], [0, 1])
PB2 = (PB∗,1, e2 → (b1, c1)) = (∗, b1, c1, ∗, [0, 0.9], 1, [0, 0.9], [0, 1], [0, 1])

Table 2: Bindings computed during the first iteration for the graph in Figure 4(a).

Step 5: PB′ = PB1 = (a1, b1, ∗, ∗, 0.9, [0, 1], [0, 0.9], [0, 1], [0, 1])

Steps 15-23: PB3 = (a1, b1, c1, ∗, 0.9, 1, [0, 0.9], [0, 1], [0, 1])
PB4 = (a1, b1, c2, ∗, 0.9, 0.5, [0, 0.9], [0, 1], [0, 1])

Step 5: PB′ = PB2 = (∗, b1, c1, ∗, [0, 0.9], 1, [0, 0.9], [0, 1], [0, 1])
Fails Step 19: PB3 = (a1, b1, c1, ∗, 0.9, 1, [0, 0.9], [0, 1], [0, 1])

Table 3: Bindings generated in Steps 15-23 of two different iterations, for the graph in Figure 4(a): PB3 is generated twice, but only
added once toS .

datasets from Figure 5(b). For synthetic datasets, we consider vari-
ous types of data distribution (uniform v.s. skewed, uncorrelated
v.s. correlated). We evaluate the performance by counting the
number of SA and RA probes, as defined in Section 3.1. We set
α=0.1 andβ=0.1 and reportJoin Cost =

P

RA probe
CostRA +

P

SA probe
CostSA.

5.2 Uniform Datasets
Figure 6(a) shows the Join Cost for theSMART andRJ meth-

ods for the uniform uncorrelated dataset. The x-axis is the num-
ber of top-k answers computed. We varyk from 10 to 100. As
shown, theSMART method clearly outperforms theRJ method in
all four distributions. In addition, the cost of theRJ method is the
same over allk values. This can be explained as follows. First
of all, since multiple paths may share the same edge and theRJ
method is applied to each path of the graph, it incurs cost on the
same edge repeatedly (e.g., patha→ b→ c anda→ g → f share
edgea). More importantly, theRJ method computes the top-k re-
sult on the path level, making it difficult to decrease thethreshold
value [3]. AssumeRJ joins pathp1 andp2 and it computes the
threshold value asmax(f(E

(1)
top, E

(2)
current), f(E

(1)
current, E

(2)
top)),

whereE
(i)
top andE

(i)
current refer to the edge scores of the top-1 and

current join result on pathpi, andf is the computation of network
reliability. Even if the current join result on pathpi has a low score,
it could still have high scores on a few edges along the path, making
the score of the overall join result high. In fact, we observe in the
experiments that even the top-1 join query requires theRJ method
to retrieve all join results on each path, which explains why theRJ
method has the same cost over allk values. Compared with theRJ
method, theSMART method reduces the cost by 68% on average.

5.3 Skewed and Correlated Datasets
Figure 6(b), 6(c) and 6(d) show the performance comparison for

skewed and correlated datasets. As shown, the performance gain
of theSMART method magnifies as the datasets have skewed and
correlated distribution. TheRJ method performs similarly over
skewed, correlated, and uniform datasets, largely due to the fact
that it has to instantiate all the join results on each path. By contrast,
theSMARTmethod performs better over the skewed (32%) and cor-
related dataset (24%), versus the uniform dataset. We attribute this
cost reduction to the fact that in the skewed dataset the tuple scores
drop faster, and thus the SA probes could effectively reduce the
upper bound of unseen bindings. For the correlated dataset, our
SMART method benefits by identifying early a few partial bindings
instantiated from the correlated path edges that are likely to have
very high scores.

5.4 Real-World Experiments

We show in Appendix E how we extract real world datasets. Ta-
ble 5 shows the top-3 bindings as well as the edge scores for the
real dataset experiment. As shown, our algorithm returns reason-
able results for such a real life query. In particular, all edges are
instantiated for each of the 3 bindings, indicating that every path
contributes to the final score of the bindings. Although the third
binding has the highest score on one of the paths (the single edge
pathe1), the other two bindings have relatively high scores on all
paths, therefore and result in higher overall score.

������������������������������
�� �� �� �� �� �� �� �� 	� ���

RJ SMART

Figure 7: Cost of top-k join queries for the real-world dataset

Figure 7 shows the cost of theSMART andRJ approaches for the
real-world experiments. Similar as the synthetic experiments, the
SMARTmethod achieves significant cost savings compared with the
RJ method. On average, theSMART method beats theRJ as much
as 70%. This demonstrate that our algorithm is practical when used
in real life applications.

6. RELATED WORK
Top-k query processing has been studied extensively in various

areas; see, e.g., [2, 7, 12]). In the typical top-k query model, the
score of each object is computed based on a number of attributes
stored at data sources. The best known top-k algorithm is the
threshold algorithm (TA) proposed by Fagin et al. in [2], which
requires both sorted and random accesses. The NRA algorithm im-
proves over TA by considering only sorted access, which is cheaper
than random access. Marian et al. [7] proposed the Upper strategy
for the case when only random access is available. Theobald et
al. [12] studied top-k queries with probabilistic guarantees and pro-
posed a series of approximate variants of TA to reduce the run-time
cost. However, all these studies assume that a universal ID for each
object is available in each data source, which is not practical in our
join query scenario. In fact, under the join model in our work, an
object - which in this case is a complete binding - is only known
after the scores on all data sources are probed.
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Figure 6: Cost of top-k join queries for synthetic join graph: (a) Uniform Uncorrelated; (b) Skewed Uncorrelated; (c) Uniform
Correlated; (d) Skewed Correlated

Bindings (e1, e2, e3, e4, e5, e6) score
(“Tao Li”, “Washington”, “Mitsunori Ogihara”, “CIKM 2004” ) (0.833, 0.34, 0.75, 0.8, 0.833, 0.34)0.9627

(“Tao Li”, “Toronto”, “Mitsunori Ogihara”, “SIGIR 2003” ) (0.667, 0.7, 0.8, 0.8, 0.667, 0.7) 0.9471
(“Daphne Koller”, “Seattle”, “Joseph Y. Halpern”, “IJCAI 2001”) (0.9, 0.142, 0.9, 0.003, 0.9, 0.041) 0.9137

Table 5: Top-3 Bindings of real-world experiments

Algorithms for top-k join query processing have been proposed
in [3, 8]). Ilyas et al. [3] introduced a rank-join algorithm that
makes use of the individual orders of its inputs to produce join
results ordered on a user-defined scoring function. The rank-join
algorithm [3] outperforms theJ* algorithm [8] by using a score-
guided join strategy, effectively reducing the score threshold. How-
ever, as we mentioned in Section 1, these two approaches are de-
signed for a single join path and cannot be directly applied to the
join graph considered in this paper. In addition, both of their mod-
els consider inner join, assuming that each answer in the top-k set
meets the join condition and instantiate scores on each data source,
whereas in our join graph model, a binding could instantiate a sub-
set of the data sources and still have a high score.

A complete binding of the query graph can be translated into
a DNF formula, with one clause corresponding to each source-
to-sink path. In this context, Ré et al. [9] proposed a novel ap-
proach for top-k queries in probabilistic databases. The method
runs several Luby-Karp simulations [4] in parallel, to approximate
the score for each answer. However, their approach requires that
all answers be computed a priori, and the goal is to minimize the
number of simulations. In our model, pre-computing all answers
means accessing all scores in each remote data source, which sim-
plifies to theNaive approach. In fact, our explicit goal is to min-
imize the number of such source probes. Note, though, that the
two approaches are orthogonal: one could combine them in order
to minimize both probing and computation costs.

Top-k query processing in probabilistic database is studied
in [10, 6, 15]. In probabilistic databases, the rank of an item is
decided by its score in combination with its probability. Soliman et
al. [10] investigate two top-k semantics (U-Topk and U-kRanks)
in uncertain databases and propose new formulations for top-k
queries. Yi et al. [15] propose an improved version of algorithms
for the same query. Li et al. [6] propose two parameterized rank-
ing functions (PRF ω andPRF e) for top-k query in probabilistic
databases and present novel generating function-based algorithms
for efficient query processing.

Theobald et al. [11] design the TopX retrieval engine for the top-
k query processing for semistructured data. In their work, they
adopt theeagerstrategy to join tuples obtained from sources after
a round of sorted access, which as we have discussed (Remark 2)
could be incorrect. In addition, TopX assumes that there exists
a unique ID for each document (doc id) and it is accessible from
each tuple, which makes it not directly applicable to our problem.
As such, theeagerstrategy is limited to join tuples from sources
that are neighbors of each other.

7. CONCLUSIONS

We proposed a novel branch-and-bound approach for top-k join
query processing, under a cost model in which data access is ex-
pensive. Each data instance has an associated score. We model
the score of the overall answer as a network reliability problem.
Our algorithm dynamically retrieves a subset of the data on each
join edge, and maintains tight upper and lower bounds for sets of
answers. We conduct experiments with different types of datasets
and query graphs, and show that our algorithm significantly out-
performs the rank-join algorithm. The benefits further improve if
data scores are correlated and/or skewed, which is often the case
for real-life datasets.
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APPENDIX

A. PROOF OF PROPOSITION 1

PROOF. SincePB1 ⊆ PB2, claim (i) is immediate.
To see why (ii) is true, suppose first that there exists a pathP

satisfying the conditions as stated. Letei ∈ P be an edge which
is unbound inPB2. This implies thatPB2[ei] = [0, Li], so in
the minimum network ofPB2, π(ei) = 0. Therefore, pathP
always fails, so it contributes nothing to the network reliability
min(PB2). By contrast, sincePB1[ei] = σi > 0 for all edges
ei ∈ P , it follows thatπ(P ) > 0 in the minimum network ofPB1,
soP contributes towards the network reliabilitymin(PB1). Be-
causePB1 ⊆ PB2, any other pathP ′ has at least the same proba-
bility in the minimum network ofPB1 as in the minimum network
of PB2. This implies thatmin(PB1) > min(PB2). For the last
claim, if no pathP satisfies the stated conditions, it follows that:
eitherP contains an unbound edge in bothPB1 andPB2; or all
edges ofP are bound in bothPB1 andPB2. In the first situation,
π(P ) = 0 in both minimum networks, while in the second situ-
ation,π(P ) is the same in both minimum networks. Since this is
true for all pathsP , min(PB1) = min(PB2).

B. TOP-K ALGORITHM

Algorithm 1 Finding top-k Complete Bindings

top-k(G)[H]
1: S ← {PB∗,0, PB1, . . . , PBk}
{wherePBi = (V ali, ∗, . . . , ∗, [0, 1], . . . , [0, 1])}
{V ali: ith value in PREDEF-SET}

2: T ← ∅
3: s← 0 {level of SA probes}
4: while |T | < k do
5: pickPB′ ∈ S s.t.max(PB′) = maxPB∈S max(PB)
6: deletePB′ from S
7: if PB′ is complete bindingthen
8: T ← T ∪ {PB′}
9: else ifPB′ is AllStar then

10: s← s + 1; do SA probes of levels on all edges
11: if all SA probes are definedthen
12: S ← S ∪ {PB∗,s}
13: S ← S ∪ {(PB∗,s, ei → SA(ei, s))}, ∀ei : edge
14: end if
15: else
16: choose unbound edgee: PB′[e] = [0, L(e)]
17: do RA probe one
18: for each tupleτ ∈ RA(e) do
19: if σ(τ ) ≤ L(e) AND (PB′, e→ τ ) 6∈ S then
20: S ← S ∪ {(PB′, e→ τ )}
21: end if
22: end for
23: end if
24: if S == ∅ then
25: returnT
26: end if
27: end while
28: returnT

C. EAGER VS. LAZY APPROACHES
In Step 13 of Algorithm 1, we could also take an “eager” ap-

proach, by attempting to create partial bindings in which several

compatible edges are simultaneously bound. In Example 4, such
a binding could bePB1,2 = (PB∗,1, e1 → (a1, b1), e2 →
(b1, c1)), which is valid, since both edge bindings require the value
in nodeu to beb1. Instead, we ignore this possibility, and allow the
algorithm to generatePB1,2 in Step 20 of a later iteration, either as
(PB1, e2 → (b1, c1)), or as(PB2, e1 → (a1, b1)). Suppose that
PB1,2 is generated as(PB1, e2 → (b1, c1)), during the iteration
for whichPB1 is chosen in Step 5. This will require executing the
RA probeRA(e2, u→ b1) in Step 17 of that iteration. Hence, we
will access the tuple(b1, c1) for a second time (the first time was
as the result of the probeSA(e2, 1).) Therefore, we appear to be
inefficient when it comes to minimizing the number of edge probes.

There are two reasons for which we choose this “lazy” approach
to edge binding in Step 13. First, notice that executing the RA
probeRA(e2, u→ b1) in a subsequent iteration is not superfluous,
as this probe also returns the tuple(b1, c2), which is not returned by
the probeSA(e2, 1). In fact, if after the first iterationS contained
only PB1,2, but notPB1, then we could not later generate any
complete bindings in whiche1 → (a1, b1) ande2 → (b1, c2). But
discarding such complete bindings at this point is incorrect, as we
cannot guarantee that they are not among the top-k. The correct
alternative is to put bothPB1,2 andPB1 in S , thus increasing the
size ofS . This is a non-trivial problem: In the extreme case, all
|E| edge bindingsei → SA(ei, 1) may be mutually compatible
(instead of juste1 and e2). In such a case, the eager approach
would have to add2|E| partial bindings toS in order to maintain
correctness (each of these bindings would leave a different subset
of edges unbound).

Second, note that ifPB1 ∈ S , it may still be selected in Step 5 of
a later iteration, which may still trigger the RA probeRA(e2, u→
b1). We conclude that the lazy approach is in fact more efficient
than the eager one.

D. PROOF OF LEMMA 1 AND 2

PROOF. Lemma 1: We use induction on iterationj. For j =
i: B is added toT if and only if B is selected in Step 5, so
score(B) = max(B) ≥ max(PB) for any PB that belongs
toS in iterationi. Suppose the claim is true for some iterationj. In
iterationj + 1, the only new partial bindingsPB′′ in S are those
generated either in Steps 9-14, or in Steps 15-23, from the binding
PB′ chosen in Step 5. As discussed above,PB′′ ⊆ PB′, which
impliesmax(PB′′) ≤ max(PB′). SincePB′ belongs toS after
iterationj, max(PB′) ≤ score(B), and the claim follows.

PROOF. Lemma 2:Each edgeei in B is bound to a tupleτi ∈
Tup(ei), with tuples on adjacent edges having compatible node
bindings. Letsi be the level of tupleτi in the sorted list on edgeei.
Without loss of generality, assume thats1 ≤ . . . ≤ sm. Then along
each edgeei, any tupple on a levels ≤ s1 − 1 has score at least
as large asσ(τi). We deduce thatB ∈ PB∗,s for all s ≤ s1 −
1. Moreover, the algorithm passes the test in Step 11 during any
iteration prior to choosingPB′ = PB∗,s1−1 in Step 5. Therefore,
S contains onePB∗,s, with s ≤ s1 − 1, during all such iterations,
(If the algorithm returns without ever choosingPB∗,s1−1 in Step
5, then our claim holds).

OncePB∗,s1−1 is chosen in Step 5, Steps 9-14 are executed.
The test in Step 11 is still true, since there exist tuplesτi at levels
si ≥ s1 on all edgesei. Therefore,PB1 = (PB∗,s1

, e1 → τ1)
is added toS . Note thatPB1 binds edgee1 to tupleτ1, the same
asB. For all i ≥ 2, PB1[ei] = [0, Ls1

(ei)], whereLs1
(ei) is the

score of the tuple on levels1 in ei. Sinceτi has levelsi ≥ s1, it
follows thatσ(τi) ∈ [0, Ls1

(ei)]. We deduce thatB ∈ PB1.
The bindingPB1 remains inS until PB1 is chosen in Step 5
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of a later iteration. Then, Steps 15-23 are executed. Letek denote
the edge chosen in Step 16;ek must be adjacent toe1, so we can
do an RA probe. Sinceτk is compatible withτ1, tupleτk is among
those returned by the RA probe. Moreover,σ(τk) ≤ Ls1

(ek), as
discussed above. Therefore,PB2 = (PB∗,s1

, e1 → τ1, ek → τk)
is added toS , andB ∈ PB2. We can now repeat this argument
with PB2 instead ofPB1. By induction, we show that after any
iteration there existsPBr ∈ S with r bound edges,r ≤ m, such
thatB ∈ PBr. If r = m andPBm = B is added toS , then it is
never deleted, sinceB is never selected inT .

E. GRAPHS AND DATASETS USED IN EX-
PERIMENTS
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Figure 8: Graphs used in experiments

For testing purposes, we created three different graphs, in or-
der to study the effect of various graph properties on the efficiency
of each method. Figure 8 shows the three graphs used in our ex-
periments (with numbers annotating nodes and letters annotating
edges). Because of limitation of space, we only present results
for Graph 1. In all three graphs, we assume the leftmost and the
rightmost nodes are the source and destination nodes, respectively.
Rather than assigning directions to edges in some arbitrary manner,
we choose to use undirected edges. This is because the number of
undirected paths between the source and destination is higher than
the number of directed paths, making each instance more challeng-
ing. We want to point out, however, that our methods are directly
applicable to both directed and undirected graphs.

Graph 1 has 8 distinct paths between the source and destination
nodes, such asa − b − c anda − g − e − h − c. It also has 9
minimum cuts; for instance, (a, d) or (c, h, d). Graphs 2 and 3 are
designed to have comparable number of nodes and edges as Graph
1, but to significantly differ in either the number of paths, or the
number of cuts. Recall that, by Proposition 1(ii), the lower bound
on the score of a binding increases only when an entire new path
is bound. In graphs with more paths, we expect the lower bounds
to increase more quickly. Conversely, one can see that the upper
bound decreases quickly if we bind an edge that belongs to many
cuts. We expect this to happen for Graph 3, We list the number of
nodes, edges, paths and cuts of the three graphs in Table 6. Graph
1 has similar number of cuts and paths; Graph 2 has more cuts than
paths; while Graph 3 has more paths than cuts.

We test our algorithm using both synthetic and real world
dataset.

[Synthetic Dataset]: We generate a variety of datasets for our
experiments, which model different types of real-life instances. For
each edge in one of the three graphs, we must generate tuples and

Nodes Edges Paths Cuts
Graph 1 6 8 8 9
Graph 2 8 11 9 27
Graph 3 7 10 16 8

Table 6: Graph Statistics

their corresponding scores. Let (vi, vj , score) denote a scored
tuple, wherevi andvj represent the values of the tuple correspond-
ing to the end nodes of its edge, andscore is its score. Each tuple
may join with multiple tuples on other edges. In our dataset, we
set the number of tuples on each edge to 200 and the average fan-
out of each tuple to 4. The tuple scores are generated randomly,
as explained below. We are interested in studying the effect of the
following two parameters on the efficiency of the methods:

• Uniform vs. Skewed score distributionWe generate two
datasets: In the first dataset, scores on an edge are drawn
from the uniform distribution on[0, 1]. In the second dataset,
scores on an edge follow the Zipf’s distribution [16]. With
a traditional Zipf’s distribution (s = 1), the tuple score is the
inverse of its rank.

• Edge-Correlated vs. Uncorrelated scoresTuples that join,
from adjacent edges, may or may not have correlated scores.
We test the performance of our approach in both scenarios.
For correlated datasets, we pick a join path for which a high-
score tuple from one edge implies high scores of the join part-
ners from other edges. We limit the correlations to be among
the top few (10%) tuples on the selected path.

[Real-world Dataset]: We use the motivating example dis-
cussed in Section 2 for the real-world experiment (Figure 8(d)). In
such a query, we are trying to find the top-k bindings (person, loca-
tion, advisor, conference). In particular, edge scores are computed
as follows.

• The scores of edgese1 ande5 are computed based on the re-
searcher’s papers accepted by the conference. For each paper,
the researcher gets a score of 1 divided by the number of au-
thors of the paper. For example, a researcher gets a score of
0.7 if he has two papers with 2 and 5 authors accepted by the
conference. Since this score can reach a value greater than 1,
we set an upper bound of 0.9.

• The scores of edgee2 ande6 are computed as 100 divided by
the distance (in miles) between the researcher and the confer-
ence location, with an upper bound of 0.7.

• We assign a score between 0.3 to 0.9 to edgee3 based on the
conference reputation.

• The relation score between a researcher and his or her advisor
(edgee4) is based on the graduation year: it gets a score of 0.8
when the researcher was still under supervision and decrease
by a factor of 2 every year after graduation.

We extracted data from a snapshot of the DBLife dataset, which
contains the publication and conference information up to the year
of 2006. In order to find genealogy information of researchers, we
use the data from the AI Genealogy Project3, which provides ge-
nealogy information for researchers in AI area. By corroborating
the data from AI Genealogy and DBLife, we were able to check out
59 AI researchers, as well as their advisors. We manually retrieved

3http://aigp.eecs.umich.edu/
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Figure 9: Cost of top-k join queries for the large scale dataset: (a) Uniform uncorrelated; (b) Uniform correlated; (c) Skewed
uncorrelated; (d) Skewed correlated

the affiliation of the researchers and conference locations and com-
puted the distance between researchers and conferences for edge
e2 ande6. Our real world dataset4 contains information for 91 re-
searchers and 110 conferences.

F. LARGE DATASETS

 0
 500000
 1e+06

 1.5e+06
 2e+06

 2.5e+06
 3e+06

 3.5e+06
 4e+06

 4.5e+06
 5e+06

 8 7 6 5 4 3 2

Jo
in

 C
os

t

Fanout

RJ
SMART

Figure 10: Cost of top-k join queries as a function of fanout

In previous section, we show the performance of our approaches
in a fairly small dataset, with each edge hosting 200 tuples with a
fanout of 4. Despite the superiority of theSMART method, we are
also interested in how it scales in large dataset and with large fanout
value. Figure 10 plots the cost for theRJ andSMARTmethods over
uniform uncorrelated dataset for a fanout value from 2 to 8. As the
fanout value grows, the cost for theSMART grows steadily in a slow
pace. Compared with a fanout of 2, the cost forSMART method
grows to 5.2 times for a fanout of 8. On the contrary, the cost
for theRJ grows more than 34 times for the same fanout change.
These results demonstrate that our approach is extremely suitable
in datasets where heavy joins are expected (i.e., large fanout).

Figure 9 plots the cost for theRJ and theSMART methods in
large datasets, with the number of tuples on each edge ranging from
20 to 20000 and a fixed fanout of 4. Under four different types
of datasets, theSMART method unanimously demonstrates further
benefits compared the other two methods. By increasing the size
of the dataset by 1000 times, the cost of theSMART method only
grows 117.53, 137.33, 2.22, 3.05 times for each of the four datasets
respectively. This is because theSMART method can prune out a
large set of unnecessary binding processing by maintaining a tight
upper bound. On the contrary, the cost of theRJ method grows by
a factor of 1084 times among all the four datasets simply because
it has to expand all partial bindings on each join path.

4http://paul.rutgers.edu/∼alexng/dataset.txt
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