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ABSTRACT
With the increasing deployment and use of GPS-enabled devices,
massive amounts of GPS data are becoming available. We pro-
pose a general framework for the mining of semantically meaning-
ful, significant locations, e.g., shopping malls and restaurants, from
such data.

We present techniques capable of extracting semantic locations
from GPS data. We capture the relationships between locations
and between locations and users with a graph. Significance is then
assigned to locations using random walks over the graph that prop-
agates significance among the locations. In doing so, mutual re-
inforcement between location significance and user authority is ex-
ploited for determining significance, as are aspects such as the num-
ber of visits to a location, the durations of the visits, and the dis-
tances users travel to reach locations. Studies using up to 100 mil-
lion GPS records from a confined spatio-temporal region demon-
strate that the proposal is effective and is capable of outperforming
baseline methods and an extension of an existing proposal.

1. INTRODUCTION
Mobile devices, e.g., phones and navigation systems, with built-

in GPS (Global Positioning System) receivers are capable of gen-
erating massive amounts of GPS records that capture geo-location,
time, and a number of other attributes such as heading and speed.

The GPS records from a moving object approximate the object’s
trajectory, which is a continuous function from time to space. Tra-
jectories capture how moving objects use geographical space. For
example, they capture the locations that the objects visit along with
the durations of the visits. When projecting a trajectory onto space,
a route results.

This paper develops techniques that exploit massive amounts of
GPS records collected from multiple users for identifying top-k sig-
nificant semantic locations. In particular, the aim is to identify lo-
cations that are semantically meaningful to users, e.g., shopping
malls, restaurants, or tourist attractions, rather than simply identi-
fying raw geographical coordinates.

Automatic extraction of meaningful stay locations and assign-
ing significance to these are fundamentally important and useful.
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For example, the outcome can serve as travel recommendations
that take into account location significance and the distance from
the user to a location. This is somewhat analogous to web queries
where web pages are ranked in terms of their inherent importance
as well as their relevance to a query: location significance plays
the role of web page importance, and the distance from a user to a
location plays the role of the relevance of a web page to a query.
Another example is that the outcome can be combined with the so-
called location-aware keyword query [6].

Top-k hot semantic locations can be computed with regard to
a specific context such as a certain user group (e.g., teens, senior
citizens, tourists) or a certain time period (e.g., a vacation period or
a time of day). This may be done by exploiting different GPS data
for different contexts.

GPS data is already attracting attention. Scores of communities-
based web sites, e.g., targeting hikers, bikers, and cyclists, enable
users to share routes and trajectories. However, these sites simply
focus on the sharing of trajectories. Some recent studies [2, 10, 24]
consider the extraction of locations from GPS records, but do not
consider location significance.

Notably, Zheng et al. [23] pioneer the extraction and ranking of
locations from GPS data. We build on this work by considering
semantic rather than raw locations. Semantic locations must be
considered throughout to obtain the best possible results. For ex-
ample, this avoids situations where different raw locations that turn
out to represent the same semantic location are ranked as separate
locations; and it avoids cases where a single raw location represents
more than one semantic location. A post-processing step cannot fix
such problems.

It is challenging to propose a model for location ranking that is
capable of exploiting multiple factors. The mutual reinforcement
of user authority and location significance is considered by Zheng
et al. However, as their approach uses the HITS algorithm [11],
improper weights may be assigned to links, as discussed by Bharat
and Henzinger [5] (to be explained in Section 3.3.2). Our model is
able to exploit this mutual reinforcement relationship better. More
significantly, our framework is capable of systematically exploit-
ing other factors such as the relationships between locations, the
distances between locations, and the durations of visits.

Our framework includes techniques for extracting semantic lo-
cations from GPS records. This problem is nontrivial because GPS
records with different coordinates may represent the same semantic
location. Thus, we group stay points extracted from GPS records
such that each group represents a unique real-world location. We
leverage existing clustering algorithms for the initial grouping, and
we enhance the clustering results by taking into account the pat-
terns of visits to the clusters and the similarity of the semantics of
the clusters obtained from a reverse geocoder and yellow pages.
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Next, we propose a new model for location ranking that is capa-
ble of propagating significance between locations, supports mutual
reinforcement between location significance and user authority, and
is capable of exploiting factors such as the number of visits to a lo-
cation and the durations of the visits.

To achieve this, we model the connections between locations
and also the connections between locations and users using a two-
layered graph with location-location and user-location components.
Intuitively, if a location, e.g., a hotel, is connected via trajectories to
many other significant locations, e.g., restaurants, the hotel is also
considered as significant. Further, locations visited by authoritative
users are considered as more significant; and users gain authority
by visiting significant locations [23].

A PageRank-like model [18] can capture the location-location
interactions, and a HITS-like model [11] can capture the reinforce-
ment between users and locations. However, they cannot capture
both the location-location and the user-location components. We
propose a new model that is able to accommodate both.

Intuitively, a location visited by a user from a place far away is
more likely to be more important than a place visited from a nearby
location; and the longer the durations of the stays at a location,
the more important the locations is considered to be. Our model
accommodates these aspects.

In summary, the paper’s contributions are threefold. First, we
propose new techniques for extracting semantic locations from GPS
data. Second, we propose a new model for assigning significance to
the extracted locations. Third, we report on empirical studies with
large quantities of GPS data that suggest that the proposed frame-
work is (i) capable of improving the abilities of the OPTICS [1] and
K-means clustering algorithms to extract semantic locations and is
(ii) capable of significantly outperforming several baseline meth-
ods, including rank-by-visits, rank-by-durations, and an extension
of an existing approach.

Section 2 states the problem addressed. Section 3 details the
proposed location mining framework, including the extraction of
stays and their clustering into semantic locations, the construction
of the link structures connecting users and locations, and the rank-
ing of locations using random walk models. Section 4 reports on
the experimental study. Section 5 concludes and discusses research
directions. An appendix contains supplementary matter.

2. PROBLEM STATEMENT
We proceed to cover the data model used in this paper and the

problem addressed. Appendix A delves into application scenarios.

2.1 Data Model
While the proposed framework applies to GPS data in general,

we assume that the GPS data represents vehicle movements. For
specificity, we assume a sampling frequency of one record per sec-
ond when a vehicle moves.

DEFINITION 1. GPS record: A GPS record G is a five-tuple:
〈u, t, x, y, s〉, where u is the ID of the user for which G is recorded,
t is the timestamp, x and y are the Euclidean coordinates, and s is
the vehicle’s instant speed as reported by the GPS device.

An example is 〈1715, 2007-07-13 17:20:36, 544456, 6335497,
0〉 where the coordinates are given in the UTM (Universal Trans-
verse Mercator) coordinate system.

By ordering the records from a user by the timestamp t, we ob-
tain a representation of the user’s trajectory.

DEFINITION 2. Trajectory: A trajectory T R of a user is a se-
quence of GPS records G for the user that are ordered by the times-
tamp t of the records, T R = G1 → · · · → Gi → · · · → Gn.

A trajectory describes the movement of a user. The original GPS
records can be seen as the set of the trajectories of all the users,
denoted as ST R. From a trajectory, we can compute the sequence
of locations visited by the corresponding user as well as how long
the user stays in the locations.

We are interested in locations where users have stayed for longer
than some predefined duration, as such locations are more likely to
be interesting. We extract all such stays from ST R.

DEFINITION 3. Stay point: A stay point P is a pair 〈G, ∆t〉,
where G is the ID of a GPS record that represents the stay and ∆t
is the duration of the stay.

Each time a user stays at a location, we can obtain a correspond-
ing stay point. Thus, a location visited multiple times by one or
multiple users obtains multiple stay points. Stay points for the same
real-world location almost certainly contain different coordinates,
although they are close to each other. The challenge is to derive
consolidated locations from a collection of stay points.

Ideally, each consolidated location corresponds to a unique real-
world location, e.g., a shopping mall or a tourist attraction.

DEFINITION 4. Semantic Location: A semantic locationL is a
cluster of stay points and is represented by a four-tuple 〈x, y, sem,
sl〉, where x and y are the centroid of the cluster, sem is the seman-
tics of the location, and sl is a set of stay points associated with the
semantic location. We denote the set of all extracted semantic lo-
cations as SL

For example, semantic location 〈555122, 6321850, “Aalborg
Zoo”, {864, 1354, 57720, . . .} 〉 has centroid (555122, 6321850),
“Aalborg Zoo” as the semantics, and {864, 1354, 57720, . . .} as
GPS record identifiers that represent stay points.

We are now ready to define the location history of a user.
DEFINITION 5. Location History: The location history H of a

user is defined as a sequence H = L1 → · · · → Li → · · · → Ln

of semantic locations L.

Given a set of GPS trajectories ST R we can build the set of all
users’ location histories, SH.

2.2 Problem Characterization
We aim to identify and assign significance to semantic locations

based on large amounts of GPS records.
Just as web queries issued to a search engine do not have ground

truth results, neither do the results for our problem. Rather, we
combine a range of indicators of “interestingness” in order to ob-
tain significant locations. Specifically, we consider the following
indicators of the significance of a location: (1) the number of vis-
its, (2) the durations of the visits, and (3) the distances users travel
to visit locations.

Such indicators may be combined in various ways using loca-
tion histories. Specifically, various kinds of reinforcement may be
applied. Thus, locations that are visited together with significant
locations may be assigned increased significance. And users who
tend to visit significant locations may be assigned increased author-
ity, which may then be used for assigning increased significance to
locations visited by these users.

While a framework that is capable of taking into account many
such indicators is likely to have advantages over less capable frame-
works, the interpretation of a result by a user is subjective. Differ-
ent users will have different interests and preferences. We thus do
not distinguish among “significant,” “hot,” “interesting,” “attrac-
tive,” and “popular” as predicates of locations.

By considering location histories selectively, results with differ-
ent meanings can be obtained. For example, by only considering
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GPS data from tourists, or international tourists, it is possible to tar-
get interesting locations at specific user groups. This filtering may
be done based on demographic data about the users who contribute
the data, which may be available to, e.g., rental car and insurance
companies. While important, this is orthogonal to the paper’s con-
tribution.

We also note that while some trips may carry little meaning,
the aggregate results obtained from very large numbers of trips are
likely to be robust to such noise and thus yield meaningful results.
This is analogous to the use of clicks or links for the assignment of
importance to web pages.

Given a set of GPS records, we first pre-process the data to obtain
the set of trajectories, ST R. We address two sub-problems:

1. Development of techniques that are capable of identifying se-
mantically meaningful locations SL from GPS data. This involves
extracting the set of semantic locations SL from the GPS trajec-
tories ST R, and building the location history H for each user to
get the location history set SH = {H1, . . . ,Hm}, where m is the
number of users.

2. Development of techniques capable of assigning significance
to locations. We use the location histories SH, to compute the top-k
semantic locations ranked according to significance.

3. PROPOSED SOLUTION
Following a solution overview in Section 3.1, we cover the ex-

traction of semantic locations in Section 3.2 and the ranking of lo-
cations in Section 3.3.

3.1 Solution Overview
We first extract stay points from the GPS records. We then group

stay points such that each group represents a real-world location.
We utilize street addresses, semantics, etc. to improve two existing
clustering algorithms, OPTICS [1] and K-means [21].

We then form location histories and use these for constructing a
two-layered graph that models connections between users and lo-
cations, and connections between locations. An example of such a
graph is given in Figure 1. The graph has a user layer, where nodes
represent users, and a location layer, where nodes represent loca-
tions. An edge exists between two locations if a user has traveled
between them, and an edge exists between a user and a location if
the user has visited the location.

Figure 1: Example two-layered graph of users and locations

As discussed in Section 2.2, we use novel indicators of loca-
tion significance. Specifically, we propose a new model that en-
ables the propagation of significance among locations and the re-
inforcement between user authority and location significance using
the two-layered graph.

Our setting differs from the standard web setting in important
respects. Specifically, 1) our graph has two levels while the web
graph has one, making it resemble the location-location graph, which

however, is undirected while the web graph is directed; 2) the web
graph is unweighted while we use weights on the location-location
edges (to capture the number of trips between locations; 3) our
graph is spatial, meaning, e.g., that the willingness of a user to
travel a long distance to reach a location indicates high signifi-
cance; no such distance notion exists on the Internet; and 4) the
user-location graph is weighted (to capture the durations of visits).

3.2 Extracting Location Histories
We cover the extraction of stay points in Appendix B and the

extraction of semantic locations from stay points next.
We aim at extracting locations from stay points such that the lo-

cations are meaningful to users. One idea is to apply a reverse
geocoder to the stay points. A reverse geocoder attempts to find the
closest addressable location within a certain distance. The result
returned for a stay point includes the street address and the coordi-
nates of the street address. When two stay points are mapped to the
same addressable location, it is likely that they represent the same
semantic location.

However, the reverse geocoding of a stay point involves a call
to an external API (in or case, Google Maps), which is very time
consuming when there are many stay points. Additionally, even
if two stay points are reverse geocoded differently, they may still
represent the same semantic location. This suggests that we should
exploit other information when extracting semantic locations.

We thus extract the semantic locations in two steps. We first clus-
ter the stay points. We then enhance the clustering by taking onto
account a variety of additional information, to be detailed shortly.
A final cluster is expected to represent a single, unique semantic
location.

For the first step, we use the existing clustering algorithms OP-
TICS and K-means. For the second step, we repeatedly enhance
the results obtained by utilizing the street addresses, the seman-
tics, and the user visit patterns. We denote the resulting method as
SEM-CLS (semantics-enhanced clustering). The method involves
two steps: split and merge.

In the split step, we sample points from each cluster, reverse
geocode them to obtain street addresses, and then obtain their se-
mantics using a yellow pages directory; if the sample points in a
cluster have different semantics, we split the cluster since it may
contain multiple semantic locations.

In the merge step, we merge the clusters that may represent the
same semantic location. In order to determine when to merge two
clusters, we represent each cluster by a four-tuple (~lu, tas, tae, ~ls)

of features: the user list vector ~lu, which contains the IDs of users
who have visited the cluster together with the number of visits by
each user; the average stay duration tas, which is the average du-
ration of all the visits; the average entry time (time of a day) tae,
which is the average starting time of all the visits to the cluster; and
the semantic list vector ~ls, which contains all the semantics that
may apply to the cluster.

The visitors, the stay duration, and the entry time reveal patterns
of the users who have visited the location represented by a cluster.
If two nearby locations exhibit similar visiting patterns, the two
locations are possibly the same. We thus compute the similarity
of two clusters based on the four features. First, the vector space
model is used to compute the similarity between two visitor lists
and also the similarity between two semantic lists. The similarity of
the average stay duration is computed as the smaller one divided by
the larger one, and the same is done for the average entry time. The
final similarity score of two clusters is computed by a simple linear
combination of the four scores. Formally, the similarity between
two clusters c1 and c2 is computed as follows:
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Sim(c1, c2) =
~lu1 · ~lu2

‖ ~lu1‖‖ ~lu2‖
+

~ls1 · ~ls2

‖ ~ls1‖‖ ~ls2‖
+

min(tas1, tas2)

max(tas1, tas2)
+

min(tae1, tae2)

max(tae1, tae2)

(1)

3.3 Ranking of Locations
We first cover the construction of the two-layered graph. We then

present several baseline location ranking methods in Section 3.3.2,
and we present the new location ranking models.

3.3.1 Two-Layered Graph
The two-layered graph consists of two inter-connected sub graphs,

a user-location graph and a location-location graph.
DEFINITION 6. User-location graph: The user-location graph

is a weighted undirected bipartite graphGUL = (U,V,EUL,WUL),
where U is a set of nodes that represent users, V is a set of nodes
that represent locations, EUL is a set of edges that represent vis-
its, and the edge weights WUL describe the numbers of visits to a
location by a user.

Given m users and n locations, we build an m × n adjacency
matrix M forGUL. Formally, M = [vij ], 0 ≤ i < m, 0 ≤ j < n,
where vij represents how many times the ith user has visited the
jth location.

DEFINITION 7. Location-location graph: The location-location
graph is a weighted undirected graph GLL = (V,ELL,WLL),
where V is as in the previous definition, ELL is the set of edges
that represent trips, and the weights WLL of edges describe the
numbers of transitions between locations.

Given n locations, we define an n × n adjacency matrix C for
GLL. Formally, C = [cij ], 0 ≤ i, j < n, where cij represents the
times that a user has driven between the ith and the jth location.

Let the location histories of the three users in Figure 1 beHU1 =
{L2 → L1 → L4,L2 → L4}, HU2 = {L5 → L2,L5 →
L1,L2 → L1, }, HU3 = {L3 → L5}, and HU4 = {L7 →
L6,L3 → L6,L2 → L7 → L6}. Then:

M =




1 2 0 2 0 0 0
2 2 0 0 2 0 0
0 0 1 0 1 0 0
0 1 1 0 0 3 2


C =




0 2 0 1 1 0 0
2 0 0 1 1 0 1
0 0 0 0 1 1 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
0 0 1 0 0 0 2
0 1 0 0 0 2 0




We notice that for each user, the number of visits to the user’s
home may be very large. Because we aim at mining hot public lo-
cations and to preserve the users’ privacy, locations such as a user’s
home are removed. We consider a location as a home location if it
is visited frequently by the same user at night.

3.3.2 Baseline Methods
We consider three baseline methods, two of which are presented

in Appendix C, namely rank-by-visits (which is also used as base-
lines in the work by Zheng et al. [23]), and rank-by-durations.

The idea behind the third approach [23], which we cover as a
baseline, is to take into account the authority of users instead of
treating all users equally. It is thus assumed that hot locations
are visited by more authoritative users, and that authoritative users
visit more interesting locations. The approach applies the HITS
model [11] on GUL to find authoritative users and interesting lo-
cations. Using HITS, the approach computes a hub score and an
authority score for each node. The hub scores of users show their

travel experience, and the authority scores of locations show the
significance of the locations. Additional descriptions of this base-
line are given in Appendix C.

Although the approach aims to exploit user authority for location
ranking, the model used in the approach limits the performance of
the approach. If a location is only visited by one user, but many
times, the HITS algorithm used assigns a very high authority score
to the location and also a very high hub score to the user. How-
ever, a location visited only by a single user or very few users is
intuitively not particularly significant. Section 4 offers empirical
insight into this problem. Recall also that approach considers raw
locations rather than semantic locations.

In the example graph, the final authority vector is {0.1651, 0.2676,
0.0661, 0.0935, 0.1286, 0.1675, 0.1117}, and the ranked list is
{2, 6, 1, 5, 7, 4, 3}. The effect of weights can be seen more
clearly in the following example: if the user U4 makes the trip
L7 → L6 twice, the result becomes very different. The final au-
thority vector becomes {0.0506, 0.1557, 0.0946, 0.0304, 0,0404,
0.3589, 0.2692}, and the ranked list becomes {6, 7, 2, 3, 1, 5, 4}.
Notice that L6 and L7 have larger authority scores, and the user U4

also gains a large hub score improperly, simply because this user
visits her/his preferred locations more times.

3.3.3 Random Walks on GUL

This model exploits reinforcement between users’ travel experi-
ences and locations’ significance while avoiding the problem of the
last baseline approach. It uses the randomized HITS model, which
defines a random walk on GUL.

This model is insensitive to small perturbations and thus is more
stable than what is obtained by using the original HITS model. The
randomized HITS model uses a normalized version of matrix M.
Bharat and Henzinger [5] show that mutually reinforcing relation-
ships between nodes may assign improper weights to links; the nor-
malization solves this problem.

We define the column vector wuser as the hub vector and the col-
umn vector wloc as the authority vector. Formally, the randomized
HITS model applied to GUL can be described as follows:

wk+1
loc = (εMT

row + (1− ε)E1) · wk
user

wk+1
user = (εMcol + (1− ε)E2) · wk+1

loc ,
(2)

where k is the number of iterations, Mcol is the column stochastic
matrix of M (Mcol is computed by normalizing each column in
M), Mrow is the row stochastic matrix of M (Mrow is computed
by normalizing each row in M), E1 is a matrix with all elements
equal to 1

m
, E2 is a matrix with all elements equal to 1

n
, and ε is the

“teleport probability,” which represents the probability of a random
surfer teleporting from a location node to a user node (resp. from a
user node to a location node) instead of following the links inGUL.

We initialize wuser as ( 1
m

, ..., 1
m

) and wloc as ( 1
n
, ..., 1

n
), and

we then use the power iteration algorithm to calculate the vectors
wuser and wloc. The vector wloc is used to rank all the locations.

Assume ε = 0.85 and consider the example graph. If user U4

makes the trip L7 → L6 twice, the final stable authority vector be-
comes {0.1374, 0.2148, 0.1003, 0.1003, 0.1390, 0.1730, 0.1351},
and the ranked list is {2, 6, 5, 1, 7, 3, 4}. Compared with the results
of the original HITS [23], L6 and L7 have lower rankings because
the weights are normalized.

3.3.4 Random Walks on GLL

Unlike the previous method, this method exploits the location-
location links: the significance of one location is affected positively
by the significance of the locations connecting to it.

Inspired by the PageRank algorithm [18] that is developed for
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web link graphs, we perform random walks on GLL to rank lo-
cations. Our model differs from the model used in the PageRank
algorithm in two respects: 1) weights are associated with our links,
while the web link graph has no link weights and 2) the location-
location graph is undirected while the web link graph is directed.

We are aware that weights are also explored in other applications
of the random walk model (e.g., [4]) and that random walks have
been applied to undirected graphs (e.g., for document summariza-
tion [17]). However, no previous work performs a random walk on
a spatial graph like the location-location graph.

Using a column vector wloc, the random walk model applied to
GLL can be described as follows:

wk+1
loc = (αCT

row + (1− α)E) · wk
loc, (3)

where Crow is the row stochastic matrix of C defined in Sec-
tion 3.3.1 (Crow is computed by normalizing each row in C), E is
a matrix with all elements set to 1

n
, and α is the well known “damp-

ing factor” (set to 0.85, following the PageRank algorithm [18]).
We initialize wloc as a uniformly distributed vector ( 1

n
, ..., 1

n
)

and then apply the power iteration algorithm until the vector wloc

converges to a stable state.
This model takes into account the relations between locations,

but ignores the effects of different users. It thus cannot distinguish
between visits by more versus less authoritative users.

3.3.5 Unified Link Analysis Framework
We propose a new unified probabilistic model that takes into ac-

count both the links between users and locations and the links be-
tween locations, as captured by the two-layered graph. No existing
approach is able to accommodate both aspects: the approach based
on randomized HITS model (Section 3.3.3) cannot model the re-
lations between locations, while the approach based on PageRank-
like model (Section 3.3.4) cannot model the mutual reinforcement
between users and locations. Additionally, the proposed unified
model is able to incorporate the durations of visits and the distances
between locations.

The unified model uses the structure of the two-layered graph
to build a Markov chain. The proposed unified model thus can be
characterized as random walks on the Markov chain built on both
GUL and GLL in which the states are nodes. We first present the
unified model and then explain the process of random walks.

We define three transition probabilities for the Markov chain:
p(Uk|Li), the transition probability to a user node Uk from a lo-
cation node Li; p(Li|Uk), the transition probability to a location
node Li from node Uk; and p(Li|Lj ,Uk), the transition probabil-
ity to location node Li from Lj for user Uk.

Given m users and n locations, we capture the transition prob-
abilities (i.e., p(Li|Uk)) from user nodes to location nodes in an
(m × n) matrix NUL, and, similarly, the transition probabilities
(i.e., p(Uk|Li)) from location nodes to user nodes in an (n × m)
matrix NLU. We capture the stationary distributions of the ran-
dom walks for users and locations by two column vectors wuser

and wloc, respectively, to rank the significance of locations. The
unified model, denoted as Unified, can then be described as:

wk+1
loc = NLU · wk

user, wk+1
user = NUL · wk+1

loc

p(Uk|Li) = ε
Num(Uk,Li)

Num(Li)
+ (1− ε)

1

m

p(Li|Uk) =

n∑
j=1

p(Lj |Uk)p(Li|Lj ,Uk)

p(Li|Lj ,Uk) = α
Num(Li,Lj ,Uk)

Num(Lj ,Uk)
+ (1− α)

1

n
,

(4)

where Num(Uk,Li) is the number of visits toLi byUk and Num(Li)
is the total number of visits toLi; p(Li|Lj ,Uk) is the probability of
Li being visited by Uk from Lj ; and Num(Li,Lj ,Uk) is the num-
ber of trips between locations Lj and Li by Uk, and Num(Lj ,Uk)
is the total number of visits by Uk to Lj . Parameters ε and α are
the “teleport probability” in the random walks, and they control
the effect of the constant probability 1/m and 1/n, respectively.
In turn, these two are used to smooth p(Uk|Li) and p(Li|Lj ,Uk),
respectively.

As mentioned, the unified model can be interpreted as a random
walk model on both GUL and GLL. Thus, at location node Li,
the random walk proceeds to user node Uk with the probability
p(Uk|Li). Intuitively, the transition probability to a user node Uk

reflects the significance of the user to the location based on the
user’s previous behavior, i.e., the frequency of the user visiting Li.
At Li the random walk can either follow a link in the graph GUL,
or it can teleport to a random user node with probability 1 − ε.
Similarly, at user node Uk the random walk proceeds to location
node Li with probability p(Li|Uk).

To compute p(Li|Uk), we perform random walks on GLL for
each user node Uk. The transition probability of the random walks
on GLL from location Lj to location Li for user Uk reflects the
trips by the user between the two locations, and the probability is
computed by p(Li|Lj ,Uk) in Equation 4. From the stationary dis-
tributions of the random walks, we get p(Li|Uk) for each location
Li.

The unified model exploits both user-location and location-location
reinforcement. In fact, the models in Sections 3.3.3 and 3.3.4 are
special cases of the unified model.

Reduction to the Model in Section 3.3.3. If we disregard the
location-location reinforcement, i.e., the locations are independent
so that p(Li|Lj ,Uk) = p(Li|Uk), we compute the conditional
probabilities in Equation 4 as follows:

p(Uk|Li) = ε
Num(Uk,Li)

Num(Li)
+ (1− ε)

1

m

p(Li|Uk) = ε
Num(Uk,Li)

Num(Uk)
+ (1− ε)

1

n
,

where and Num(Uk) is the total number of visits by Uk. In Ap-
pendix F, we show that with these definitions, Equation 4 can be
reduced to Equation 2.

Reduction to the Model in Section 3.3.4. If we disregard the
user-location reinforcement, i.e., we treat all the users equally, we
can rewrite the probability p(Li|Lj ,Uk) as follows:

p(Lj |Li) = α
Num(Lj ,Li)

Num(Li)
+ (1− α)

1

n
,

where Num(Lj ,Li) is the number of trips between Li and Lj . In
Appendix F, we show that in this case, Equation 4 can be reduced
to Equation 3.

We proceed to present an algorithm that implements the unified
model. This algorithm uses the power iteration method to compute
the stationary distribution of vector wloc that ranks locations. Al-
though the ranking is done offline, we show that it is possible to
reduce the unified model to a simplified model that enables a more
efficient algorithm.

THEOREM 1. Let P be the n×n ( n is the number of locations)
transition matrix of the Markov chain onGUL andGLL. An element
pij of the matrix represents the transition probability between two
locations, and it is computed as:

pij = p(Lj |Li) =

m∑

k=1

p(Uk|Li)p(Lj |Li,Uk) (5)
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The unified model in Equation 4 can be reduced to the following:

wk+1
loc = PT · wk

loc (6)

PROOF. See Appendix D.
An algorithm that utilizes Equation 6 is more efficient than one

that uses Equation 4. The pseudocode of the proposed algorithm is
in Appendix E.

Based on the unified model, we proceed to present an extended
model, denoted as ST-Unified, that is able to incorporate stay du-
rations and distances between locations.

First, each stay has a duration ∆t, and the longer the stay at a
location, the more significant the location is assumed to be. To
account for durations in the unified model in Equation 5, we extend
the conditional probabilities p(Uk|Li) that so far only considered
the numbers of visits:

p′(Uk|Li) =

ε(ε
Num(Uk,Li)

Num(Li)
+ (1− ε)

Dur(Uk,Li)

Dur(Li)
) +

1− ε

m

where Dur(Uk,Li) is the duration at Li of Uk, Dur(Li) is the to-
tal duration of stays at Li, and ε controls the effect of the durations.

Second, given several equally attractive locations, e.g., conve-
nience stores, a user is expected to prefer to travel to the nearest
one. Thus, the longer the distance a user is willing to travel to
reach a location, the more significant the location is considered to
be. To account for this, we extend the definition of p(Lj |Li,Uk),
the probability of user Uk traveling from locationLi to locationLj .
If there are trips between Lj and Li in the location history of Uk,
the definition becomes:

p′(Lj |Li,Uk) =

α(η
Num(Lj ,Li,Uk)

Num(Li,Uk)
+ (1− η)

Dist(Lj ,Li)∑
h Dist(Li,Lh)

) +
1− α

n
,

where Dist(Lj ,Li) is the distance between Lj and Li. The larger
this distance is, the larger the conditional probability becomes. Pa-
rameter η controls the effect of distances.

In ST-Unified, the random walks on GUL consider two factors:
the stay duration and the reinforcement between visitors and loca-
tions. The random walks on GLL consider another two factors: the
distances and the connection between locations.

For implementation, the transition matrix of ST-Unified is de-
fined as P′, and its element p′ij is computed as:

p′ij =

m∑

k=1

p′(Uk|Lk)p′(Lj |Li,Uk)

Column vector wloc can then be computed as:

wk+1
loc = P′T · wk

loc (7)

THEOREM 2. Both Unified and ST-Unified converge utilizing
power iteration.

PROOF. See Appendix D.

4. EXPERIMENTAL EVALUATION
We cover the experimental settings and then the results semantic

location extraction and ranking in turn.

4.1 Settings and Evaluation Methods
We use GPS data collected from 119 cars driven by young drivers

during the period 01/01/2007–31/03/2008. The data set contains in
excess of 0.1 billion GPS records.

Following the approach in Appendix B, we obtain 159,062 stays
from the data set. After data cleaning, we obtain 76,139 stay points.
Details on stay extraction are given in Appendix G.1, and Figure 2
shows distribution of a sample of the stay points.

We also use three subsets of the whole dataset for evaluating
the proposed methods. DATA1: Data restricted to the town of
Nørresundby; this dataset contains 352 locations. DATA2: 1,508
locations that were visited by at least 5 users. DATA3: Using the
data from DATA2, if a location is visited by a user more than 5
times, the number of visits to the location by the user is counted as
5. We create these subsets in order to obtain datasets with different
properties.

All experiments are conducted on a computer with 2.3 GHz CPU
and 2 GB main memory; our proposals are implemented using C#.

4.1.1 Extraction of Semantic Locations
Algorithms: We evaluate the performance of the enhanced method
SEM-CLS (Section 3.2), comparing with the OPTICS and K-means
algorithms. For OPTICS [1], we use software provided by its au-
thors, and we use WEKA1 for the K-means method. We elaborate
on how to obtain the ground truth for semantic locations in Ap-
pendix G.3.
Metrics: We use three metrics, namely entropy, purity [21], and
normalized mutual information (NMI) [15] that are used widely to
evaluate the performance of clustering algorithms when a ground
truth exists. The smaller the entropy, the better a clustering method
performs. For the other two measures, the larger, the better.

4.1.2 Location Ranking
Ranking models: We evaluate the approaches presented in Sec-
tion 3.3: the randomized HITS on GUL (U-L), the random walks
on GLL ( L-L), the unified model on the two-layered graph (Uni-
fied), and the unified model taking into account the durations and
distances (ST-Unified). We compare with the three baseline ap-
proaches [23], i.e., rank-by-visits, rank-by-durations, and the HITS-
based approach.
Ground truth for ranking: We compute the top-50 locations for
each ranking method, combine them, and subject them to expert
annotators in order to assess their significance. The locations are
shown on a map, and their associated semantics are given to the
annotators, who do not know which methods produced which loca-
tions.

Four individuals familiar with Nordjylland perform the annota-
tion, applying a label from Table 1 to each location. For each loca-
tion, we use the average score from all the annotators.

Score Specification
2 Very interesting to most people in general and recommended
1 An OK location to most people in general
0 Neutral to most people in general
-1 Not interesting to most people in general and not recommended
-2 I have no idea of what it is

Table 1: Annotation specification

Metrics: To capture the performance of our location significance
ranking approaches, we apply three popular ranking performance
metrics, namely Mean Average Precision (MAP), Precision@n, and
nDCG (normalized Discounted Cumulative Gain). Precision@n
is the fraction of the top-n locations retrieved that are significant.
When computing MAP and Precision@n, only the locations with
score above 1.5 are considered as significant. nDCG computes the
relative-to-the-ideal performance [9].

1http://www.cs.waikato.ac.nz/ml/weka/
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Parameter selection: We use the parameters ε in the random walk
model on GUL and α in the random walk model on GLL. Both are
set to 0.85, thus following the PageRank [18] and the randomized
HITS [16] algorithms. In ST-Unified, ε and η are set to 0.3.

4.2 Experimental Results

4.2.1 Extracting Semantic Locations
To evaluate the grouping of stay points into locations by the dif-

ferent clustering methods, we adjust the parameters of each method
to obtain a number of clusters (and thus locations) that is similar to
the number of ground truth locations.

We set k to 7,100 for K-means, and the initial k mean points are
selected randomly. For OPTICS, we set ε to 17 meters and minPts
to 2 (a cluster must have at least two stay points). In the SEM-CLS
method, threshold th is set to 3. As a result, K-means returns 7,056
clusters (a bit below k due to empty clusters), and OPTICS returns
7,088 clusters.

We apply SEM-CLS to enhance the results of K-means and OP-
TICS. We vary the number of sampling points for each cluster from
2 to 5 for SEM-CLS. The results are shown in Tables 2 and 3. The
“# Samples” column gives the number of sampling points in each
cluster to be reverse geocoded, and the number of generated clus-
ters (locations) is given in the last column.

# Samples Purity Entropy NMI # Clusters
K-means 0.8630 0.4770 0.5909 7056

2 0.8743 0.4438 0.6096 6013
3 0.8852 0.4195 0.6236 6304
4 0.8990 0.3867 0.6311 6510
5 0.9096 0.3598 0.6375 6631

Table 2: K-means versus SEM-CLS on K-means with different
numbers of sampling points

# Samples Purity Entropy NMI # Clusters
OPTICS 0.8699 0.4567 0.6526 7088

2 0.8828 0.4292 0.6682 6055
3 0.8979 0.3847 0.6703 6358
4 0.9129 0.3573 0.6724 6555
5 0.9259 0.3139 0.6747 6680

Table 3: OPTICS versus SEM-CLS on OPTICS using different
numbers of sampling points

We can see that OPTICS performs better than K-means, and we
see that SEM-CLS, when applied to both clustering algorithms, is
able to improve on them in terms of all three metrics. This suggests
that the use of the semantic and visit patterns for the splitting and
merging of clusters in SEM-CLS is effective.

We also observe that SEM-CLS improves as more points are
sampled and reverse geocoded. However, calling an external API
to perform reverse geocoding consumes substantial time. Hence,
there is a tradeoff between the effectiveness and the efficiency.

Efficiency. K-means takes 12 minutes to finish, and OPTICS
takes 4 minutes. The enhancement method SEM-CLS takes less
than 1 second. Additional details are available in Appendix G.4.

4.2.2 Ranking the Significance of Locations
Table 4 depicts the MAP, Precision@n, and nDCG@n results of

the different ranking models on the whole dataset. Each column
corresponds to an approach. ST-Unified performs the best in terms
of all metrics, and Unified performs better than U-L and L-L, and
these all perform better than the three baseline methods.

U-L exploits the mutual reinforcement between the authority of
users and the significance of locations. L-L uses information on the

number of visits, which is also used by the rank-by-visits method.
It outperforms rank-by-visits because it propagates the significance
between locations.

Unified improves on U-L and L-L because it combines the two
graphs GUL and GLL while the latter two only consider one sub-
graph. ST-Unified performs better than Unified because it exploits
the combined graph and also the distance between locations and
stay durations.

L-L performs worse than the other proposed models. The reason
may be that it does not capture the authority of users. The model
is also significantly affected by the locations visited many times by
very few users—such locations have large in-degree weights.

The HITS-based approach [23] on GUL performs worse than the
other two baselines. Another study [23] shows that it performs bet-
ter than rank-by-visits. This may be because the mutual reinforce-
ment between users and locations can assign unsuitable weights to
links according to the analysis of the HITS algorithm by Bharat and
Henzinger [5], as discussed in Sections 3.3.2–3.3.3. For example,
we find a location visited by only one user, but more than 200 times.
As a result, the user has a very high hub score of 0.968, and the top-
10 locations returned by the HITS-based approach are all locations
visited by this user. However, none of them are significant loca-
tions. The method rank-by-durations outperforms rank-by-visits
slightly by incorporating visit durations.

The top-10 results of the four proposed ranking models are given
in Appendix G.5.
Efficiency. The last row of Table 4 gives the runtimes of the dif-
ferent methods. Unified and ST-Unified use power iteration. When
using Equation 6, the runtime is about 4 seconds, while it is 130 sec-
onds wuen using Equation 4. Recall that location ranking is done
offline and not at query time. Pre-computed location rankings are
utilized to answer top-k queries as described in Appendix A.
Results on other datasets. Tables 5–7 shows the results of the
HITS-based approach [23] and the proposed methods. We see that
ST-Unified consistently performs the best and that Unified per-
forms better than U-L and L-L.

HITS U-L L-L Unified ST-Unified
MAP 0.5424 0.7231 0.6908 0.7664 0.8090
P@20 0.5 0.7 0.6 0.75 0.8

nDCG@20 0.8588 0.9269 0.8861 0.9302 0.9545

Table 5: Ranking results using different ranking models on DATA1

HITS U-L L-L Unified ST-Unified
MAP 0.3982 0.6952 0.6691 0.7816 0.8202
P@20 0.45 0.7 0.6 0.75 0.80

nDCG@20 0.8092 0.9290 0.9166 0.9456 0.9501

Table 6: Ranking results using different ranking models on DATA2

HITS U-L L-L Unified ST-Unified
MAP 0.7008 0.7579 0.6647 0.7982 0.8321
P@20 0.6 0.7 0.6 0.75 0.8

nDCG@20 0.9202 0.9534 0.9132 0.9552 0.9658

Table 7: Ranking results using different ranking models on DATA3

The results in Table 5 on DATA1 that concerns a small region
are similar to the results on the whole data, meaning that the region
size does not affect the results.

As discussed in Section 3.3.2 and in the coverage of the results
reported in Table 4, a possible problem of the HITS-based approach
is that locations visited many times by very few users are ranked too
highly. To avoid this potential problem, DATA2 does not contain
locations visited by very few users. Table 6 shows that DATA2 does
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Rank-by-visits Rank-by-durations HITS [23] U-L L-L Unified ST-Unified
MAP 0.2020 0.2126 0.062 0.3748 0.3020 0.4060 0.4274
P@20 0.45 0.45 0.1 0.75 0.6 0.9 0.95
P@50 0.36 0.38 0.12 0.68 0.52 0.74 0.76

nDCG@20 0.8261 0.8324 0.4555 0.9411 0.9031 0.9678 0.9897
nDCG@50 0.7678 0.7747 0.4380 0.9226 0.8827 0.9402 0.9717

Runtime(ms) 103 107 1536 2209 3540 4234 4318

Table 4: Ranking results using different ranking models on the whole dataset

help the HITS-based approach, although the other models remain
better.

In DATA2, every location has at least 5 visitors, but a user may
still visit a location many times. For example, we find that in
DATA2, one location is visited by one user 101 times while be-
ing visited very few times by other users. Thus both the user and
the locations visited by the user obtain very high ranking scores in
the HITS-based approach.

To eliminate such effects, we set for each user who visits a lo-
cation more than 5 times the number of visits to 5, thus obtaining
DATA3. Table 7 shows that the performance of the HITS-based
approach is then close to that of the U-L model that is based on the
randomized HITS algorithm, although ST-Unified still performs
the best.
Parameter Study. ST-Unified uses four parameters: ε, α, ε, and
η. The best performance is obtained when ε and α are in the range
0.7–0.9 and ε and η are around 0.3. Additional details are available
in Appendix G.6.

5. CONCLUSIONS AND FUTURE WORK
Motivated by the proliferation of GPS data, we propose a frame-

work that encompasses new techniques for extracting semantically
meaningful geographical locations from such data and for the rank-
ing of these locations according to their significance.

We model the relationships between locations and also the re-
lationships between locations and users with a two-layered graph.
The ranking model we propose takes into account significance prop-
agation among locations; mutual reinforcement between location
significance and user authority; and aspects such as the number of
visits to a location, the durations of the visits, and the distances
between locations.

An empirical study demonstrates that our proposals are capable
of extracting semantic locations and of performing better rankings
than several baseline methods and previous work.

Several promising directions for future work exist. First, it is
of interest to study the processing of geo-context aware queries
(discussed in Appendix A) based on the hot semantic locations.
Second, it is of interest to mine “hot” semantic patterns from GPS
trajectories.
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APPENDIX
A. APPLICATION SCENARIOS

The extracted top-k hot semantic locations can be used by a rec-
ommendation system to fulfill the following two types of recom-
mendation queries.

The first kind of query is the location-aware top-k query. It re-
turns a ranked list of places according to a user’s location. For
example, a user staying in a hotel would like to find the top-10
significant locations that are close to the hotel.

Formally, a location-aware top-k query is represented by Q =
{k, ι}, where k is the number of locations requested, and ι = (x, y)
is the query location. The query retrieves the top-k hot locations
with regard to the query location ι.

Clearly, the popularity of locations should be taken into account
to answer such queries. In addition, the interestingness of a location
to a user is affected by the distance from the user’s location (the
query location) to the semantic location. A user is probably willing
to visit a less interesting nearby location instead of slightly more
interesting, but further away location.

Hence, to answer this kind of recommendation query, we take
into consideration both the inherent significance of a location and
its distance to the query location.

A location-aware top-k query is similar to a web query. For a
web query, web pages are ranked by a combination of their inher-
ent, relative importance (e.g., as computed by PageRank), and their
relevance to the query. Here the inherent importance corresponds
to the inherent significance of locations, and the relevance corre-
sponds to the distance between locations and the query location.

In addition, the extracted hot locations can also be combined
with the location-aware top-k keyword query [6], which takes into
account both the distances of locations to the query point and the
relevance of the textual descriptions of locations to the query key-
words.

The second kind of query is the context-aware recommendation
query. Recall that a GPS record G contains user information (the
user ID u), temporal information (the timestamp t), and spatial
information (the coordinates x and y). The concept of a multi-
dimensional view of the data from multidimensional databases and
data warehousing can be incorporated into hot-location recommen-
dation. In other words, we can take into account a user dimension,
a time dimension, and a spatial dimension when providing context-
aware recommendations. Example queries include “find the top-30
locations visited by persons between the age 20 and 30,” “find the
top-10 locations in May, 2007,” and “find the top-20 locations in
the city center.”

The context-aware recommendation query takes parameters 〈k,
us, ts, rs〉. It retrieves the top-k locations from the GPS data that
satisfy the user-dimension predicate us, the time-dimension pred-
icate ts, and the spatial-dimension predicate rs. Obviously, if we
do not impose any context constraints, the context-aware query re-
duces to the problem of ranking semantic locations as defined in
Section 2.2.

On the user dimension different groups of users have various in-
terests, and the hot locations from different user groups reveal the
group’s preferences. On the time dimension the significance of lo-
cations may vary with the time of day since locations have different
opening hours (e.g. bars are usually open at night). Another exam-
ple is that the significance of locations may vary across the four
seasons (e.g. outdoor tourist sites may not be visited in winter as
frequently as in summer). On the spatial dimension, the signifi-
cance of a location may vary with respect to different regions. If a
location is mostly visited sequentially from other locations within

the same region, this indicates that the location will have high local
importance, but it may not be that interesting in the global view.
For example, a community kiosk may display the property.

Note that the two kinds of queries are not orthogonal and can be
combined. For example, a query could be “find the top-10 locations
in summer near my hotel.” Similar to a location-aware query, to
process this query we still need to compute the popularity of loca-
tions and the influence of locations to the query location. However,
the popularity of locations will be computed by a context-aware
recommend query, i.e., we use only the GPS trajectories generated
in summer to extract and rank hot locations.

B. EXTRACTING STAY POINTS
When a car is turned off, the GPS-enabled device attached to

the car also stops recording. We utilize this feature to extract stay
points. If the duration ∆t between two consecutive records from a
user is larger than a threshold tth, the two records represent a stay.
The record that is the end of the previous trip is denoted Gend and
the record that is the start of the next is denoted Gstart.

When a car is started, the car’s GPS device needs sometime to
start working. Hence the ending record best captures the location
of the stay, and we define a stay as P = (Gend, ∆t).

The value of the threshold tth affects the number of extracted
stay points. We studied the effect of tth on number of stay points
using different for on our data, and we also reverse geocode the
generated stay points and measured the number of distinct street
addresses. We found it useful to use a threshold of 10 minutes,
which yields some 76,000 stay points and more than 7,000 street
addresses for our data. This value is also used in previous work [3].

Substantial data cleaning of the raw GPS data is also needed to
obtain a robust approach. A number of checks were carried out, and
the approach was generally to repair or discard data when problems
were identified. The specifics are left out for brevity.

C. DETAILS ON BASELINES
We consider three baseline methods:

Rank-by-visits. This method assumes that the more a location is
visited, the more significant it is. This method ranks the locations
according to the number of visits by all the users. Ties are broken
by the sum of durations.
Rank-by-durations. This method is based on the rank-by-visits
method. It takes into account the durations of visits: It ranks the lo-
cations according to the sum of durations of all visits to a location.
Ties are broken by the number of visits.
Zheng et al. [23]. Formally, the approach utilizes the matrix M
from Section 3.3.1 to compute an authority score column vector a
for the locations, and a hub score column vector h for the users.

ak+1 = MT · hk, hk+1 = M · ak+1 (8)

The locations are ranked by the authority score vector a.

D. PROOFS

D.1 Proof of Theorem 1
PROOF. Let p(Uk) denote the kth element in wuser , and p(Li)

denote the ith element in wloc. From Equation 4, we know that:

p(Li) =

m∑

k=1

p(Uk)p(Li|Uk)

=

m∑

k=1

p(Uk)

n∑
j=1

p(Lj |Uk)p(Li|Lj ,Uk)
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According to the bayesian theorem, we can get:

p(Li) =

m∑

k=1

n∑
j=1

p(Uk)p(Lj |Uk)p(Li|Lj ,Uk)

=

m∑

k=1

n∑
j=1

p(Lj)p(Uk|Lj)p(Li|Lj ,Uk)

=

n∑
j=1

p(Lj)

m∑

k=1

p(Uk|Lj)p(Li|Lj ,Uk)

Since p(Li) =
∑n

j=1 p(Lj)p(Li|Lj), we can obtain:

p(Li|Lj) =

m∑

k=1

p(Uk|Lj)p(Li|Lj ,Uk)

After changing the subscript, we have:

p(Lj |Li) =

m∑

k=1

p(Uk|Li)p(Lj |Li,Uk)

This completes the proof.

D.2 Proof of Theorem 2
PROOF. Because we add a constant probability to both p(Uk|Li)

and p(Lj |Li,Uk), it is assured that all the elements in P and P
′

is larger than zero. Hence both matrices are irreducible. All ele-
ments in the two matrices are transition probabilities and are thus
positive. In matrix P, it can be shown that:

n∑
j=1

pij =

n∑
j=1

m∑

k=1

p(Uk|Li)p(Lj |Li,Uk)

=

m∑

k=1

p(Uk|Li)

n∑
j=1

p(Lj |Li,Uk)

=

m∑

k=1

p(Uk|Li) · 1 = 1

Therefore P is row stochastic. Similarly we can also prove that P
′

is row stochastic.
In summary, P and P

′
are irreducible, positive and row stochas-

tic matrices. According to the Markov chain theorem, both the Uni-
fied and ST-Unified model will converge using the power iteration
algorithm.

E. ALGORITHM OF THE UNIFIED MODEL
The algorithm of the unified model is shown in Algorithm 1.

F. REDUCTION OF THE UNIFIED MODEL
The unified model can be reduced to each of the two models

introduced in Sections 3.3.3 and 3.3.4.
Reduction to random walk onGUL: If we disregard the location-

location reinforcement, we have p(Li|Lj ,Uk) = p(Li|Uk). We
can estimate the element p(Uk|Li) in NUL and the element p(Li|Uk)
in NLU as:

p(Uk|Li) = ε
Num(Uk,Li)

Num(Li)
+ (1− ε)

1

m

p(Li|Uk) = ε
Num(Uk,Li)

Num(Uk)
+ (1− ε)

1

n

Under this estimation, we can see that:

Algorithm 1 UnifiedModel (SH, m, n)
Input:SH, location histories of all users, m, the number of users, n, the
number of locations
Output:wloc, the column vector containing ranking scores of all locations
1: M[m][n] ← NewMatrix()
2: N[m][n][n] ← NewMatrix()
3: P[n][n] ← NewMatrix()
4: initialize all the elements in wloc as 1

n
5: initialize all the elements in M[m][n] and N[m][n][n] as zero
6: for each user’s location history Hk in SH do
7: if the ith location is visited by the kth user then
8: M[k][i] ← M[k][i] + 1
9: if the trip is from the jth location then

10: N[k][j][i] ← N[k][j][i] + 1
11: BuildMatrix(P, M, N)
12: do power iteration on P until wloc reaches the stationary state.
13: return wloc

NLU = εMT
row + (1− ε)E1

NUL = εMcol + (1− ε)E2

Therefore, Equation 4 is exactly the same as Equation 2.
Reduction to random walk on GLL: If we disregard the user-

location reinforcement, we treat all the users’ trajectories as one
pseudo “user.” Now we have:

p(Li|Lj ,Uk) = p(Li|Lj) = α
Num(Lj ,Li)

Num(Li)
+ (1− α)

1

n

Notice that p(Li|Lj) is the element of P. Hence

P = αCrow + (1− α)E

We can see that Equation 6 is equal to Equation 3. Since we have
proved that Equation 6 is simplified from Equation 4, Equation 4
can be reduced to Equation 3.

G. ADDITIONAL EXPERIMENTAL
SETTINGS AND RESULTS

G.1 Extracting stays
As explained in Appendix B, we mark two consecutive GPS

records as the starts and end of a stay if the time duration between
them exceeds ∆t=10 minutes. This yields 159,062 stays in our
data set. After data cleaning, we obtain 76,139 stay points. These
points are located in the region 56◦ ∼ 58◦ North, 9◦ ∼ 11◦ East,
which is the region of Nordjylland in Denmark. Figure 2 depicts
the distribution of a sample of the stay points.

G.2 Reverse Geocoding and Obtaining
Semantics

The Google Maps API is invoked for reverse geocoding. Given a
latitude and a longitude, Google Maps returns an addressable loca-
tion that is nearest to the query position. The returned information
contains the street address and the coordinates. An online yellow
and white pages directory in Denmark (http://www.degulesider.dk/)
is used for finding the semantic of a given street address. The yel-
low pages service returns a list of semantic locations that are near
the query street address and one of which may match exactly the
given query street address.

The coordinates used in the raw GPS data are in the UTM (Uni-
versal Transverse Mercator coordinate system) format. To perform
reverse geocoding, we convert the data from the UTM format to

1018



Figure 2: Distribution of stays in our GPS data

latitude and longitude. The method introduced by Salkosuo 2. is
used to perform the conversion. The conversion uses WGS (World
Geodetic System) 84 specification.

G.3 Ground Truth of Semantic Locations
We build a ground truth of semantic locations to evaluate the

clustering methods. We first reverse geocode each stay point us-
ing the Google Maps API. Given a stay point P with coordinate
(x, y), Google Maps API will return the street address of the point
together with the coordinate (x′, y′) of this street address. We call
the returned coordinate the reverse-coordinate to distinguish it from
the coordinate of the stay point. Note that a street address may
correspond to multiple reverse-coordinates, particularly when the
returned street address does not contain a street number. We as-
sume that a semantic location corresponds to one or several distinct
reverse-coordinates.

We group stay points such that each group has a distinct reverse-
coordinate. We then check whether some groups should be merged
to represent a semantic location: We compute the distance of all
pairs of groups using their reverse-coordinates; If the distance be-
tween two groups is less than 100 meters, we ask annotators to
check whether they are the same semantic location and should be
merged. Finally, we obtain 7,082 semantic locations.

G.4 Efficiency of Semantic Location
Extraction

K-means takes 12 minutes to finish, and OPTICS takes 4 min-
utes. The enhancement method SEM-CLS takes 390 ms when the
number of sampling points is 2, and 420 ms when the number of
sampling points is 5 if we assume that all the points have been re-
verse geocoded by calling external API beforehand. The runtime
of reverse geocoding depends on the stability of network, and the
availability and workload of external API service. Sometimes we
have to call the external API service several times to get the result.
Hence, it does not really make sense to report the runtime of the
external API service.

G.5 Top-10 Results of Four Ranking Models
Figure 3 shows the top-10 results of the four ranking models

proposed in Section 3.3. The harbor location is detected by the L-L
model (the top right corner). It does not have a large number of
visitors, but has a relative large number of visits. The hospital loca-

2http://www.ibm.com/developerworks/java/library/j-
coordconvert/index.html

tion (in the middle) is detected by the U-L model. This is because
many users have been there, but not too many times. The two uni-
fied models detect both locations. The top 10 semantic locations
returned by the four methods are listed in Table 8.

(a) U-L (b) L-L

(c) Unified (d) ST-Unified

Figure 3: Top-10 results of the four ranking models

U-L L-L Unified ST-Unified
1 Bilka Bilka Bilka Bilka
2 Føtex Stadium Church Church
3 Church Harbor Stadium Stadium
4 Cinema Føtex Føtex Føtex
5 Kommune unknown Hospital Zoo
6 Hospital Church Cinema Hospital
7 Stadium Cinema Zoo Cinema
8 Train station Doense Dybfrost Harbor Kommune
9 unknown Gas station Bauhaus Harbor

10 Bauhaus unknown unknown Bauhaus

Table 8: Top-10 results of the four models

Bilka and Føtex are big supermarkets in Aalborg. Bauhaus and
Doense Dybfrost are two companies, and their annotation scores
are smaller than 1.5.

G.6 Parameter Study for the Ranking Models
There are four parameters in the ST-Unified model, i.e., ε, α, ε

and η. ST-Unified performs the best when ε and α are in the range
0.7–0.9 and ε and η are around the value 0.3.

Parameters ε and α are used to control the effects of the constant
probability (to teleport to other nodes). Parameter ε is to control
the importance of the stay duration at a location, and parameter
η controls the importance of the distance between two locations.
They affect the effectiveness of the ST-Unified model.

Figure 4 shows the effect of varying ε. As we can see, the best
ranking performance occurs when the value of ε is in the range
0.7–0.9. By setting ε to zero, we treat all the users equally, and
thus ST-Unified works like the L-L model; by setting ε to 1, we
disregard the teleport probability in the random walk on GUL. At
both extremes, the performance becomes worse.
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Figure 5 shows the effect of varying α, and we can see that the
performance is the best when α is in the range 0.7–0.9. When we
set α to zero, all the transition probabilities become the same, and
ST-Unified works like the U-L model; and when setting α to 1, we
disregard the teleport probability in the random walk on GLL.
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Figure 4: MAP by varying ε
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Figure 5: MAP by varying α

Figure 6 and Figure 7 shows the effect of varying η and varying
ε, respectively. We can see that only if we combine the considera-
tion of the number of visits, the durations and the distances will we
achieve the best results.

When η and ε are set as zero, ST-Unified will become Unified.
When ε is set to a large value, the duration plays a more important
role than the visiting times in estimating the conditional probabil-
ity p(Li|Uk). We can see that the performance is slightly worse.
When η is set at a large value, the distance is more important for
estimating p(Lj |Li,Uk). This leads to very poor performance be-
cause the distance alone is not a good indicator of the transition
probability of a random surfer between two locations.
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Figure 6: MAP by varying η
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Figure 7: MAP by varying ε

H. ADDITIONAL RELATED WORK
Extracting locations from GPS trajectories: There has been

a host of studies on extracting locations from single users’ GPS
trajectories [3, 8, 10, 13, 20, 24]. There is also recent work [23]
on extracting locations from multiple users’ trajectories. Some
works [8, 10, 20] do not consider the re-occurrence of GPS read-
ings at the same location, and thus they do not need to cluster the
GPS points into locations; other works make use of clustering to
group GPS records to get locations [3, 23, 24]. However, no works
consider the semantics of locations when extracting locations.

Liu et al. [14] consider the extraction of semantic locations, but
the study is based on a single user’s data and does not cluster similar
points. In contrast, our work handles multiple users’ trajectories,
and a semantics enhanced clustering method is used for extracting
semantic locations.

Mining important locations: Zhou et al. [24] mine personal im-
portant locations from a single user’s trajectories. The importance
is a personal view and is “defined” by the user, such as the home or
work office of the user. They do not rank locations, but only classify
locations as important or not. In contrast, we rank locations based
on location histories of multiple users.

Zheng et al. [23] mine interesting locations and travel sequences
from GPS data, and a HITS-based inference model is used for rank-
ing locations. Our work differs from that work in that 1) we con-
sider semantics and use semantic to enhance the location extraction
process; 2) we propose new models for ranking locations, which are
capable of better exploiting the features of GPS trajectories.

Several locations recommender systems [19,22] can recommend
locations to users based on real-world data. Our proposed tech-
niques can also serve as a location recommender system.

PageRank and HITS. These are two popular link based rank-
ing algorithms that were originally developed for web link analysis.
Both methods rank pages according to their importance and author-
ity, estimated by the importance of pages pointing to them. They
can be understood as as a Markov chain in which the states are
pages and the transition probabilities are determined by the links
between pages; the PageRank problem actually amounts to solv-
ing an old problem (computing the stationary vector of a Markov
chain) in the context of web links [12].

We note that Ding et al. [7] attempt to find a framework to unify
the PageRank and HITS models. The unification is to establish a
connection between the two models such that it becomes possible
to use a simple count of the number of inlinks to a webpage as an
approximation of its PageRank. However, the unified model works
on a single-layered web link graph, not the two-layered graph in
our problem.
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