
Techniques for Similarity Searching in Multimedia
Databases∗

Hanan Samet
Center for Automation Research, Institute for Advanced Studies,
Department of Computer Science, University of Maryland

College Park, MD 20742 USA

hjs@cs.umd.edu

ABSTRACT

Techniques for similarity searching in multimedia databases
are reviewed. This includes a discussion of the curse of di-
mensionality, as well as multidimensional indexing, distance-
based indexing, and the actual search process which is real-
ized by nearest neighbor finding.

1. INTRODUCTION

The representation of multidimensional points and ob-
jects, and the development of appropriate indexing methods
that enable them to be retrieved efficiently is a well-studied
subject (e.g., [5, 6]). Most of these methods were designed
for use in application domains where the data usually has
a spatial component which has a relatively low dimension.
Examples of such application domains include geographic
information systems (GIS), spatial databases, solid model-
ing, computer vision, computational geometry, and robotics.
However, there are many application domains where the
data is of considerably higher dimensionality, and is not
necessarily spatial. This is especially true in multimedia
databases where the data is a set of objects and the high
dimensionality is a direct result of trying to describe the
objects via a collection of features (also known as a feature
vector). In the case of images, examples of features include
color, color moments, textures, shape descriptions, etc. ex-
pressed using scalar values. The goal in these applications
is often expressed more generally as one of the following:

1. Find objects whose feature values fall within a given
range or where the distance from some query object
falls into a certain range (range queries).

2. Find objects whose features have values similar to those
of a given query object or set of query objects (nearest
neighbor queries).

∗This work was supported in part by the National Science
Foundation under Grants IIS-09-48548, IIS-08-12377, CCF-
08-30618, and IIS-07-13501, as well as the Office of Policy
Development & Research of the Department of Housing and
Development, Microsoft Research, Google, and NVIDIA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

These queries are collectively referred to as similarity search-
ing, and the issues involved in supporting them is the sub-
ject of this tutorial, which is organized as follows. Sec-
tion 2 discusses the curse of dimensionality and its rami-
fications. Sections 3 and 4 discuss multidimensional index-
ing and distance-based indexing, respectively. Concluding
remarks are drawn in Section 5.

2. CURSE OF DIMENSIONALITY

An apparently straightforward solution to finding the near-
est neighbor is to compute a Voronoi diagram for the data
points (i.e., a partition of the space into regions where all
points in the region are closer to the region’s associated data
point than to any other data point), and then locate the
Voronoi region corresponding to the query point. The prob-
lem with this solution is that the combinatorial complexity
of the Voronoi diagram in high dimensions is prohibitive —
that is, it grows exponentially with its dimension k so that
for N points, the time to build and the space requirements
can grow as rapidly as Θ(Nk/2) [7]. This renders its appli-
cability moot.

The above is typical of the problems that we must face
when dealing with high-dimensional data. Generally speak-
ing, multidimensional queries become increasingly more dif-
ficult as the dimensionality increases. The problem is char-
acterized as the curse of dimensionality (e.g., [7]). This term
is used to indicate that the number of samples needed to es-
timate an arbitrary function with a given level of accuracy
grows exponentially with the number of variables (i.e., di-
mensions) that comprise it. For similarity searching (i.e.,
finding nearest neighbors), this means that the number of
objects (i.e., points) in the data set that need to be exam-
ined in deriving the estimate grows exponentially with the
underlying dimension.

The curse of dimensionality has a direct bearing on sim-
ilarity searching in high dimensions as it raises the issue of
whether or not nearest neighbor searching is even meaning-
ful in such a domain. In particular, letting d denote a dis-
tance function which need not necessarily be a metric (e.g.,
see . It has been pointed out (e.g., [7]) that nearest neighbor
searching is not meaningful when the ratio of the variance
of the distance between two random points p and q, drawn
from the data and query distributions, and the expected
distance between them converges to zero as the dimension
k goes to infinity — that is,

lim
k→∞

Variance[d(p, q)]

Expected[d(p, q)]
= 0.

In other words, the distance to the nearest neighbor and the

1649



distance to the farthest neighbor tend to converge as the
dimension increases.

3. MULTIDIMENSIONAL INDEXING

Assuming that the curse of dimensionality does not come
into play, query responses are facilitated by sorting the ob-
jects on the basis of some of their feature values and building
appropriate indexes. The high-dimensional feature space is
indexed using some multidimensional data structure (termed
multidimensional indexing) with appropriate modifications
to fit the high-dimensional problem environment. Similarity
search which finds objects similar to a target object can be
performed with a range search or a nearest neighbor search
in the multidimensional data structure. However, unlike ap-
plications in spatial databases where the distance function
between two objects is usually Euclidean, this is not neces-
sarily the case in the high-dimensional feature space where
the distance function may even vary from query to query on
the same feature .

Searching in high-dimensional spaces is time-consuming.
Performing range queries in high dimensions is considerably
easier, from the standpoint of computational complexity,
than performing similarity queries as range queries do not
involve the computation of distance. In particular, searches
through an indexed space usually involve relatively simple
comparison tests. However, if we have to examine all of the
index nodes, then the process is again time-consuming. In
contrast, computing similarity in terms of nearest neighbor
search makes use of distance and the process of computing
the distance can be computationally complex. For example,
computing the Euclidean distance between two points in a
high-dimensional space, say d, requires d multiplication op-
erations and d − 1 addition operations, as well as a square
root operation (which can be omitted). Note also that com-
puting similarity requires the definition of what it means for
two objects to be similar, which is not always so obvious.

4. DISTANCEBASED INDEXING

Often, the only information that we have available is a
distance function that indicates the degree of similarity (or
dis-similarity) between all pairs of the N objects. Usually
the distance function d is required to obey the triangle in-
equality, be non-negative, and be symmetric, in which case
it is known as a metric and also referred to as a distance
metric. However, at times, the distance function is not a
metric (e.g., SASH[4, 7]). Often, the degree of similarity is
expressed using a similarity matrix which contains interob-
ject distance values, for all possible pairs of the N objects

Given a distance function, we usually index the objects
with respect to their distance from a few selected objects.
We use the term distance-based indexing to describe such
methods (e.g., [2]). There are two basic partitioning schemes:
ball partitioning and generalized hyperplane partitioning.

In ball partitioning, the data set is partitioned based on
distances from one distinguished object, sometimes called a
vantage point, into the subset that is inside and the subset
that is outside a ball around the object In generalized hyper-
plane partitioning, two distinguished objects p1 and p2 are
chosen and the data set is partitioned based on which of the
two distinguished objects is the closest — that is, all the ob-
jects in subset A are closer to p1 than to p2, while the objects
in subset B are closer to p2. The asymmetry of ball parti-
tioning is a potential drawback of this method as the outer
shell tends to be very narrow for metric spaces typically used

in similarity search In contrast, generalized hyperplane par-
titioning is more symmetric, in that both partitions form a
“ball” around an object.

The advantage of distance-based indexing methods is that
distance computations are used to build the index, but once
the index has been built, similarity queries can often be per-
formed with a significantly lower number of distance com-
putations than a sequential scan of the entire dataset. Of
course, in situations where we may want to apply several dif-
ferent distance metrics, then the drawback of the distance-
based indexing techniques is that they require that the index
be rebuilt for each different distance metric, which may be
nontrivial. This is not the case for the multidimensional in-
dexing methods which have the advantage of supporting ar-
bitrary distance metrics (however, this comparison is not en-
tirely fair, since the assumption, when using distance-based
indexing, is that often we do not have any feature values as
for example in DNA sequences).

5. CONCLUDING REMARKS

Providing indexing support for similarity searching is an
important area where much work remains to be done. Some
of the more promising research directions lie in developing
techniques to identify the important features in the applica-
tions so that the dimension of the problem domain can be
reduced. An alternative is to find an embedding for the dis-
tance function in a vector space (e.g, [3]) thereby enabling
us to properly utilize the vast array of existing indexing and
nearest neighbor techniques (e.g., [1, 2, 8]).

6. REFERENCES
[1] G. R. Hjaltason and H. Samet. Distance browsing in

spatial databases. ACM Transactions on Database
Systems, 24(2):265–318, June 1999. Also University of
Maryland Computer Science Technical Report
TR–3919, July 1998.

[2] G. R. Hjaltason and H. Samet. Index-driven similarity
search in metric spaces. ACM Transactions on
Database Systems, 28(4):517–580, Dec. 2003.

[3] G. R. Hjaltason and H. Samet. Properties of
embedding methods for similarity searching in metric
spaces. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 25(5):530–549, May 2003. Also an
expanded version in University of Maryland Computer
Science Technical Report TR–4102, January 2000.

[4] M. E. Houle and J. Sakuma. Fast approximate
similarity search in extremely high-dimensional data
sets. In Proceedings of the 21st IEEE International
Conference on Data Engineering, pages 619–630,
Tokyo, Japan, Apr. 2005.

[5] H. Samet. Applications of Spatial Data Structures:
Computer Graphics, Image Processing, and GIS.
Addison-Wesley, Reading, MA, 1990.

[6] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1990.

[7] H. Samet. Foundations of Multidimensional and Metric
Data Structures. Morgan-Kaufmann, San Francisco,
2006.

[8] H. Samet, J. Sankaranarayanan, and H. Alborzi.
Scalable network distance browsing in spatial
databases. In Proceedings of the ACM SIGMOD
Conference, pages 43–54, Vancouver, Canada, June
2008. Also see University of Maryland Computer
Science Technical Report TR–4865, April 2007.

1650




