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ABSTRACT

Replication is a key mechanism to achieve scalability and
fault-tolerance in databases. Its importance has recently
been further increased because of the role it plays in achiev-
ing elasticity at the database layer. In database replication,
the biggest challenge lies in the trade-off between perfor-
mance and consistency. A decade ago, performance could
only be achieved through lazy replication at the expense of
transactional guarantees. The strong consistency of eager
approaches came with a high cost in terms of reduced perfor-
mance and limited scalability. Postgres-R combined results
from distributed systems and databases to develop a replica-
tion solution that provided both scalability and strong con-
sistency. The use of group communication primitives with
strong ordering and delivery guarantees together with op-
timized transaction handling (tailored locking, transferring
logs instead of re-executing updates, keeping the message
overhead per transaction constant) were a drastic departure
from the state-of-the-art at the time. Ten years later, these
techniques are widely used in a variety of contexts but par-
ticularly in cloud computing scenarios. In this paper we re-
view the original motivation for Postgres-R and discuss how
the ideas behind the design have evolved over the years.

1. INTRODUCTION

Data replication is a fascinating topic for both theory and
practice. On the theoretical side, many strong results con-
straint what can be done in terms of consistency: e.g., the
impossibility of reaching consensus in asynchronous systems
[16], the blocking nature of 2PC [18], the CAP theorem [§],
and the need for choosing a suitable correctness criterion
among the many possible [7, 42]. On the practical side,
data replication plays a key role in a wide range of con-
texts: caching, back-up, high availability, wide area content
distribution, increasing scalability, parallel processing, etc.
Finding a replication solution that is suitable in as many
such contexts as possible remains an open challenge. In re-
cent years, database replication has acquired an additional
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dimension due to the role it plays in achieving elasticity
when combined with virtualization in cloud computing en-
vironments (the most recent example being the architecture
of SQI Azure [9] or proposals to support multi-tenancy in
databases [37]).

In this paper we review the original results of the VLDB
2000 paper that presented Postgres-R [23]. Postgres-R was
the first database replication system that was both scal-
able and provided strong consistency guarantees. It fulfilled
these two design goals by taking a completely different ap-
proach to implementing replication than the commercial sys-
tems and research proposals available at the time. The main
contributions of Postgres-R covered a wide range of aspects
but complemented each other very well: dealing with con-
sistency outside the database; considering alternative cor-
rectness criteria that reduced overhead but still guaranteed
consistency; and showing how to make these new ideas work
within a database engine by providing a full implementation.
These innovations were possible only by stepping out of the
constrained thinking of databases and distributed systems
at the time. Postgres-R emerged from the combination of
results from both areas, with the ideas and concepts from
Postgres-R that have survived the test of time being mainly
those that resulted from such synergy.

The most important innovation in Postgres-R was the
use of ideas from distributed computing (group communi-
cation) to solve the problem of coordinating updates at sev-
eral copies while maintaining overall consistency [22]. Nowa-
days, when protocols like Paxos [24] are a core component
in many distributed systems, the idea may seem obvious.
At the time, it was quite a counterintuitive design choice
in both the database as well as in the distributed systems
communities. On the one hand, group communication was
developed almost exclusively for fault tolerant purposes and
Postgres-R used it mainly for performance reasons (as a
way to reduce the cost of achieving consistency). On the
other hand, understanding how group communication inter-
acted with transaction management in a database required
to go away from the fully synchronous model of replicated
databases (based on distributed locking and 2 Phase Com-
mit) and adopting a less tightly coupled approach based on
ordering guarantees. Today, group communication (or some
form of agreement protocol) is widely used as a way to im-
plement database replication in both commercial systems
and research projects.

A second contribution of Postgres-R was to exploit the
use of multiple data versions to simplify concurrency control
(i.e., shadow copies or multi-version concurrency control).



The version of PostreSQL we used to implement Postgres-
R only supported strict 2 Phase Locking (2PL) and, thus,
Postgres-R provided serializability. Yet, Postgres-R went
to great lengths to implement a rudimentary multi-version
system within PostgreSQL due to the many advantages it
offered. This optimization opened the way to using more
suitable correctness criteria for database replication [22],
something that became easier to do a few years later due
to the increasing availability of snapshot isolation in rela-
tional database engines. Interestingly enough, the work on
exploring the best way to combine group communication
with transactional correctness [22] found resonance mainly
among researchers in distributed systems, achieving only
limited visibility in the database area.

The third contribution of Postgres-R was a full implemen-
tation in a real database system, taking advantage of and
accepting the trade-offs that come with the use of a spe-
cific database kernel. Fine-tuning all the engineering aspects
of working within a relational engine turned out to have a
significant impact on performance and was determinant in
convincing others that the approach could be made to work.
However, and highlighting the differences between the two
research communities, the implementation seemed to be rel-
evant mainly to researchers in databases, being clearly of
much less interest to the distributed systems community.

Taking advantage of the perspective gained a decade later,
in this paper we review the architecture of Postgres-R point-
ing out what ideas proved to be the right ones and what
aspects of the design are now obsolete. In the paper we will
put special emphasis on the interplay between databases
and distributed systems in the conviction that today, like a
decade ago, much is to be gained by combining existing re-
sults from the two areas in novel and innovative ways -even
if it is a difficult exercise. For reference, we also provide
a brief overview of how the initial ideas behind Postgres-R
have evolved and are being used in the various systems that
have adopted and adapted them.

2. REPLICATION 10 YEARS AGO
2.1 Background

Working on finding a way around the dangers of replica-
tion [17] was not the most popular research topic in databases
ten years ago. Not so in distributed systems where the rela-
tion between database replication and agreement problems
had been explored in some detail (e.g., [39, 19]). The view
held in the database community was that one could get
either performance by sacrificing consistency (lazy replica-
tion approaches) or consistency at the cost of performance
and scalability (eager replication approaches). Furthermore,
the choice seemed to have been made already: performance
and scalability took precedence over consistency' with most
replication solutions using a primary copy approach where
changes were propagated after commit and no guarantees
were given on the data read from the copies. The fact that
it was possible to implement (and commercialize!) a system
with such ill-defined consistency guarantees was always met
with incredulity by the distributed systems community. In
the database world, the protocols used in distributed sys-

LA situation resembling today’s discussions around rela-
tional database engines, the NoSQL movement, and elastic
data processing in the cloud.

tems, and specially group communication, were perceived
as complex and expensive without actually solving a real
database problem.

2.2 The Dangers of Replication

Ten years ago, the theoretical basis for database replica-
tion revolved around the classic concepts of serializability
and locking [7, 42]. Replication was implemented with one-
copy-serialazability as correctness criterion (a history would
produce the same results as an equivalent history over a
system with a single copy). This was achieved through a
read-one-write-all protocol where read operations will ob-
tain local locks and write operations will obtain distributed
locks on all copies. Atomicity was ensured by using a 2-
Phase-Commit (2PC) protocol at the end of each transac-
tion. Quorums were often suggested as a way to minimize
overhead by not having to modify all copies in each trans-
action but only a subset of them. The result was a fully
consistent system that behaved like a single database.

While elegant and relatively easy to understand, such an
approach to replication hided many pitfalls and complex en-
gineering aspects. Gray et al. [17] were the first to point
out some of them. In particular, Gray et al. emphasized
that such an approach was based on coordinating each op-
eration individually. As a result, when the number of copies
increased, the transaction response times, the conflict prob-
ability, and the deadlock rates would grow exponentially.
The response times increased because of the overhead of
distributed locking (involving messages over the network for
each write operation) and the need to run 2PC to commit
the transaction (another two rounds of network messages per
transaction). Since transactions lasted longer, they locked
items for a longer time, thereby increasing their conflict pro-
file and the probability that they blocked other transactions.
This resulted in an exponential deadlock rate and dismal re-
sponse times as the number of copies increased. Based on
these observations, Gray et al. concluded that the, at the
time, textbook approach to database replication could not
possibly scale and proposed a number of alternative lazy
approaches.

Because of these results and the prevalence of lazy repli-
cation solutions in commercial systems, research on replica-
tion before Postgres-R was mostly focused on understand-
ing the inconsistencies created by lazy replication strate-
gies: weak consistency models, epidemic strategies, impos-
ing restrictions on the placement of copies, using a primary
copy approach, and hybrid solutions providing consistency
within transactional boundaries but propagating updates
only lazily (see the original Postgres-R paper for references
and a more detailed discussion of these approaches).

2.3 Replication in Practice

At the time we developed Postgres-R, there was only one
major commercial database that supported consistent repli-
cation. The Oracle Advanced Replication solution worked
by first performing updates locally and then using after-
row triggers to propagate those changes synchronously to
the other copies. There was no pretense that the approach
would scale up and the manuals said so explicitly. In fact,
it was provided mostly as a way to implement hot-standby
backup systems.

When we analyzed in detail the behavior of such a sys-
tem, the results correlated quite well with the observations
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Figure 1: Response time in conventional replication

of Gray et al. [21]. Figure 1 shows the performance ex-
hibited by such conventional approach to replication under
a relatively small load of 10 update transactions per sec-
ond. The response time increased significantly with both
the number of copies and clients connected to the system,
clearly indicating that replication was not scaling with either
higher loads nor with higher multi-programming levels.
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Figure 2: Throughput in conventional replication

Figure 2 shows the corresponding throughput of the sys-
tem. The drop in throughput caused by replication is also
clearly visible, with an extreme case for the single client ex-
periment where a single copy can run 10 transactions per
second but 5 copies could only run about 2 transactions per
second due to the overhead of synchronization.
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Figure 3: Abort rates in conventional replication

Finally, Figure 3 shows the abort rate. Due to the in-
crease in the conflict profile of the transactions, the abort
rate grew very quickly with the multi-programming level, a
clear sign that the system did not scale and fully confirming
the observations of Gray et al.

These experiments provided very well defined design con-
straints for Postgres-R: avoid coordinating on a per oper-
ation basis; avoid running 2PC for each transaction; and
shorten the length of the transactions to minimize their con-
flict profile.

2.4 Group Communication

Parallel and independently to the work on database repli-
cation, a wide range of group communications systems had
been developed and studied in great detail in the distributed
systems and distributed computing communities [30, 29, 6].
Unlike in databases, where replication served and still serves
a wide range of purposes from availability to performance
and elasticity, the purpose for replication in distributed com-
puting is almost exclusively fault tolerance with performance
rarely playing any role in the design of the corresponding al-
gorithms.

Group communication systems manage the exchange of
messages among a well defined group of nodes by providing
communication primitives with different message ordering
and reliable delivery semantics.

In terms of message ordering usual options include FIFO,
causal, and total order delivery, each one specifying a stronger
(and also more expensive to enforce) constraint on how mes-
sages are delivered at each node. Total order delivery (which
can be causal or not) ensures that if any two nodes in the
system receive two messages m1 and msz , both receive either
ml before my or mg before m1. Postgres-R took advantage
of this property to make sure updates were applied in the
same order at all copies by propagating the changes using
total order delivery.

In terms of delivery semantics, the exact definitions re-
quire more space than the one available here as one needs to
consider the notion of membership to a view to be precise.
For the purposes of this paper, it suffices to consider two
main options. Reliable delivery ensures that if a message is
delivered to a node that is available, that message will be de-
livered at all available nodes. Uniform delivery ensures that
if a message is delivered to a node, that message will be de-
livered at all available nodes. The difference between the two
is subtle but crucial. Uniform delivery is a much stronger
property than reliable delivery because it requires that if a
message is delivered to a node, the message is delivered to all
working nodes even if the first node fails. Postgres-R took
advantage of the recovery semantics of database engines and
chose reliable delivery rather than uniform delivery (all the
implications of this choice were explored in detail to ensure
Postgres-R behaved correctly [22]).

The similarities and differences between the approaches to
replication in databases and distributed systems were quite
interesting and illuminating [35]. Postgres-R was designed
in part based on understanding these differences and making
the right choice depending on the task: conventional concur-
rency control within a replica, and group communication to
reduce the overhead of enforcing consistency among replicas.

3. POSTGRES-R

3.1 Overview

Postgres-R was built as a collection of nodes containing
fully replicated databases. Clients connected to one of the
replicas and submitted their transactions to that replica.
The corresponding database executed the transaction locally
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Figure 4: Architecture of Postgres-R

and when it received the commit request from the client, it
sent the updates to all the other copies using a group com-
munication service (GCS). Once the proper order for the
transactions had been established and validated, the trans-
action was committed while in parallel all other copies were
being updated.

Each Postgres-R node was based on a modified version
of PostgreSQL (at that time version 6) plus a communica-
tion module implementing the group communication service.
The original paper used the group communication system
Ensemble [20] for that purpose. As shown in Figure 4, the
use of the communication module induces a number of steps
when dealing with messages. Postgres-R distinguished be-
tween physically receiving a message form the network (the
message was received but its total order not established), de-
livering a message to the database (the communication mod-
ule forwarded a message with a transaction to the database
only when the order was established and the reliability guar-
antees for the message were met), and receiving a message
at the database where it was processed. For reference pur-
poses, Figure 5 illustrates the overall architecture of each
node in Postgres-R as an extension of the main components
of PostgreSQL.
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3.2 Transaction Execution

Transaction execution in Postgres-R was very different
from conventional database replication solutions. Concep-
tually, it also used a read-one-write-all approach but divided
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Figure 6: Transaction Execution Phases

transaction execution into 4 different phases: a local phase
where a transaction was processed only at one database
(called the local replica), a send phase where the updates
were propagated, a synchronization phase where the global
serialization order was established, and a write phase where
remote replicas executed the writes and all replicas commit-
ted the transaction (Figure 6).

These 4 phases enabled a number of key features that
helped Postgres-R achieve the performance and simplicity
that made it so different from traditional approaches.

e Reduced coordination overhead: A transaction
was first completely executed at a single replica and
the write operations only sent at the end of the trans-
action within a single message. Thus, Postgres-R avoided
the coordination overhead of traditional approaches.
Until the commit request was submitted the transac-
tion took as long as if there were no replication. Read-
only transactions remained completely local without
any coordination needed.

e Local concurrency control for local transactions:
While transactions executed locally, they were isolated
from other locally executing transactions by the con-
currency control algorithms implemented in the database
engine. Thus, existing isolation mechanisms were fully
exploited.

e Total order delivery: A group communication sys-
tem was used to propagate the write set to all replicas
in total order. This order was used to determine a to-
tal serialization order for update transactions across all
replicas during the synchronization phase. As all repli-
cas received the write sets in the same order, all repli-
cas could serialize write operations in the same way
without any further coordination with other replicas.
This simplified global concurrency control significantly
and, e.g., eliminated distributed deadlocks entirely.

e Independent write phases: To avoid that the re-
sponse time increased due to having to wait until the
transaction was committed at all sites, the local replica
would commit the transaction as soon as its position in
the total order was known. It had already executed the



write operations during the local phase, and the write
phase at the remote replicas was performed indepen-
dently. As a result, the local replica could confirm the
commit to the client without having to wait until the
other replicas had executed the transaction.

e Early lock release: The write phase at a remote
replica was expected to be fast as all write operations
were known and no further coordination with other
replicas was needed. Thus, locks and resources needed
to be kept only for a short time, much shorter than
during the local phase at the local replica. Thus, ap-
plying the write operations of remote transactions had
only little impact on locally executing transactions.

e Reliable delivery: Through the use of reliable de-
livery, even if failures occurred, all available replicas
delivered the same set of write sets. With uniform
reliable delivery it is even guaranteed that failed repli-
cas delivered a subset of the write sets delivered by
the available replicas. In practice, this provided atom-
icity: all (available) replicas commited the same set of
transactions without having to use 2 Phase Commit
for each transaction.

As aresult of these mechanisms, response times in Postgres-
R were barely higher than in a non-replicated system. The
only added latency was due to having to send the write set
to all copies and to perform the synchronization phase. In
our implementation that overhead was very small compared
to the time spent in the local phase.

Let’s now have a closer look at what happened in each of
these phases.

In the local phase, all read and write operations of a
transaction were executed locally at one replica, namely
the replica the client was connected to. During the local
phase, concurrency control at the local replica isolated the
transaction from other transactions running concurrently
at the local replica. Transactions on other replicas were
not visible. The version of PostgreSQL we modified used
strict two-phase locking, a technical aspect that had impor-
tant implications in how Postgres-R operated. For the local
phase, we simply adopted this concurrency control mech-
anism and didn’t change it. However, updates were per-
formed on shadow copies rather than in-place.

When the client submitted the commit request, a read-
only transaction could commit locally. Thus, read-only trans-
actions remained completely local not requiring any coordi-
nation with other replicas. For update transactions, a send
phase used multicast to send all write operations in a single
write set message to all other replicas and the delivery to the
database was done in total order. Even if failures occurred,
it was guaranteed that either all or none of the available
replicas received the write set, thereby ensuring atomicity.

When the write set arrived at a replica, the synhroniza-
tion phase started. This phase guaranteed that the trans-
action was properly serialized in regard to all transactions
in the system, not only the local ones. An important fea-
ture was that each replica performed the synchronization
phase locally, with nearly no interaction between the repli-
cas. This was achieved by letting each replica acquire the
write locks in the order their write sets were delivered, i.e.,
the synchronization phases of different transactions were se-
rial. We extended the original locking component of Post-
gresQL to be able to acquire several locks in a single atomic

step. As a result, all replicas ordered write operations in the
same way. A tricky issue was that only the local replicas
saw the read operations. In Postgres-R we solved this is-
sue by letting the local replica check for read/write conflicts
which then would inform the other replicas via an additional
commit/abort message whether the transaction could really
commit or not. Later versions did not needed to do this
as they used snapshot isolation instead (thereby removing
read/write conflicts).

If the synchronization succeeded, the write phase started.
At the local replica, the shadow copies simply became visible
copies and the transaction commited. At the remote repli-
cas the write operations were applied and the transaction
committed. No further communication took place among
replicas. It was also possible for replicas to apply write sets
concurrently if the write sets did not conflict.

An additional and very important optimization in Postgres-
R was the way write sets were constructed and propagated.
Instead of executing the original write operations on the re-
mote replicas as described in traditional eager approaches
(or propagating SQL statements as some modern systems
do [4, 3, 2]), the write set contained the after-images of the
affected records. These after images could be applied in a
very efficient manner at the remote replicas, significantly re-
ducing the overhead of updating copies. As a result, replicas
had more processing power for local transactions, boosting
the overall performance of the system.

3.3 Performance of Postgres-R

Postgres-R was able to scale to up to 15 nodes with typ-
ical read/write workloads, a major breakthrough at that
time. Such performance was possible because Postgres-R ex-
hibited a completely different behavior than systems imple-
menting replication through distributed locking and 2 Phase
Commit. As an example, Figure 7 shows the response time
of Postgres-R?.
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Figure 7: Response time in Postgres-R

With a single server, response times worsened quickly with
increasing number of clients, although the overall workload
was the same for all tests. This was due to poor connec-
tion management in the version of PostgreSQL we used.
More interesting in the context of this paper is that with
increasing number of servers, the response times did not
deteriorate, remaining almost independent of the number
of replicas. With higher number of clients, response times

2For other performance results, we refer to the original paper
or [21]. Note that the experiments for Postgres-R were done
on different hardware than the experiments in Figures 1, 2,
and 3. The results can only be compared qualitatively.



even slightly decreased as connection management was dis-
tributed across several replicas and concurrent transactions
did not block or interfered with each other. Such behavior
was the basis for achieving scalability while still providing
full serializability.

4. LESSONS LEARNED

Postgres-R demonstrated that it was possible to imple-
ment consistent data replication in a scalable manner. The
key ideas behind its design have survived the test of time
and now are used in many systems. In particular, the use
of group communication technology, and the execution split
into a local phase and a coordination phase have shown to be
very efficient. There were, nevertheless, aspects of Postgres-
R that, with hindsight, could have been done differently
and, in fact, had been changed as technology and the un-
derstanding of the problem evolved in the last ten years. In
what follows we also point out some of the aspects that did
not work that well and were eventually replaced for other
solutions.

4.1 Architecture

Kernel vs. middleware replication. One of the key as-
pects in which Postgres-R differs from most of the later de-
velopments was that it was implemented inside a database
system. While this provided a great opportunity for opti-
mizations and allowed for a tight coupling of concurrency
control and replica control, it was an invasive approach and

heavily dependent on a particular database implementation®.

Many of the later systems chose to implement replication
outside the database in a middleware layer. A middleware
layer has the big advantage that the underlying database
does not need to be modified (from an engineering point of
view, modifying PostgreSQL was the most involved aspect
of Postgres-R). It also leads to a nice separation of concerns,
enabling heterogeneous environments, and allowing the use
of database systems whose source code is not available. In
[10], a detailed analysis of middleware-based approaches is
provided.

Many of these middleware-based approaches use group
communication to coordinate transactions at the global level
and to guarantee message delivery at all replicas. For in-
stance, Middle-R [33] was a relatively straightforward ex-
tension of Posgres-R with similar functionality and behav-
ior but without modifying the database. C-JDBC [11] ex-
tended the JDBC layer to turn the databases into RAID like
storage systems. Ganymed showed that middleware repli-
cation can support several hundred databases in a multi-
tenant setting, a configuration that has gained in relevance
in cloud computing scenarios [37]. Vandiver et al. have used
middleware based replication to implement a replicated set
of databases (homogeneous or heterogeneous) that tolerates
byzantine failures [41].

Concurrency Control. A second development was a more
extensive use of different levels of consistency and multi-
version systems, especially the use of snapshot isolation as
the global isolation level. While lower levels of consistency

3The PostgreSQL community continues to work on
Postgres-R [1], but keeping it up-to-date with the evolving
main database system is difficult.
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were already explored relatively early [22], Posgres-R was
based on locking, as that was the concurrency control mech-
anism available in PostgreSQL at that time. The chal-
lenge was the handling of read locks which was cumber-
some. Middleware-based approaches that used locking had
problems to implement concurrency at a fine granularity
[11, 33]. In snapshot isolation, read operations are per-
formed on a snapshot of the data and conflicts are only be-
tween write operations. The replica control mechanism can
thus ignore read operations and leave their coordination to
the database system, even in middleware-based approaches.
Ganymed [36], for instance, used a primary copy approach
where the updates were all executed on a primary replica
that implements snapshot isolation while the other replicas
are read-only. There exist several approaches that exploit
snapshot isolation in a multi-master environment, relying
on group communication primitives for ordering write oper-
ations and enabling fine-granularity concurrency. Examples
are the work by Lin et al. [28], Elnikety et al. [15, 14] or
Muiioz-Escof et al. [31]. A later version of Postgres-R [43]
is also based on snapshot isolation, taking advantage of it
becoming available in PostgreSQL. The result were highly
reduced abort rates compared to the original Postgres-R.

4.2 Overview of commercial systems

The advantages offered by architectures like the one of
Postgres-R can be exploited in a variety of ways. This has
lead to a wide range of systems implementing variations of
the same basic ideas, targeting different scenarios.

Continuent’s Tungsten is a partially open source plat-
form based on a group communication middleware layer
that propagates changes to all copies in a primary copy
configuration (master/salve) [3]. The reason for this ar-
chitecture is, according to Continuent’s literature, that pri-
mary copy scales better and can be run in a larger number
of nodes than multi-master replication. In Tungsten, SQL
statements can be rewritten to theoretically support hetero-
geneous databases (Oracle and MySQL) acting as replicas
of each other, an idea that has also been explored in the
Ganymed system [38] using Oracle, DB2, and PostgreSQL.

MySQL/Galera [2] is an open source system that imple-
ments a multi-master approach over MySQL where all up-
dates are propagated to all copies. The approach is in clear
contrast to that of Continuent as MySQL/Galera argues
that multi-master offers better scalability and performance
behavior than a primary copy architecture. This has also
been argued in the research literature [13] although no per-
formance comparisons of existing systems have been done.
The issue is quite relevant in practice and deserves more
attention, although it is likely that each configuration is
suitable to different workloads: multi-master probably fits
better OLTP scenarios while primary-copy is likely to be
more adequate for business intelligence and real-time OLAP
workloads.

Xkoto’s Gridscale implements fully replicated databases
with SQL forwarding of all changes to each replica using
a synchronization protocol similar to group communication
[4]. Unlike Postgres-R, updates are not forwarded after hav-
ing been executed in one database. Instead, the SQL state-
ments that modify the database are forwarded to all copies
ensuring total order delivery. The statements are changed
in flight to deal with non-deterministic operators such as
time of day or random numbers, thereby ensuring that all



copies are identical. Gridscale replies to the client as soon
as one of the underlying databases reply to avoid having to
wait until all copies are updated. This mechanism is con-
ceptually similar to the one used in Postgres-R, although in
Postgres-R transactions are submitted to a database while
in Gridscale transactions are submitted to the replicated
system as a whole.

Recently, Microsoft has launched a number of initiatives
around SQL Azure wher a highly optimized agreement pro-
tocol is used to synchronize share nothing SQL Servers in
a cloud setting [9]. The application scenario is cloud com-
puting and the goal of replication in this case is to increase
teh elasticity of the database. An interesting aspect of SQL
Azure is the inclusion of consistency domains to adjust the
degree of consistency provided as the system scales.

4.3 Further Related Work

Because of the involved interplay between the semantics of
group communication and transactional semantics, there has
been a significant amount of research exploring the problem
in more detail, particularly the theoretical and correctness
aspects. For reasons of space, we cannot cover all this work
in any detail. Related topics that have been addressed in
the literature include, e.g.: state machine approaches [34],
wide area replication [5, 27], the use of total order in lazy
replication [32], analysis of correctness criteria [12, 26], and
the reliability and performance of database replication based
on group communication [40]. New protocols for enforcing
consistency are also starting to appear, e.g., [25], an area
where much more work is still needed.

5. CONCLUSIONS

Ten years ago, Postgres-R showed that it was possible to
implement consistent database replication without a signif-
icant performance loss and in a scalable manner. It did so
by combining results from distributed systems with results
from databases in a unique architecture that helped solved
many of the problems encountered by conventional solutions
to database replication. Nowadays, the main ideas behind
Postgres-R have become established, being used in numer-
ous commercial systems and research projects.

Beyond the solution it provided to database replication,
the key lesson of Postgres-R is the advantages and new per-
spectives to be gained by looking at problems in one research
area with the expertise and tools of another research area.
As we enter a new era dominated by cloud computing, soft-
ware and hardware appliances, and remote services, this is a
lesson worth keeping in mind as today’s problems in system
design can no longer be solved by looking at them from the
confines of single and isolated research communities.
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