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This paper presents a composite multi-layer classifier system for predicting the subcellu-
lar localization of proteins based on their amino acid sequence. The work is an extension
of our previous predictor PProwler v1.1 which is itself built upon the series of predictors
SignalP and TargetP. In this study we outline experiments conducted to improve the
classifier design. The major improvement came from using Support Vector machines as
a ’smart gate’ sorting the outputs of several different targeting peptide detection net-
works. Our final model (PProwler v1.2) gives MCC values of 0.873 for non-plant and
0.849 for plant proteins. The model improves upon the accuracy of our previous subcel-
lular localization predictor (PProwler v1.1) by 2% for plant data (which represents 7.5%
improvement upon TargetP).
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1. Introduction

The localization of proteins to specific subcellular organelles frequently relies on
the presence of targeting peptides. These peptides are sequences within the protein
which are recognized and used by the localizing machinery. Understanding and
recognizing targeting signals is of immense importance to biomedical science for two
reasons. Firstly the misplacement of proteins is known to be a cause of numerous
debilitating diseases (e.g. hypercholesterolemia and cystic fibrosis). Secondly, drug
design requires accurate predictors to verify that products are properly localized
within the cell or secreted. Although in silico prediction may never inspire the
confidence given by in vivo testing, it can provide short cuts in developing drugs.
There have been a wide range of techniques applied to the problem of predicting
subcellular localization of proteins (see the Emanuelsson® or Schneider & Fechner!6
review articles). Here, as in previous studies, we have adopted the general design
solution adopted by one of the most successful of these classifiers, TargetP.? TargetP
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is composed of two layers of machines; the first layer of machines are trained to
recognize amino acid residues that belong to a specific targeting signal. The outputs
of these machines are then fed into a sorter which produces an overall classification.

Both layers of TargetP are composed of feed forward neural networks (FFNN).
We have argued previously that, for problems with certain features, recurrent neu-
ral networks (RNN) have a greater ability for recognizing patterns in biological
sequences than feed forward architectures.* There is also a growing body of litera-
ture that demonstrates the practical utility of recurrent neural networks for bioin-
formatics problems.?1419:15 Indeed, in previous studies we replicated the classifier
produced by Emanuelsson et al. and showed by extensive simulation and careful
analysis that recurrent networks were able to recognize residues as belonging to tar-
geting peptides with an accuracy exceeding that of feed forward networks, in some
cases by 25%.% However, although recurrent neural networks are able to significantly
improve the accuracy at the residue detection level, the sorting layer networks were
not able to fully exploit this improvement and provided a much smaller increase in
the overall prediction accuracy.®

In this paper we extend our previous research in two ways. Firstly, we train a
second class of recurrent neural network for the residue detection problem. Pollack’s
Sequential Cascaded Neural Network (SCNN)!? is a second-order network architec-
ture that, while having similar overall performance to a standard recurrent neural
network,” has a slightly different bias that may provide further advantage to the
classifier.

Secondly, we have sought to improve the overall prediction produced by the clas-
sifier by employing support vector machines at the sorting layer. We were previously
able to improve the overall performance of PProwler by using a naive ensemble ap-
proach, in which several machines each combining a different residue network and
sorting machine are trained on the same problem. The results of each machine in the
ensemble are averaged to produce the final output (implemented in PProwler V1.1).
In this study we seek to generate a more sophisticated ensemble model in which a
single sorting machine operates to exploit the strengths of a range of residue detec-
tion networks and identify the conditions under which they can each be trusted.

We use SVMs for this task for a number of reasons. First, we are dealing with a
fixed input window, so a static window classifier is more appropriate than a recurrent
architecture. Secondly, SVMs have an affinity for performing efficient classifications
in a high dimensional input space.'®:

We test a range of kernel functions in order to find a sorting support vector ma-
chine able to make use of the increased accuracy at the residue detection level. In
particular, we construct composite machines that make use of two or three different
machine architectures at the residue detection level, whose outputs are then sorted
by a support vector machine. The composite machines are able to exploit the vari-
ability of different architectures and demonstrate superior classification accuracy.
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Fig. 1. The TargetP neural network architecture. An initial set of residue-level targeting peptide
detector networks (one for each target) receive as input a window of residues and output the status
of the middle residue. The outputs for each of the residue detection networks are presented to the
target sorting network, which outputs the probabilities of the presence of the targeting peptide
types (SP, mTP, ¢TP and the probability of not having a targeting peptide at all).

2. The Overall Architecture

A schematic of the TargetP classifier is shown in Figure 1. The essence of the de-
sign is as follows; each of the distinct subcellular targets is given a residue detection
network that is trained to classify an individual amino acid as belonging to its
respective targeting peptide. These detection networks perform this task using a
window of residues surrounding the residue to be classified. The detection networks
slide over the sequence starting from the N-terminal end (the location of the tar-
geting peptide) and produce an output for each of the first one hundred residues.
A second machine layer takes the output of each of the detection networks for a
sequence and is trained to produce an overall classification. The final machine ide-
ally attunes itself to the sequence regions for which each of the detection networks
produce the most reliable results.’

3. Method and simulations

We construct two separate models: one for plants, and one for non-plants. The plant
version is trained to classify sequences into three specific target classes (mitochon-
drial, chloroplast, signal peptides) or “other”. The non-plant version is trained to
classify sequences into two specific target classes (mitochondrial, signal peptides)
or “other”.

All sequences are presented to the networks as one-hot bit-strings. The set ele-
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ment is unique for the amino acid, resulting in a 20 bit vector for each residue in the
sequence, mutually orthogonal to all others. A single bit is added to accommodate
unknown residues.

To allow objective comparison of our new models for subcellular localization
prediction we use the standard data set which was used to develop and evaluate
TargetP. Each simulation is evaluated by 5-fold cross-validation: The data set is
divided into five subsets (of approximately equal size). Four are used for training
the system, the remaining subset is used for testing. The procedure is repeated with
randomly initialized networks and by shuffling the data subsets so that each of the
five subsets appears as a test set exactly once (and each data sample appears as a
test case exactly once). Consequently, the five systems are only tested on, for each
individual system, unseen sequences. The score we report is the aggregate result for
all five test sets (over the five systems). All five-fold cross-validated simulations are
then repeated five times with new data set divisions to ensure that final scores are
significant.

3.1. Networks

The TargetP plant version is equipped with three targeting peptide detection net-
works. Each of which is a standard feed forward neural network. Each network
corresponds to a particular localization: one for mitochondrial, one for chloroplast
and one for signal peptides. These networks are equipped with an input window
of sizes 35, 55, and 31 amino acid residues respectively. Each detection network is
also fitted with a hidden layer consisting of four hidden nodes. All networks are
reportedly close to optimal with these configurations.? Similarly, the TargetP non-
plant version has two detection networks: one for mitochondrial and one for signal
peptides, fitted with input windows of sizes 35 and 29 residues respectively, and four
hidden nodes. We re-produce the simulations reported for the above configuration.

We constructed a set of analogous recurrent networks for scanning the sequence
and detecting targeting peptides. We employ the bi-directional architecture pro-
posed by Baldi et al.2 for which the recurrent flow happens in both directions. Two
input windows begin from a specified distance away from the target residue and
move inward toward it. By iteratively creating a state from the residues next to
each position in the sequence, the middle residue is classified as being part of the
specific targeting peptide or not (see Figure 2). Thus the central residue is classified
on the basis of the sequential content on either side. We tried a few configurations
and the results reported below are taken from recurrent networks with wheels of
k = 10 residues both from the N-terminal and the C-terminal flank. States consist
of h = 4 nodes of which all are fully recurrent (all nodes feed back to all others
within the same state layer). As configurations have yet to be fully explored, we do
not claim that the reported configuration is optimal. We use the same configura-
tion (k = 10 and h = 4) for both plant and non-plant data, and for all subcellular
targets.
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Fig. 2. The recurrent targeting peptide detection network operates by traversing the sequence from
two directions, accumulating two separate states, until the middle residue is reached, and when
the network produces the classification (part of targeting peptide ’1’ or not ’0’) at its output. As
an example, the symbol G within the sequence ABCDEFGHIJKLM is classified by presenting a
window of residues, say 2, from each direction: [AB:-:LM], then [CD:-:JK] and finally [EF:G:HI],
where ’-’ represents a nil pattern (all zeros) and ’:” indicates node bank boundaries between residues
taken from the N-terminal flank, the residue at the point of prediction, and residues taken from
the C-terminal flank, respectively.
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Fig. 3. Illustration of a uni-directional recurrent network and a uni-directional sequential cascaded
neural network. The sequential cascaded architectures has a basic structure identical to the re-
current neural network, however, it possesses a second set of recurrent connections, that multiply
current input activations with hidden node activations from the previous time step.

In this paper we also explore the use of sequential cascaded recurrent networks'
for the task of peptide detection. This avenue of exploration is motivated by the
fact that, as a second order network, the SCNN has a greater capacity to represent
non-linear relationships between input and output. Secondly, our initial exploratory
simulations indicate that it as least as promising as the simple recurrent neural
network for recognizing the required features within biological sequences.'”

The sequential cascaded recurrent neural networks have a design that is simi-
lar to that of the standard recurrent networks. The essential difference between a
uni-directional SCNN and a simple recurrent network is depicted in Figure 3. The
SCNN has an additional recurrent connection that merges with a second connection
from the input layer. The weights in this merged connection are applied to all possi-
ble second order multiplicative combinations of the current activations on the input
nodes with the activations on the hidden nodes from the previous time step. These
second-order weights allows the machine to take input in a highly context sensitive
fashion.'® The sequential cascaded networks are constructed as bi-directional net-
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works with input windows of k& = 10 residues and h = 4 hidden nodes, just like the
standard, first-order recurrent models.

In all cases, we use the softmax output function and the cross entropy error
function. All networks are trained using backpropagation and for both the recur-
rent architectures the error is “unfolded” through the sequence both upstream and
downstream as described by Baldi et al.? For practical reasons the error flow is
truncated after five steps. For both feed forward and recurrent networks, the learn-
ing rate (n) is fixed to 0.01, and all weight values are randomly initialized with a
Gaussian distribution around 0.0 (variance 0.1). By monitoring errors throughout
learning, slow convergence and minor fluctuations were noted. However, the consis-
tency of generalization results reported below denies the presence of major learning
issues.

3.2. Non-plant proteins

The data is divided into plant and non-plant proteins. Non-plant proteins are used
to train two separate targeting peptide detection networks: one for SP, and one for
mTP. A third class (other) of proteins is used as additional negatives for both net-
works. Training is performed by presenting each network with a sequence randomly
drawn from the training subsets (uniformly over the target classes). The sequence
is processed by training the network to classify each residue as ‘1’ or ‘0’, in the same
manner as TargetP.?

Table 1. The mean squared error over all non-plant sequences in the dataset
for the each of the detector networks.

Target FFNN RNN SCNN NULL

SP 0.0183 (0.0006)  0.0146 (0.0008)  0.0146 (0.0006)  0.0593 (0.0)
mTP  0.0298 (0.0027)  0.0257 (0.0043)  0.0254 (0.0028)  0.0454 (0.0)

Note: The results are over five repeats of each five-fold cross-validated con-
figuration. Standard deviations between repeats are given in parenthesis. The
NULL column reflects the average error for a control machine that always emits
a zero.

After 30,000 training sequences have been presented, the actual output for each
position in each test sequence is recorded. Moreover, the squared difference between
the target output (‘1 or ‘0’) and the actual output is used to assess the classification
ability of the network. As the cleavage site determines the end of the string of 1’s,
the error indicates success of both the classification of the peptide and identification
of the cleavage point. In Table 1 the mean errors are shown for all three types of
networks on the two non-plant subcellular targets. Residues within signal peptides
are generally easy to detect for both network types. However, both of the recurrent
networks are 25% better than TargetP’s SP detection network. When detecting mi-
tochondrial targeting peptides the recurrent architectures also exhibit an advantage
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Fig. 4. Mean squared errors for the three types of SP targeting peptide detection networks averaged
over all 2738 input sequences in the non-plant dataset.The results are displayed as a function of
sequence position (1-100). All errors are means over five repeats of the five-fold cross-validated.
The null control asymptotes to a value of approximately 0.27, but has been cut from the graph to
show more detail of the detection network errors.
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Fig. 5. Mean squared errors for the three types of mTP targeting peptide detection networks
averaged over all 2738 input sequences in the non-plant dataset. The results are displayed as
a function of sequence position (1-100). All errors are means over five repeats of the five-fold
cross-validated. The null control asymptotes to a value of approximately 0.14.

over the feed forward networks (16%). The null column depicts the mean error for
a control machine that always emits a zero, this being the most common desired
output. All machines a performing significantly better than this control.

The average error for signal peptides in the detection networks as a function
of position along the sequence is shown in Figure 4. The error calculation involves
outputs for all sequences in the dataset, but only using those networks in the cross-
validation sets that were not trained on the particular sequence. The cleavage site
of signal peptides is usually located at position 15-30 of the nascent protein relative
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to the N-terminal end (Mean=23, SD=6, in the data set). The classification error is
generally higher around the cleavage site. However, the error is considerably higher
for the feed forward network employed by TargetP for most residues preceding the
cleavage site. After the cleavage site, both network types are generally performing
equally well.

The errors for mitochondrial test sequences are similarly analyzed (see Figure 5).
The performance of recurrent targeting peptide detection networks is considerably
better before and around the cleavage sites of the nascent protein sequence. The
cleavage sites of matrix mitochondrial processing peptidases occur further along the
nascent protein (Mean=34, SD=16, in our data). Being very close to their mean,
the error profiles of individual networks show little variation.

3.3. Plant proteins

Table 2. The mean squared error over all plant sequences in the dataset for the
each of the detector networks.

Target FFNN RNN SCNN NULL

SP 0.0175 (0.0009)  0.0144 (0.0004)  0.0146 (0.0002)  0.0677 (0.0)
mTP  0.0607 (0.0018)  0.0558 (0.0033)  0.0557 (0.0018)  0.1305 (0.0)
¢TP 0.0554 (0.0028)  0.0636 (0.0104)  0.0619 (0.0102)  0.0831 (0.0)

Note: The results are over five repeats of each five-fold cross-validated con-
figuration. Standard deviations between repeats are given in parenthesis. The
NULL column reflects the average error for a control machine that always emits
a zero.

For plant proteins in our data set there are three targets and both the recurrent
network architectures improve on the feed forward networks employed by TargetP
for SP and mTP sequences. cTP sequences are handled better by the original feed
forward detector networks. However, this advantage is only present in the latter
end of the sequence (after position 55). See Table 2 for the average squared error
for each of the detection networks. Figures 6, 7 and 8 show the position-specific
error profiles for signal peptides, mitochondrial targeting peptides and chloroplast
targeting peptides, respectively.

The factors determining localization are complex in nature, as exemplified by
the existence of proteins with dual targets. A growing number of proteins have been
observed to be translocated to both mitochondria and chloroplasts.'' As an illustra-
tion of the comparative biases of the three different network architectures we have
taken one example from the list in Peeters and Small’s study.'* The protein P27456,
Glutathione reductase, was fed through each of the detection network architectures
trained for both the mitochondrial and chloroplast targeting problems. The protein
is more frequently found in the chloroplast, only 3% in mitochondria, which was well
reflected by all three mTP detection networks. The feed forward architecture gave
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Fig. 6. Mean squared errors for the three types of SP targeting peptide detection networks averaged
over all 940 input sequences in the plant dataset. The results are displayed as a function of sequence
position (1-100). All errors are means over five repeats of the five-fold cross-validated. The null
control asymptotes to a value of approximately 0.28, but has been cut from the graph to show
more detail of the detection network errors.
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Fig. 7. Mean squared errors for the three types of mTP targeting peptide detection networks
averaged over all 940 input sequences in the plant dataset. The results are displayed as a function
of sequence position (1-100). All errors are means over five repeats of the five-fold cross-validated.
The null control asymptotes to a value of approximately 0.4, but has been cut from the graph to
show more detail of the detection network errors.

the only significantly non-zero outputs for mTP detection, but produced no clear
indication of mitochondrial targeting. The ¢TP predictors were far more definitive,
as can be seen in Figure 9. The protein was annotated with a potential cleavage
site at position 60 which both recurrent architectures correctly locate. The feed
forward architecture places it closer to position 50. It is worth noting that, despite
their overall agreement, the recurrent architectures produce slightly different output
profiles in this task, indicating sensitivity to different features in the sequence.
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Fig. 8. Mean squared errors for the three types of ¢TP targeting peptide detection networks
averaged over all 940 input sequences in the plant dataset. The results are displayed as a function
of sequence position (1-100). All errors are means over five repeats of the five-fold cross-validated.
As is shown the null control asymptotically approaches a value around 0.15 toward the N-terminal
end.

4. Sorting Machines

In order to obtain a specific prediction of the localization of a protein the outputs of
the target detection networks must be interpreted. In the original TargetP this was
done using second ’sorting’ neural network, trained on the outputs of the residue
detection networks. In previous studies we replicated this design decision, as well as
employing the k-nearest neighbors algorithm as an alternative sorting mechanism.?
We found that neither sorting mechanism is able to make use of the increased
accuracy of the recurrent neural networks at the residue detection level. We take
this failure as an indication that the task requires a non-linear classifier capable of
dealing with subtle distinctions in high dimensional input spaces.

In addressing the short comings of previous sorting techniques, we chose to ex-
periment with a range of support vector machines due to their affinity for problems
of a sparse and high-dimensional kind. We tested a Gaussian (v = 0.01), linear and
polynomial kernels of second- and third order. The SVM implementation employed
is that provided in the WEKA library.? For our benchmark simulations we use the
default value of C=1 (the complexity constant for soft-margin control).

In the initial simulations the support vector machines are trained to make an
overall prediction of protein localization based on the outputs of a single target-
ing peptide detection network. For the purposes of a control we also train a set
of SVM with the same kernels and parameters on the raw sequence encoded us-
ing an orthonormal encoding. The control provides a baseline of classification, and
establishes the validity of employing targeting peptide detection networks. The dif-
ference between the control and the multi-layer classifiers gives an indication of the
advantage being supplied by the targeting peptide detection networks.

We evaluate the comparative accuracy of each of the sorters by performing five
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Fig. 9. The c¢TP detection network outputs for the dual-targeted protein P27456. Each graph shows
the outputs with one standard deviation for a particular machine architecture. The sequence is
predominantly a chloroplast protein (97%). It has a potential cleavage site at position 60.

fold cross validation. For each simulation run five models are created and trained
on four fifths of the data set. We ensure that for each run the data set is split as
in the training of the residue detection networks. Thus, each machine is composed
of a set of detection networks and a sorting machine that have all been trained on
exactly the same subset of the full dataset. After training, each sorter is tested on
the remaining fifth, each of the five models in the cross validation is tested on a
different fifth of the dataset. We use the resulting performance results to produce
a generalization metric called the Matthews Correlation Coefficient MCC.!

As can be seen in Tables 3 and 4, the control SVMs are not always able to per-
form the task adequately enough that the performance metrics could be calculated.
In most of these cases the classifier simply classify everything as “other”, resulting
in a denominator of zero for some of these metrics. For all other classifiers the best
MCC occurs with a Gaussian kernel, regardless of the type of detection network
that is used. The best overall score for non-plant data is with feed forward detection
networks, whereas for the plant data the best MCC is given by the simple recurrent
neural networks. It is worth noting that when comparing to the original TargetP
results the improved MCC comes at a cost of a slight reduction in sensitivity but
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Table 3. Average (across all classes) of sensitivity, specificity and the MCC for all
predictors on the non-plant data.

Sorting Results Non-plant Data
Detection Network  Sorter Kernel  Sensitivity  Specificity MCC  Accuracy

Null Control SVM Gauss 0.333 NaN NaN 60.3%
SVM Linear 0.744 0.769 0.646  81.8%
SVM 2order 0.530 0.883 0.452  75.1%
SVM 3order 0.334 NaN NaN 60.4%
FFNN SVM Gauss 0.902 0.917 0.867 93.1%
SVM Linear 0.898 0.912 0.860  92.7%
SVM 2order 0.870 0.889 0.823 90.8%
SVM 3order 0.857 0.880 0.807  90.0%
RNN SVM Gauss 0.904 0.907 0.860  92.6%
SVM Linear 0.899 0.906 0.856 92.4%
SVM 2order 0.877 0.894 0.831  91.2%
SVM 3order 0.863 0.887 0.815 90.4%
SCNN SVM Gauss 0.905 0.909 0.863 92.8%
SVM Linear 0.901 0.906 0.858  92.6%
SVM 2order 0.872 0.890 0.826 91.0%
SVM 3order 0.856 0.879 0.805 89.9%

Note: The performance statistics for a range of support vector machines trained to
classify the subcellular localization of non plant proteins. The control results are
generated by training the SVM to perform the classification based on an orthonormal
encoding of the first hundred residue of the sequence. Each of the other rows of
results reports on the performance of an SVM trained on the output of a particular
residue detection architecture. Results are averages from five repeats of five-fold cross-
validated test data. Accuracy depicts percentage of sequences correctly classified.

with improved specificity.

In a second set of sorting simulations we train SVMs to make the overall clas-
sification using the output vectors from some combination of detection networks.
The goal of these simulations is to utilize the sensitivities of each of the network
architectures to different sequence features. By using a combination of detection
networks the sorting machine has access to several perspectives on the relevant fea-
tures within the protein sequence. To highlight the usefulness of recurrent machines
for target peptide detection we include a control simulation that involved a combi-
nation of feed forward detection networks. These are two sets of feed forward neural
networks trained on the same cross validation sets using different initialization seeds
for the network weights.

In Tables 5 and 6 it can be seen that sorting machines trained on the outputs
of two different detection networks improve upon the the results of their respective
individual sorters. Although the dual feed forward architecture offers and improve-
ment over the single feed forward architectures shown in tables 3 and 4, it is not
as significant as the improvement offered by the combination of the feed forward
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Table 4. Sensitivity, Specificity and MCC for all predictors on the plant data.

Sorting Results Plant Data
Detection Network  Sorter Kernel  Sensitivity = Specificity MCC  Accuracy

Null Control SVM Gauss 0.251 NaN NaN 39.3%
SVM Linear 0.699 0.740 0.628  74.6%
SVM 2order 0.568 1.073 0.492  76.8%
SVM 3order 0.397 NaN NaN 57.7%
FFNN SVM Gauss 0.866 0.870 0.827  88.4%
SVM Linear 0.851 0.854 0.808  87.1%
SVM 2order 0.838 0.839 0.789  85.8%
SVM 3order 0.833 0.830 0.779  85.0%
RNN SVM Gauss 0.872 0.870 0.831 88.6%
SVM Linear 0.867 0.864 0.825 88.2%
SVM 2order 0.855 0.850 0.807  86.9%
SVM 3order 0.841 0.831 0.785  85.4%
SCNN SVM Gauss 0.869 0.867 0.827 88.3%
SVM Linear 0.857 0.859 0.815  87.7%
SVM 2order 0.847 0.842 0.796  86.2%
SVM 3order 0.835 0.825 0.777  84.7%

Note: See Table 3 for details.

and recurrent architectures. This indicates that the improvement is a mixture of an
ensemble effect as well as an advantage of combining the biases of multiple archi-
tectures. However, the sorting machines trained on the output of all three do not
deviate significantly from the performance of the best combined sorter using only
two detection networks. The biases of the recurrent architectures are possibly too
similar to provide a significant advantage. Again, when compared to TargetP, the
improved MCC comes about by sacrificing some sensitivity for the sake of specificity.

We further refine these results by tuning the parameters v and C. For practical
reasons we assume independence between these parameters and tune = first followed
by C. This is only successful in improving the results of the plant protein classifier,
for which we settle on a v value of 0.001 and C value of 6.

In our previous experiments with sorting networks we found that performance
could be improved using a naive ensemble consisting of four classifiers: two of which
employ feed forward detection networks and two with recurrent networks. For each
network class, one of the two classifiers used a feed forward sorting network, while
the other used k-nearest neighbor.” For the non-plant data the combined SVM
sorter is performing only marginally better than the naive ensemble method, but
for the plant data we see an improvement from 0.834 to 0.849, a 2% increase.

For the final model we employ the technique of fitting a logistic model to the
outputs of the SVM so it would produce a probability distribution. Following Platt’s
recommendation we use a three fold cross validation in this procedure to avoid prob-
lems with support vector bias.!'? The use of the logistic model has a minimal effect
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Table 5. Average (across all classes) of sensitivity, specificity and
MCC for the combined predictors on the non-plant data.

Combined Sorters Results Non-Plant Data

Networks Sorter Sensitivity  Specificity MCC
TargetP - 0.910 0.853 0.823
PProwler V1.1 - 0.919 0.908 0.872
FFNN SVM Gauss 0.902 0.921 0.869
FFNN SVM Linear 0.895 0.908 0.855
SVM 2order  0.869 0.887 0.820
SVM 3order  0.854 0.875 0.801
FFNN SVM Gauss  0.907 0.919 0.872
RNN SVM Linear  0.895 0.907 0.854
SVM 2order  0.878 0.896 0.833
SVM 3order  0.866 0.883 0.814
RNN SVM Gauss  0.907 0.914 0.868
SCNN SVM Linear 0.897 0.907 0.856
SVM 2order  0.872 0.890 0.824
SVM 3order  0.862 0.881 0.810
FFNN SVM Gauss  0.908 0.921 0.874
SCNN SVM Linear 0.896 0.908 0.855
SVM 2order 0.875 0.893 0.829
SVM 3order  0.860 0.880 0.807
FFNN SVM Gauss  0.909 0.921 0.875
SCNN SVM Linear 0.894 0.906 0.853
RNN SVM 2order  0.875 0.893 0.829
SVM 3order 0.854 0.874 0.798

Note: The performance statistics for support vector machines
trained as sorting classifiers using combinations of detection net-
works. The top two rows show the statistics for TargetP and
PProwler V1.1 for comparison. All other major rows show results
generated by training a support vector machine to make a classifi-
cation based on the output of two or three different sets of residue
detection networks. Results are averages from five repeats of five-
fold cross-validated test data.

on the qualitative performance of the models. The performance statistics for the
final tri-combined model compared to both the original TargetP and PProwler V1.1
are shown in Tables 7 and 8. We also include performance statistics broken down by
each of the targets for subcellular localization. Although the overall improvements
are small, it is worth noting that the standard deviations for PProwler V1.2 are
significantly smaller than those of V1.1, thus we are confident of this as an estimate

of the genuine accuracy of the model on the entire problem.
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Table 6. Average (across all classes) of sensitivity, specificity and
MCC for the combined predictors on the plant data.

Combined Sorters Results Plant Data

Networks Sorter Sensitivity  Specificity MCC
TargetP - 0.858 0.830 0.790
PProwler V1.1 - 0.880 0.866 0.834
FFNN SVM Gauss  0.868 0.874 0.832
FFNN SVM Linear  0.847 0.851 0.804
SVM 2order  0.845 0.846 0.798
SVM 3order  0.832 0.830 0.778
FFNN SVM Gauss  0.875 0.882 0.842
RNN SVM Linear 0.854 0.859 0.813
SVM 2order  0.850 0.851 0.804
SVM 3order 0.840 0.838 0.788
RNN SVM Gauss  0.876 0.879 0.839
SCNN SVM Linear 0.864 0.865 0.823
SVM 2order  0.852 0.848 0.804
SVM 3order 0.836 0.827 0.780
FFNN SVM Gauss  0.870 0.878 0.835
SCNN SVM Linear 0.850 0.855 0.808
SVM 2order  0.847 0.848 0.801
SVM 3order  0.841 0.839 0.790
FFNN SVM Gauss  0.873 0.884 0.841
SCNN SVM Linear 0.852 0.858 0.811
RNN SVM 2order  0.849 0.850 0.804
SVM 3order  0.840 0.837 0.788

Note: See Table 5 for details.

Table 7. Final Plant Model

Average Performance
Sensitivity Specificity MCC

TargetP 0.858 0.830 0.790
PProwler V1.1  0.880 (0.0199)  0.866 (0.0191)  0.834 (0.0192)
PProwler V1.2 0.882 (0.0084)  0.886 (0.0082)  0.849 (0.0099)

Target PProwler V1.2 Performance by Subcellular Organelle
SP 0.947 (0.0031)  0.964 (0.0054)  0.938 (0.0028)
mTP 0.911 (0.0015)  0.901 (0.0010)  0.845 (0.0012)
cTP 0.783 (0.0256)  0.859 (0.0197)  0.790 (0.0262)
Oth 0.886 (0.0103)  0.822 (0.0098) 0.822 (0.0118)

Note: Final performance statistics for PProwler V1.2 compared with V1.1
and TargetP. The classifier uses a Gaussian SVM sorter (v =0.001, C=6)
trained on the combined outputs of all three detection networks. Values
are means calculated from five-fold cross-validations, run five times with a
different seed for the data set split.
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Table 8. Final Non-Plant Model

Average Performance
Sensitivity Specificity MCC

TargetP 0.910 0.853 0.823
PProwler V1.1  0.919 (0.0069)  0.908 (0.0092)  0.872 (0.0080)
PProwler V1.2 0.900 (0.0023)  0.929 (0.0033)  0.873 (0.0037)

Target PProwler V1.2Performance by Subcellular Organelle
Sp 0.937 (0.0036)  0.948 (0.0033)  0.922 (0.0037)
mTP 0.799 (0.0068)  0.905 (0.0103)  0.829 (0.0079)
Oth 0.963 (0.0017)  0.934 (0.0018)  0.867 (0.0043)

Note: Final performance statistics for PProwler V1.2 compared with V1.1
and TargetP. The classifier uses a Gaussian SVM sorter (y=0.05, C=1)
trained on the combined outputs of all three detection networks. Values
are means calculated from five-fold cross-validations, run five times with
a different seed for the data set split.

5. Conclusion

We note that both recurrent network architectures are notably better than the
feed forward networks used by TargetP at classifying residues as belonging to a
targeting peptide. The advantage is particularly clear within the window believed
to exhibit the strongest signals used by the translocation machinery.® The reason
for the success lies partly in the fact that recurrent networks are naturally biased
towards detecting sequential patterns.*17

Previous iterations of the presented model used feed forward neural networks
and k-nearest neighbors trained on the output of a single type of residue detection
network.”® Neither sorting mechanism is able to significantly exploit the improve-
ments in targeting peptide detection accuracy offered by recurrent architectures.
In our simulations we are able to improve on the performance of these individual
sorters by using support vector machines with Gaussian kernels. The results are
further improved by employing a composite machine that is trained on the output
of several different residue detection networks. The most significant improvement,
from machines using a single class of detection networks, comes by using the feed
forward networks in combination with one of the recurrent architectures, boosting
performance by approximately 1% for both non-plant and plant data. The use of
the sequential cascaded network boosts performance when used in combination with
the simple recurrent network, but contributes little to the combined sorter using all
three detection networks. We suspect that the biases of the recurrent networks are
too similar to provide added insight when used in combination with another archi-
tecture. It may still be possible to improve performance through the employment
of a different class of detection networks with a unique bias.

Our previous release of PProwler outperforms TargetP, which has itself been
demonstrated to be the most accurate of the available classifiers for subcellular
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localization.® Our final model improves upon the accuracy of PProwler V1.1 by 2%
for the plant data, and resulted in lower standard deviations across simulations for
both predictors. PProwler V1.2 thus constitutes the most accurate predictor to date.
The composite targeting peptide detection mechanism is integrated into the Protein
Prowler prediction service available online at http://pprowler.imb.uq.edu.au/.

References

1.

10.

11.

12.

13.
14.

15.

16.

17.

18.

P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, and H. Nielsen. Assessing
the accuracy of prediction algorithms for classification: an overview. Bioinformatics,
16(5):412-424, 2000.

P. Baldi, S. Brunak, P. Frasconi, G. Soda, and G. Pollastri. Exploiting the past and the
future in protein secondary structure prediction. Bioinformatics, 15:937-946, 1999.
M. Bodén and J. Hawkins. Detecting residues in targeting peptides. In Proceedings of
the Asia-Pacific Bioinformatics Conference, 2005.

M. Bodén and J. Hawkins. Improved access to sequential motifs: A note on the ar-
chitectural bias of recurrent networks. IEEE Transactions on Neural Networks, 16(2),
2005.

M. Bodén and J. Hawkins. Prediction of subcellular localisation using sequence-biased
recurrent networks. Bioinformatics, 21:2279-2286, 2005.

M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey,
J. Ares, Manuel, and D. Haussler. Knowledge-based analysis of microarray gene ex-
pression data by using support vector machines. PNAS, 97(1):262-267, 2000.

J. L. Elman. Distributed representations, simple recurrent networks, and grammatical
structure. Machine Learning, 7:195, 1991.

O. Emanuelsson. Predicting protein subcellular localisation from amino acid sequence
information. Briefings in Bioinformatics, 3(4):361-376, 2002.

O. Emanuelsson, H. Nielsen, S. Brunak, and G. von Heijne. Predicting subcellular
localization of proteins based on their n-terminal amino acid sequence,. Journal of
Molecular Biology, 300(4):1005-1016, 2000.

J. Hawkins and M. Bodén. The applicability of recurrent neural networks for bio-
logical sequence analysis. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2(2), 2005.

N. Peeters and I. Small. Dual targeting to mitochondria and chloroplasts. Biochimica
et Biophysica Acta (BBA) - Molecular Cell Research, 1541(1-2):54-63, 2001.

J. Platt. Probabilistic outputs for support vector machines and comparison to regular-
ized likelihood methods. In A. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 61-74. MIT Press, 2000.

J. B. Pollack. The induction of dynamical recognizers. Machine Learning, 7:227, 1991.
G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Improving the prediction of protein
secondary strucure in three and eight classes using recurrent neural networks and
profiles. Proteins: Structure, Function, and Genetics, 47:228-235, 2002.

M. Reczko and A. Hatzigeorgiou. Prediction of the subcellular localization of eukary-
otic proteins using sequence signals and composition. Proteomics, 4(6):1591-1596, Jun
2004.

G. Schneider and U. Fechner. Advances in the prediction of protein targeting signals.
Proteomics, 4(6):1571-1580, 2004.

P. Tino, M. Cernansky, and L. Benuskova. Markovian architectural bias of recurrent
neural networks. IEEE Transactions on Neural Networks, 15(1):6-15, 2004.

V. Vapnik. Statistical Learning Theory. Wiley, 1998.



July 30, 2005 16:15 WSPC/INSTRUCTION FILE svim 'sorters

18

19. A. Vullo and P. Frasconi. Disulfide connectivity prediction using recursive neural net-
works and evolutionary information. Bioinformatics, 20(5):653-659, 2004.

20. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann, San Francisco, 2000.



