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The circadian regulatory network is one of the main topics of plant investigations. The intracellular 
interactions among genes in response to the environmental stimuli of light are related to the 
foundation of functional genomics in plant. However, the sensitivity analysis of the circadian system 
has not analyzed by perturbed stochastic dynamic model via microarray data in plant. In this study, 
the circadian network is constructed for Arabidopsis thaliana using a stochastic dynamic model with 
sigmoid interaction, activation delay, and regulation of input light taken into consideration. The 
describing function method in nonlinear control theory about nonlinear limit cycle (oscillation) is 
employed to interpret the oscillations of the circadian regulatory networks from the viewpoint that 
nonlinear network will continue to oscillate if its feedback loop gain is equal to 1 to support the 
oscillation of circadian network. Based on the dynamic model via microarray data, the system 
sensitivity analysis is performed to assess the robustness of circadian regulatory network via 
biological perturbations. We found that the circadian network is more sensitive to the perturbation of 
the trans-expression threshold, is more sensitive to the activation level of steady state, rather than the 
trans-sensitivity rate. 

1 Introduction 

Biological phenomena at different organismic levels have implicitly revealed some 
sophisticated systematic architectures of cellular and physiological activities. These 
architectures were built upon the biochemical processes before the emergence of 
proteome and transcriptome [1,2]; and most biological phenomena such as metabolism, 
stress response [3], and cell cycle are directly or indirectly influenced by genes and have 
been well studied on the molecular basis. Thus, the identification of a signal transduction 
pathway could be traced back to the genetic regulatory level. The rapid advances of 
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genome sequencing and DNA microarray technology make possible the quantitative 
analysis of signaling regulatory network besides the qualitative analysis [4]. 
In this study, The ARX dynamic system approach is applied to the circadian regulatory 
pathway of Arabidopsis thaliana with microarray data sets publicly available on the net 
[5]. According to the synchronously dynamic evolution of microarray data, we have 
successively identified the core signaling transduction from light receptors of 
phytochromes [6] and crytochromes [7] to the endogenous biological clock [8], which is 
coupled to control the correlatively physiological activity with paces on a daily basis. 
With the dynamic system approach, not only the regulatory abilities, but also the 
oscillatory frequency and the delays of regulatory activity were specified. Moreover, we 
design several simulation assays with the biological senses to mimic the biological 
experiments. 

2 Dynamic System Description of Circadian Regulatory Model 

We can consider any gene expression profile as a system response or output stimulated 
by some inputs from other gene expressions and environmental stimuli. According to this 
description, let ( )iX k  denote the expression profile of the i-th gene at time point k. Then 
the following general form of ARX difference equation is proposed to model the 
expression level of the i -th gene as the synthesis of n  upstream genetic signals 

iX , 
1, 2, ,i n=  and an external input signal u  under their τ  delays, (see figure 1) 
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where ( ),  j=1,2, ,n; 1,2, ,j iX k q q Qτ− =  is the upstream genetic signal transformed by  
( )jX k with  the q-th order of iτ delay and through a sigmoid activation function to denote 

the binding of transcription factor ( )jX k  on gene i, and the genetic kinetic parameter ,q ijd  
denotes the regulation abilities of transcription factor ( )jX k on gene i. Meanwhile, 

( )iuu k τ− , which denotes the external input light with a delay iuτ affecting ( )iX k , correlates 
with the output genetic expression ( )iX k with the input kinetic parameters ib . ( )i kε  is the 
stochastic noise of current microarray data or the residue of the model. Here iτ  and iuτ , 
which are essential to the activation-time estimation, should be determined previously 
and will be discussed later. The ARX model (AutoRegressive with eXternal input), 
which admit a reformation to the linear regression model, is the special case of the 
ARMAX model (autoregressive moving average with exogenous input). Moreover, an 
oscillation will exist in circadian regulatory network by the feedbacks through other 
genes if these feedbacks are limited by sigmoid functions to avoid their unstable 
propagations, which will be discussed by describing function method [9] in the sequel. 
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Figure 1.  Illustration of the dynamic system scheme using the ARX(1) model.  Block A represents the 
transformation of the genetic regulatory signal, ( )j iX k qτ− , for j=2 and q=1. 

For the limited influence expression of ( )j iX k qτ−  (see Block A in Figure 1), the sigmoid 
function is chosen to express the nonlinear ‘on’ and ‘off’ activities of physically genetic 
interactions with parameters { , , }j j iMθ γ τ=  as follows, 

                                         
( ) ( )( )

1
1 j i j

j i X k q M
X k q

e γ τ
τ

− − ⋅ −
− ⋅ =

+                     (2) 

where γ  is the trans-sensitivity rate, and jM  is the trans-expression threshold derived 
from the mean of the j-tth gene’s profile. γ  could determine the transition time of 
activation between the states of ‘off’ and ‘on’ from jX  to iX , for which a larger γ  is 
with a less transition time, to mimic the transient state of the genetic interaction on the 
trans level. jM  can determine the threshold of the half activation level of jX  to iX , for 
which a larger jM  is with a less activating ability, to mimic the steady state of the genetic 
interaction on the trans level. For the biological reason of small activation delay on 
mRNA level and less modeling complexity, we can reduce the order of the ARX model 
to no more than 2, Q=1 (i.e. ARX(1)) or Q=2 (i.e. ARX(2)) in Eq. (1).  We will 
determine an adequate order for our interesting system later.  And now we take the 
second order ARX model for illustration as follows, 
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Consequently, the vector difference form underlined in this equation is applied to m  
time points in order. 
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, and m denotes the number of time 

points. iτ is the specific activation delay. 
In the next step, to estimate the kinetic parameters ,q ind , 1, 2q = ; 1, 2,n = , and ib , the 
formula Eq. (4) should be translated into the difference matrix equation as follows, 

 i i i iY A E= Ω +  (5) 

where i iY X= , 1, 1 1, 2, 1 2,
T

i i in i in id d d d b⎡ ⎤Ω = ⎣ ⎦ ,  and i iE ε=  are in vector forms, while 
, , , ,i i i i iu1 n 1 2 n 2A X X X X uτ τ τ τ τ⎡ ⎤= ⎣ ⎦  is a matrix. 

We assume that each element in the stochastic noise vector, ( )i lkε , { }1, ,i m= ,is an 
independent random variable with a normal distribution with zero mean and variance 2σ , 
which is unknown and needs to be estimated. Thus, we will estimate the 
parameter ˆ

iΩ using the maximum likelihood method.  
The maximum likelihood estimate of 2σ is the estimate of noise covariance. Substituting 
Eq. (8) into Eq. (7) yields, 

 
2 2( , ) ln 2

2 2i
m mL σ πσ⎡ ⎤Ω = − −⎣ ⎦  (6) 

where [ ] [ ]2

1

1 m
T

i i i i i i
l

Y A Y A
m

σ
=

= − Ω − Ω∑  
Therefore, we can find the maximum likelihood estimation of iΩ by minimizing the value 
of 2σ . From Eq. (6) best choice of parameter vector iΩ to minimize 2σ using the least-
squares method is obtained as follows [10], 

 ( ) 1T T
i i i i iA A A Y

−
Ω =  (7) 

After the parameter estimation in Eq. (7), substituting iΩ in Eq. (7) into stochastic model 
in Eq. (3) lead to the estimated circadian regulatory network equations. 

3. Assay of the Model 

3.1. Assay of ARX System Model 

The assays of the ARX system model are divided into four categories.  The first is 
the confirmation of the oscillation frequency of circadian regulatory network by the 
oscillatory characteristics of the dynamic circadian regulatory model; the second is the 
input stimulus changes; the third is the trans disturbance; and the last is about the cis 
perturbation. For each pair of gene expressions from both the biological assay and the 
simulation, we calculated the Pearson correlation coefficient between the genes’ mRNA 
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expression profiles of ( )iX k  in vivo and ( )iX k  in silico at all time points 
, , ,1 2 mk k k k=  as follows. 
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 (8) 

To measure the period of the time-course expression profile, the power spectrum, which 
has different magnitudes in different frequencies (the reciprocal of periods), is employed 
to detect which frequency has the largest magnitude. First, we should take the Discrete 
Fourier Transform of ( )iX k  for , , ,1 2 mk k k k=  as follows, 

 
1

( ) ( )
m

jwk
i i l

l
X w X k e−

=

= ∑  (9) 

where w is the radian frequency. 
Then we can detect the frequency with the maximum magnitude, 

 
arg max ( )i i

i

2X
Tω

πω ω= =
  (10) 

where 
iT  is the period of ( )iX k  and can be determined from the reciprocal of the 

detected frequency iω . Furthermore, the measure of mean expression of ( )iX k  is 
important for distinguishing the deviation of expression profile under different assays as 
follows, 

 
( )

m

i i l
l 1

1M X k
m =

= ∑
 (11) 

3.1.1. Determination of system order 

In this study, the formulated ARX model should be first assigned with a proper modeling 
order and an activation delay to analyze the experimental expression data of microarray.  
According to Eq. (1), we compared the first-order (Q=1) ARX model (i.e. ARX(1)) and 
the second-order (Q=2) ARX model (i.e. ARX(2)) with different activation delays τ as 
shown in Fig. 2a. We exploited the mean similarity between the raw expression and the 
simulation of all 16 system genes, which is measured by Pearson correlations, to evaluate 
the performance of the network model. Owing to the least difference at 0.5-hr delay 
between ARX(1) and ARX(2), we would prefer the more flexible ARX(1) model with a 
0.5-hr activation delay as the system model for the circadian regulatory network. 
Consequently, the simulation expressions of the derived circadian network model are 
shown in Fig. 2b, ( )j iX k qτ− , for j=2 and q=1. The detection of the static structural 
characteristics will help reconstruct their hidden significance of cis connectivity as in the 
signaling transduction network of Fig. 3. 
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Figure 2.  ARX system modeling with determination of system modeling order and activation delay.  (a) The 
average similarity (measured by Pearson correlation) of all system genes under different activation delays. (b) 
The dynamic data fitting of 16 genes in the circadian network with ARX(1) model and 0.5-hr activation delay. 
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Figure 3.  Signaling transduction network of system genes and input light in the circadian network of 
Arabidopsis.  The colored circles indicate the system genes with their names and notations of X1～X16. 
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3.2. Sensitivity Analysis of Circadian System 

The sensitivity measure of the circadian system for the analysis of robustness can also be 
derived from the system model. For illustration, we would rearrange Eq. (3) into the 
following difference matrix equation, 
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and n is the number of genes. 

3.2.1. Circadian clock frequency assay 

While we obtain the oscillation frequencies wi of circadian network by the intersection in 
Eq. (10), we will compare with the oscillation frequencies calculated by Eq. (9) and (10) 
to validate the accuracy of the proposed dynamic model in the sequel. 
A dynamic system with saturation (or sigmoid function) nonlinear feedback will lead to 
oscillation (limit cycle) [9]. This oscillation phenomenon can be interpreted by the theory 
of the describing function, which will be used to describe the circadian regulatory 
network of Arabidopsis thaliana. According to Eq. (12), we get  

                              1 1
2 1 2( ) ( ) ( ) ( ) ( )Y k I z D D Y k I z D Bu kτ ττ− − − −= − − + −                              (13) 
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,and iz τ− denotes delay operator of iτ . 

If the oscillation (limit cycle) occurs in circadian network, then the sigmoid 
function ( )Y k in Eq. (2) can be approximated by the describing function N(A) as [9] 
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where the describing function matrix
1
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0 0
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⎡ ⎤
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, and ( )i iN A denotes the describing 

function of the i-th gene of oscillation and iA denotes the amplitude of oscillation of the i-
th gene of gene j is free of oscillation, then the corresponding ( ) 0j jN A = . From Eq. (13) 
and (14), we can approximate the circadian network as 

                          ( ) ( ) ( ) ( ) ( ) ( )1 1
2 1 2Y k I z D D N A z Y k I z D Bu kτ τ τ− − − − −= − + −                          (15). 
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There are two rhythms, one is circadian rhythm and another is diurnal rhythm. The first 
term with gain equal to 1 on the right hand side of Eq. (16) is the response for circadian 
rhythm; and the second term for diurnal rhythm, which is controlled by diurnal cycling of 
light and dark u(k) and some photoreceptor genes are of this case. Since the oscillation 
exists in the circadian network, by control theory, the closed loop gain should be lossless 
in order to support the oscillation, i.e.  

                                              
1 2( )D N A z Dτ= −                                            (16) 

At frequency domain, we can get 
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For example, for gene PhyE, 7 7
2,77 0.1579 0.1226jwe d iτ − = − − and 

1,7
7

( ) 0.1339 0.1253
N

j j j
j

d N A i
≠

= − −∑ ,which matches the oscillation condition in Eq. (17). For 
gene Lhy, 12 12

2,1212 0.2181 0.1045jwe d iτ − = − −  and, 1,12
12

( ) 0.2144 0.0589
N

j j j
j

d N A i
≠

= − −∑ which roughly 
matches the oscillation condition of describing function in the nonlinear circadian system. 
By describing analysis of nonlinear oscillation [9], the intersection 
of 2,

i ijw
iie dτ − and ( )

N

ij i
j i

d N A
≠
∑ in Eq. (17) implies the occurrence of oscillation and 

the iA and iw at the interaction point are the oscillation amplitude and oscillation 
frequency. 

3.2.2. Trans-perturbation assay 

As in the description of Eq. (2), γ is the trans-sensitivity rate which is related to the 

transition time of trans-activaton and jM is the trans-expression threshold that determines 
the saturating transformation level of expression. We also induce the corresponding 
sensitivity in the following, 

1
Y YD
F F                                                  (18) 

where { , }F Mγ= and
( )

( ) 2(1 )

Y M

Y M
Y Ye

e

γ

γγ

− −

− −

Δ −
=

Δ +
.  Hence we could discuss the sensitivity on the trans 

level like the input sensitivity. 

3.2.2.1. Trans-sensitivity rate γ  simulation of gene   

In a similar way as in input perturbation, we changed γ  from 100% to 0% (-100%) and 
200% (+100%) of system genes in pathway to compare with their sensitivities to γ , as 
shown in Table 2A. We also average the three measure indexes of each gene, which are 
shown in Fig. 4.1 
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Figure 4.1.  Deviation representations of the system genes under the perturbation of trans-sensitivity rate γ .  
The perturbation is performed in the vertical axis and the responses of 16 system genes are shown in the 
horizontal axis, and the colored bars of degree are on the right-hand side of each inset.  (a) ΔSimilarity 
(measured by the Pearson correlation), (b) ΔPeriod, and (c) ΔMean expression. 

3.2.2. Trans-expression threshold jM simulation of gene 

We varied jM to 100% lower (-100%) and higher (+100%) than the original mean 
expression of the j-th gene respectively and compared with their sensitivities of jM , 
which are shown in Table 2B; and their average measure indexes are shown in Fig. 4.2. 

 
Figure 4.2.  Deviation representations of the system genes under the perturbation of trans-expression threshold 
M .  The perturbation is performed in the vertical axis and the responses of 16 system genes are shown in the 

horizontal axis, and the colored bars of degree are on the right-hand side of each inset.  (a) ΔSimilarity 
(measured by the Pearson correlation), (b) ΔPeriod, and (c) ΔMean expression. 
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Table 2.  The sensitivities of the system genes in the circadian 
regulatory network under different perturbations due to the input light, 
trans level, and cis level.  The bold values represent significant 
sensitivities (less robustness).  In general, the fact that sensitivities are 
not large implies that the circadian regulatory network is robust 
enough. 

 

4. Results 

In the perturbation of trans-sensitivity rate (γ ), we will discuss whether the transition 
rate, which determines the transition time of one gene binding to or interacting with 
another one, affects the system gene’s expression in this model system. It seems that the 
similarity (Fig. 4.1a) remains unchanged for most system genes except Cry1 [X2], PhyA 
[X4], PhyD [X6], and PhyE [X7] [11]. If we consider the periodic variation in Fig. 4.1b, 
Cry2’s [X3] period is lengthened about 10%, whilst that of Cry1 [X2] and Pap1 [X14] are 
shortened about 20%, respectively. The diversity and sensitivity of period due to 
perturbation of the transition time are evident as in Fig. 4.1c. The mean expressions of 
system genes are almost unaltered but PhyE [X7] [10] is reduced. Because the largest 
difference in the mean sensitivity of each gene of Table 2A is about 0.025, we would 
conclude that the trans-sensitivity rate, which determines the transition time indicating 
the transient state of trans activation, has less influence on the circadian system. 
In another perturbation of trans-expression threshold M , there are five genes of Cry1 
[X2], Cry2 [X3], PhyD [X6], Pif3 [X10] and Toc1 [X11] with perceptible variations, which 
have the same behavior in the measures of similarity and period (see Figs. 4.2a and 4.2b). 
Owing the largest difference in the mean sensitivity of each gene of Table 2B being close 
to 0.29, the circadian network is more sensitive to the perturbation of the trans-
expression threshold M , is more sensitive to the activation level of steady state, rather 
than the trans-sensitivity rate γ . 

5. Discussion  

In our dynamic system approach applied to the circadian network using ARX, we not 
only can identify the regulatory abilities via ARX(1) with activation delays, but also 
indicate the regulatory strength from the input-light signal. The greatest importance of 
the proposed dynamic model is the convenience of the consequent system analysis, for 
example, sensitivity analysis, to gain more insight about the circadian regulatory network. 
There are some shortcomings in our study. First, although the time-course microarray 
data are available, its lower samplings will distort the real changes of gene expressions, 
especially for fast dynamic evolution. A more sampling experiment with respect to the 
intrinsic turnover rate is expected for a more precise analysis. Second, we formulate our 
ARX circadian network model using the biological knowledge of the correlations 
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between the circadian genes. In the circadian regulatory network, it is enough to 
reconstruct the system because of its simulation similarity approaching 0.99 in Fig. 2a. 
 In the near future, as the system modeling algorithms are further developed, we expect 
this dynamic system approach to have immense impact in elucidating the underlying 
molecular mechanisms of network in a variety of organisms besides the circadian 
network in Arabidopsis thaliana, especially after the maturation of the protein chips. 
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