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This paper considers a problem of finding control strategies for Boolean networks, where Boolean
networks have been used as a model of genetic networks. This paper shows that finding a control
strategy leading to the desired global state is NP-hard even if there is only one control node in the
network. This result justifies existing exponential time algorithms for finding control strategies for
probabilistic Boolean networks. On the other hand, this paper shows that the problem can be solved in
polynomial time if the network has a tree structure.

1. Introduction

One of the important future directions of bioinformatics and systems biology is to develop a
control theory for complex biological systems. For example, Kitano'? mentions that iden-
tification of a set of perturbations that induces desired changes in cellular behaviors may
be useful for systems-based drug discovery and cancer treatment. Though many attempts
have been done based on control theory, existing theories and technologies are not satis-
factory. Many important results in control theory are based on linear algebra, but it seems
that biological systems contain many non-linear subsystems. Therefore, it is required to

develop a control theory for complex biological systems.
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Various mathematical models have been proposed for modeling complex and non-
linear biological systems. Among them, the Boolean network (BN)> has been well-
studied.®*5:6:7:8 BN is a very simple model: each node (e.g., gene) takes either O (inactive)
or 1 (active) and the states of nodes change synchronously. Though Boolean networks can
not model detailed behaviors of biological systems, it may provide good approximations to
the nonlinear functions appearing in many biological systems.® For example, Harris et al.”
analyzed published data for over 150 regulated transcription systems and discussed rela-
tions between real transcription networks and Boolean networks. Therefore, it is reasonable
to seek for a control theory for BNs. Even if a control theory for BNs is not practical, it
may provide a new theoretical insight for systems biology.

Many studies have been done for understanding dynamical properties of BNs. For
example, distribution of attractors,® relationship between network topology and chaotic
behavior,® and inference of BNs from gene expression data®® have been extensively stud-
ied. However, not much attention has been paid for finding control strategies on BNs.
Recently, Datta et al.?>'1%!! proposed methods for finding a control strategy for probabilis-
tic Boolean networks (PBNs), where a PBN'2 is an extension of a BN (therefore, a BN
is a special case of a PBN). In their approach, it is assumed that states of some nodes can
be externally controlled and the objective is to find a sequence of control actions with the
minimum cost that leads to the desirable state of a network. Since BNs are special cases of
PBNSs, their methods can also be applied to finding a control strategy for BNs. However,
their methods require high computational costs: it is required to handle exponential size
matrices. Thus, their methods can only be applied to small biological systems. Therefore,
it is reasonable to ask how difficult it is to find control strategies for BNs.

In this paper, we show that the control problem on BNs is NP-hard in general. This
result justifies the use of exponential time algorithms for general BNs (and PBNs) as done
by Datta er al. We further show that the control problem remains NP-hard even for some
restricted cases of BNs. On the other hand, we show that the control problem can be solved
in polynomial time if a BN has a tree topology. We finally discuss biological implications
of the theoretical results.

2. Boolean Network and Its Control

First, we briefly review BN.? A BN is represented by a set of nodes and a set of regulation
rules for nodes, where each node corresponds to a gene if BN is treated as a model of a
genetic network. Each node takes either O or 1 at each discrete time ¢, a regulation rule for
each node is given by a Boolean function, and the states of nodes change synchronously.
An example is given in Fig. 1. In this case, the state of node v; at time ¢ + 1 is determined
by the logical AND of the states of nodes v2 and vs at time ¢t. Dynamics of a BN is well-
described by a state transition table shown in Fig. 1. The first row means that if the state of
BN is [0, 1, 1] at time ¢ then the state will be [1,0, 0] at time ¢ + 1. PBN'2 is an extension
of BN, in which multiple Boolean functions are assigned to each node and one function
is selected at each time ¢ according to a given probability distribution. Therefore, BN is a
special case of PBN in which the same function is always selected for each node.
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v3(t+1) = NOT va(r) 1 1 1 1 1 0

Figure 1. Example of a Boolean network (BN). Dynamics of BN (left) is well-described by a state transition
table (right). For example, if the state of BN is [0, 1, 1] at time ¢, the state will be [1, 0, 0] at time ¢ + 1.

In order to consider the control problem, we add external control nodes to a BN (orig-
inal nodes are called internal nodes). The states of external nodes are not determined by
Boolean functions. Instead, these are given externally.

Now, we formally define the control problem. A BN with external control is repre-
sented by aset V of n + m nodes V' = {v1,...,Upn, Unt1,- .., Untm}, Where vy, ..., v,
are internal nodes (corresponding to genes) and vy, 41, . . . , Un+m are external control nodes.
We also use z; to denote an external node v,,; when it is convenient to distinguish exter-
nal nodes from internal nodes. Each node takes either O or 1 at each discrete time ¢, and
the state of node v; at time ¢ is denoted by v;(¢). The value of each v; (¢ = 1,...,n) is
directly controlled by k; other nodes. Let I N (v;) = {vi,,...,v;,, } be the set of control-
ling elements of v;, where 1 < i; < n 4+ m. We assign to each v; a Boolean function
fi(viy, ..., v ). Then the dynamics of the system is given by

Ui(t + ].) = fi(vil (t), ce ,viki (t))
We define the set of edges £ by E = {(vi;,v)lvi; € IN(v;)}. Then, G(V,E) is a
directed graph representing network topology of a BN. We let v(t) = [vi(t),...,vn(?)]
and x(t) = [z1(¢),...,2m(t)]. Note that a node without incoming edges is either an
external node or a constant node, where a constant node is a node with a constant state.

Definition 2.1. (BN-CONTROL)

Suppose that for a BN, we are given an initial state of the network (for internal nodes)
vY and the desired state of the network v at the M-th time step. Then, the problem
(BN-CONTROL) is to find a sequence of 0-1 vectors (x(0), ..., x(M)) such that v(0) =
v% and v(M) = vM_ If there does not exist such a sequence, “No” should be the output.

In this paper, a control strategy denotes a sequence of states of control nodes
(x(0),x(1),...,x(M)). Fig. 2 illustrates BN-CONTROL. The left part is a BN, where
v1, Ve, v3 are internal nodes, and x1, o are external nodes. We are also given initial and
desired states as in the right top part of Fig. 2. If the control sequence is given as in the
shaded region of Fig. 2, the state of BN will change as in the right bottom part and we will
have the desired state at time ¢ = 3.
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Figure 2. Example of BN-CONTROL. In this problem, given initial and desired states of internal nodes
(v1,v2,v3), it is required to compute a sequence of states of external nodes (x1,x2) that leads to the desired
state.

The desired states of all nodes are specified in the above. However, it may not be
required to specify states of all the nodes because we may be interested only in controlling
several important nodes (a set of these nodes is denoted by V' in this paper). We call this
case partial BN-CONTROL.

In this paper, we assume that the number of input variables for each Boolean function is
bounded by a constant. Otherwise, it is computationally difficult to find a control strategy
even for one Boolean function (for example, one can consider a function representing a
SAT formula). Due to this assumption, we can assume that enumeration of satisfying
assignments can be done in constant time per Boolean function.

3. Hardness of Finding Control Strategies

As mentioned before, Datta et al.?>'%!! proposed algorithms for finding control strategies
for PBN based on Markov chains and dynamic programming. However, their algorithms
are not efficient because it is required to consider all possible states of PBN (or BN) at
all time steps between the initial and final time steps. For example, we need to consider
state transition matrices of size O(2" x 2™) because there are O(2") possible states and
transitions among them must be also considered. We show here that the control problem is
NP-hard in general, which implies that the approach by Datta ef al. is reasonable.

Theorem 3.1. BN-CONTROL is NP-hard.

Proof. We present a simple polynomial time reduction from 3SAT'? to BN-CONTROL
(see Fig. 3), where a similar reduction was used in a study on Bayesian networks.

Let 41,...,yn be Boolean variables (i.e., 0-1 variables). Let c¢q,...,cy, be a set of
clauses over y1,...,yn, where each clause is a logical OR of at most three literals. It
should be noted that a literal is a variable or its negation (logical NOT). Then, 3SAT is a
problem of asking whether or not there exists an assignment of 0-1 values to y1,...,yn
which satisfies all the clauses (i.e., the values of all clauses are 1).

From an instance of 3SAT, we construct an instance of BN-CONTROL as follows. We
let the set of nodes V' = {wv1,...,vp,x1,...,2N} where each v; corresponds to ¢; and
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Figure 3. Reduction from 3SAT to BN-CONTROL. An instance of 3SAT {y1 V y2 V y3,91 V y3 V ¥1,%2 V
Y3 V ya} is transformed into an instance of BN-CONTROL in a simple way that external nodes correspond to
variables in 3SAT, internal nodes correspond to clauses, and all the nodes must have value 1 at the desired state.

each x; corresponds to y;. Suppose that f;(ys,,...,¥:,) is a Boolean function assigned
to ¢; in 3SAT. Then, we assign f;(xi,,..., %) to v; in BN-CONTROL. Finally, we let
M =1,v?=10,0,...,0] and v = [1,1,...,1].

Then, there exists a sequence (x(0),x(1)) which makes v(1) = [1,1,...,1] if and
only if there exists an assignment which satisfies all the clauses (see Fig. 3). Actually, a
satisfying assignment for 3SAT corresponds to x(0). Since the above reduction can be
done in linear time, BN-CONTROL is NP-hard. O

Since BN-CONTROL is a special case of partial BN-CONTROL, NP-hardness of par-
tial BN-CONTROL directly follows from the above result. We can still prove that partial
BN-CONTROL is NP-hard even if the desired state of only one node is specified. For that
purpose, we simply add an internal node vy, to the BN in the above proof. Then, we let
fr+1 be the conjunction of v1,...,vr, and let M = 2, U%+1 = 0and vﬁ/ﬂrl =1.

Corollary 3.1. Partial BN-CONTROL is NP-hard.

Datta et al. considered general cost functions Cy, and C);. We can consider a special
case where C, = 0 and C)y is the Hamming distance between the specified desired state
and the final state given by a control strategy. Then, BN-CONTROL corresponds to the
problem of asking whether or not the minimum cost is 0. Since BNs are special cases of
PBNs, it follows that finding an optimal control strategy for PBN is NP-hard.

Corollary 3.2. Finding an optimal control strategy for PBN is NP-hard.

It is also possible to show that approximation of the Hamming distance is quite hard.
For that purpose, we modify the network in the proof of Corollary 3.1. We add h nodes
V4144 (@ = 1,...,h) with regulation rules vy 114+:(t + 1) = vr4+1(t). Then, we let
V' ={vr42,.. s vp414n) M = 3,09 = 0 and v = 1 for all v; € V’. Then, the cost is
either O or h, which implies that obtaining approximate solutions (within a factor of O(n)
if we let h = O(n)) is still NP-hard.



October 6, 2005 18:8 Proceedings Trim Size: 9.75in x 6.5in boolcontrol

@? SIS
NS

Figure 4. The network constructed (in the proof of Thm. 3.2) from the same 3SAT instance as in Fig. 3.

In the above, we used many control nodes. However, it is not plausible that we can
control many genes. Thus, it is worthy to consider the following special case.

Theorem 3.2. BN-CONTROL and partial BN-CONTROL are NP-hard even if there exists
only one control node and the network structure is an almost tree of bounded degree.

Proof. We give a proof for the partial control problem. Modification of the proof for BN-
CONTROL is omitted in this version. As in Thm. 3.1, we use a reduction from 3SAT (see
also Fig. 4). We construct an instance of the partial control problem so that the sequence
of values of the single control node x; constitutes the satisfying assignment. For each
clause ¢;, we construct two special nodes v; and vr,4;. Suppose that variables v;,, Vi, , Yis
appear in clause c; in 3SAT. Then, we create 3 paths from v; to vr,;, where the lengths of
paths are i1, i and i3, respectively. The identify function is assigned to each gene (except
vr+4) in the paths, and a function corresponding to c¢; is assigned for vz ;. Then, we let
V' ={vpi1,... 02}, M =N+ 1,0 =0and vM =1 forv; € V'

Then, the state x1 (N — 7) corresponds to an assignment of 0-1 value to y;. From this,
there exists a sequence (x(0),x(1),...,x(N + 1)) which makes v;(N + 1) = 1 for all
v; € V' if and only if there exists an assignment which satisfies all the clauses. Therefore,
partial BN-CONTROL is NP-hard even if there is only one control input.

Note that the above network structure belongs to the class of almost trees, where an
undirected graph is called an almost tree if the number of edges in each bi-connected com-
ponent is at most the number of nodes in the component plus some constant. Though the
degree of z; can be high, it can be reduced to 3 by using a substructure like binary tree. O

4. Algorithms for Trees

In this section, we present polynomial time algorithms for special cases of the control
problem. First, we consider the case where the network has a rooted tree structure (all paths
are directed from leaves to the root). In order to compute a control strategy, we employ
dynamic programming. Though dynamic programming is also employed in exponential
time algorithms® '? for PBNG, it is used here in a significantly different way.
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Figure 5. Computation of S[vz,t,1]. In this case, S[vs,t + 1,1] = 1 if and only if S[v1,t,1] = 1 and
Slva,t,1] = 1. S[vs,t + 1,0] = 1 if and only if S[v1,¢,0] = 1 or S[va,t,0] = 1.

In order to apply dynamic programming, we define S[v;, t, b| as below, where v; is a
node, ¢ is a time step and b is a Boolean value (i.e., 0 or 1). Here S[v;, t, b] is 1 if there
exists a control sequence (up to time ¢) that makes v;(t) = b (see also Fig. 5).

Slvi,t,1] = {

1, if there exists (x(0),...,x(t)) such that v;(¢) = 1,
0, otherwise.

1, if there exists (x(0), ..., x(t)) such that v;(¢) = 0,
0, otherwise.

Sl t.0] = {

Then, S[v;, t, 1] can be computed by the following dynamic programming procedure.

1, if there exists [b;,, . .., b;, ] such that f;(b;,,...,b;,) = 1 holds and
S, t+1,1] = Slvi;,t,b;;] = 1 holds forall j = 1,...,k,
0, otherwise.

Svi, t, 0] can be computed in a similar way. It should be noted that each leaf is either a con-
stant node or an external node. For a constant node, either S[v;, ¢, 1] = 1 and S[v;,¢,0] =0
hold for all ¢, or S[v;,t,1] = 0 and S[v;,t,0] = 1 hold for all ¢£. For an external node,
Slvi,t,1] = 1 and S[v;,t,0] = 1 hold for all ¢.

In the control problems, states of some (or all) internal nodes at the M -th step (more
generally, at the ¢-th step) may be specified. Let C|v;,t,b] = 1 denotes the constraint that
the state of v; at the ¢-th step can be b (b € {0, 1}), otherwise C'v;, ¢, b] = 0. For example,
if v; (M) = 1 musthold, we let C[v;, M, 1] = 1 and C[v;, M, 0] = 0. Then, we can modify
the recurrence in dynamic programming as:

1, if Clv;, t + 1,1] = 1 and there exists [b;,, . . ., b;, ] such that
fi(biy, ..., b;,) = 1holds and S[v;,, t,b;;] = 1 holds for all
j=1,...,k

0, otherwise.

S[vi;t+1ﬂ1] =

Then, we can decide whether or not there exists a control sequence by checking whether
Slv, M,1] = 1 or S[v, M,0] = 1 holds for each node v. The required control sequence
can be obtained by using the well-known traceback technique.'®

Based on the above algorithm, we have the following theorem where the proof is omit-
ted in this version.

Theorem 4.1. If a BN has a rooted tree structure, both BN-CONTROL and partial BN-
CONTROL can be solved in O((n + m)M) time.
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We can generalize Thm. 4.1 for the case of unrooted trees. We call v; a branching node
if v; has at least two outgoing edges. We call v; an outmost branching node if either v; is
the only one branching node, or all paths from v; to other branching nodes must pass the
same branching node v;. We denote such v; by nb(v;).

Then, we can determine Sy [v;, t, b]’s by repeatedly removing outmost branching nodes
(see also Fig. 6 and Fig. 7), where we use Sy[v;, t, b] to denote the required table. For an
outmost branching node v, we let

I () ={w|(v,w) € B} = {u} and T (v) = {w|(w,v) € B} — {u},

where u is the node adjacent to v and lying between v and nb(v). If there is only one
branching node, © can be empty. For each adjacent node w (except u) of v, we let T, ,, be
the subtree induced by {v, w}U {z|dist(v, z) < dist(nb(v), z)}, where dist(v, z) denotes
the number of edges of the path connecting v and z (without considering directions of
edges). If (u,v) € E, T, is the subtree induced by v, u and the nodes in U, ep- Ty 1.
Otherwise (i.e., (v,u) € E or u is empty), T, is the subtree induced by v and the nodes in
Uwer-"T,w- Itis worthy to note that T, ,, is always a rooted tree and thus the algorithm for
rooted trees can be used as a subroutine. Using the following procedure, we can determine
S() [1}, t, b]

Procedure BN-CONTROL-TREE
forall v, t and b € {0,1} do Sp[v,t,b] — 1; Clv,t,b] — 1
while there exists a branching node do
Select an arbitrary outmost and non-processed branching node v
forallw € I'"(v) do
for all ¢ty and by do
if there does not exist a control strategy for T, ,, such that S{v, ¢, bg] = 1
then SQ [’U7 lf()7 bo] —0
Delete nodes in T, ., (except v)
for all ¢ and b do C[v, t,b] — Sp[v,t,b] A C[v,t, D]
if (u,v) € E then
for all ¢y and by do
if there does not exist a control strategy for T), such that S{u, to, bg] = 1
then S() [u, to, b()] —0
for all ¢ and b do Clu, t,b] < So[u,t,b] A Clu,t,b]
Delete nodes in 7;, (including v)
else
for all ¢ty and by do
if there does not exist a control strategy for T, such that S[v, to, bp] = 1
then S() [U, to, bo] —0
for all ¢ and b do Clv, t,b] < Sp[v,t,b] A Clu,t, b
Delete nodes in 7, (except v)

Based on the above procedure, we have the following where the proof is omitted here.
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Figure 6. Illustration of the procedure for unrooted trees, where vq, vy and v. are branching nodes. At the
beginning, v, and vy, are outmost branching nodes and nb(vq) = nb(vy) = ve.

Tv, wi Tv Ty

Figure 7. Example of T}, ., and T5. It should be noted that T, includes w if (u, v) € E (left), whereas T, does
not include u if (v, u) € E (right). In both cases, I't (v) = {w1, w2} and '~ = {ws}.

Theorem 4.2. If a BN has a tree structure, both BN-CONTROL and partial BN-CONTROL
can be solved in O((n + m)M?) time.

The above algorithm may also be useful even if the network has a few loops. Suppose
that the network becomes a forest if H nodes are removed. Though it is difficult to find
the minimum H, a greedy approach may work well to find an appropriate H. Then, we
examine all possible time series for these H nodes and apply the algorithm in Thm. 4.2.
This tree-based method takes O (27 (m + n)M?) time. On the other hand, we can use
the algorithm by Datta et al.” to solve BN-CONTROL and partial BN-CONTROL. Then,
it will take O(227*+™ M) time. However, it is very time consuming even for small n (e.g.,
n = 10). Therefore, the tree-based method may be much more useful for BN-CONTROL
and partial BN-CONTROL than the algorithm by Datta et al. when H M is small enough.

It should also be noted that the algorithm for trees can be extended for other discrete
and finite domains. For that purpose, we modify S[v;, t,b] so that b takes values in the
target domain and we replace Boolean functions with discrete functions for the domain.

5. Concluding Remarks

We have shown that finding a control strategy for Boolean networks is computationally
very hard. Hardness results still hold for other models of biological systems if those can
represent Boolean formula for 3SAT using control variables. Since close relationships
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between biological systems and Boolean circuits are suggested,”'6:17 it seems difficult to
find control strategies efficiently for all types of biological networks.

However, many biological sub-networks have special features. For example, Kitano'+2
suggested that negative feedback loops play an important role in biological systems: these
contribute to keeping robustness of biological systems. Such sub-networks are considered
to be significantly different from the networks constructed in this paper because it seems
impossible to describe negative and robust feedback loops using Boolean functions. There-
fore, one of important future studies is to develop an efficient algorithm for finding control
strategies for such robust sub-networks.
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