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Multiple loci analysis has become popular with the advanced development in biological experiments.
A lot of studies have been focused on the biological and the statistical properties of such multiple loci
analysis. In this paper, we study one of the important computational problems: solving the probabil-
ities of haplotype classes from a large linear systemAx = b derived from the recombination events
in multiple loci analysis. Since the size of the recombination matrixA increases exponentially with
respect to the number of loci, fast solvers are required to deal with a large number of loci in the anal-
ysis. By exploiting the nice structure of the matrixA, we develop an efficient recursive algorithm for
solving such structured linear systems. In particular, the complexity of the proposed algorithm is of
O(m log m) operations and the memory requirement is ofO(m) locations wherem is the size of the
matrixA. Numerical examples are given to demonstrate the effectiveness of our efficient solver.

1. Introduction

Linkage analysis is an important tool for the mapping of genetic loci. With the availability
of numerous DNA markers throughout the human genome, linkage analysis has demon-
strated its usefulness in mapping the mutations responsible for hundreds of Mendelian
diseases (Kruglyak and Lander, 1995). The genotype of an individual at lociX andY

is formed by the haplotypes of two gametesXfYf inherited from the father, andXmYm

inherited from the mother. The haplotype of a gamete produced by the individual consists
of a mixture of paternal and maternal alleles. A gamete contains two alleles from the same
parental gamete (non-recombinant), i.e.,XfYf or XmYm, or one allele from each parental
gamete (recombinant), i.e.,XfYm or XmYf . The recombination fraction between the two
loci is defined as the probability that a gamete is recombinant.
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When the number of loci is large, a haplotype almost certainly constitutes a new com-
bination of alleles, different from the parental and the maternal haplotypes (Sham, 1998).
If n loci are involved, there are(n− 1) intervals between adjacent loci, each of which can
either have an even or an odd number of crossovers. This produces2n−1 classes of gametic
haplotypes, and therefore(2n−1−1) independent gametic frequencies (the2n−1 classes of
gametic frequencies must sum up to one). The frequency of a gametic haplotype is equal
to the joint probability of the co-occurrence of a set of recombination events. Liberman
and Karlin (1984) applied the concept of recombination values to establish the relationship
between recombination fractions and haplotype frequencies forn > 3. The recombination
value of a set of intervals (not necessary contiguous), is the probability of an odd number
of crossovers occurring in the intervals. Since each of the(n− 1) intervals can be included
or excluded in a set of intervals, there are(2n−1−1) sets of intervals and hence(2n−1−1)
recombination values. There is a relationship between these(2n−1 − 1) recombination
values and the(2n−1 − 1) haplotype frequencies as specified by a linear system

Θ = ΓAn

whereAn is them-by-m matrix with m = 2n−1 being equal to the number of haplotype
classes, andΘ andΓ arem-vectors containing the recombination values and haplotype
frequencies respectively, see Section 2 for details about the derivation ofΘ = ΓAn.

When the numbern of loci increases, the size ofAn increases exponentially and there-
fore the cost of solvingΘ = ΓAn is very expensive. Here we will first establish the
structure ofAn and a recursive formula relatingAn+1 andAn. We then present a recursive
solver based on the recursiev formula to solveΘ = ΓAn efficiently.

The rest of this paper is organized as follows. In Section 2, we give some background
and basic properties on the matrixAn. In Section 3, we show thatAn is nonsingular and
give the explicit form for its inverse. According to the explicit form ofA−1

n , we obtain the
haplotype frequencies efficiently by using a recursive scheme. We also give a cost analysis
for the proposed algorithm. Numerical examples are given to illustrate the effectiveness of
the proposed method. Finally, concluding remarks are given in Section 4.

2. The Recombination Matrix An

In this section, we give some background of the recombination matrixAn. In the multi-
locus situation (n ≥ 3), we denote a haplotype ofn loci by a(n−1) string of 0s and 1s with
respect theith digit representing the recombination status of the(i+1)th allele with respect
to the first allele. This string of(n − 1) digits specifies the recombination status between
all n(n− 1)/2 pairs of loci. Here pairs of loci with different digits are recombinants while
the others are non-recombinants. Such strings refer to different rows of the matrixAn. To
apply the concept of recombination values of a set of non-contiguous intervals, we let the
inclusion or the exclusion of the intervals be denoted by a vector of 0s and 1s, where 0
represents exclusion and 1 represents inclusion. Such intervals refer to different columns
of the matrixAn. For each haplotype class and each set of intervals, we set the entry of A
to 1 exactly when there is an odd number of crossovers for the intervals in the set.
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For examples, in the case of four loci,W , X, Y andZ, there are eight possible hap-
lotype classes, 000, 001, 010, 011, 100, 101, 110 and 111. Each represents a unique
combination of recombination status between the six possible pairs of loci (WX, WY ,
WZ, XY , XZ andY Z). There are seven possible sets of intervals (001, 010, 011, 100,
101, 110, 111), excluding the set with no intervals. In this case, the relationship between
the haplotype classes and the recombination values can be described as follows:

Haplotype classes Interval sets
WXYZ 001 010 011 100 101 110 111

000 0 0 0 0 0 0 0
001 1 0 1 0 1 0 1
010 1 1 0 0 1 1 0
011 0 1 1 0 0 1 1
100 0 1 1 1 1 0 0
101 1 1 0 1 0 0 1
110 1 0 1 1 0 1 0
111 0 0 0 1 1 1 1

• The gamete of the haplotype class “001” is the recombinant with respect to the
loci W andZ, and is the non-recombinant with respect to the lociW , X and
Y . Correspondingly, the crossover only occurs in the intervalY Z, and therefore,
we assign one in the sets of intervals (001, 011, 101 and 111) as these intervals
includingY Z contribute the frequencies to the haplotype class “001”. By using
the same arguments, the haplotype class “100” can be considered similarly.

• For the haplotype class “011”, the gamete is the recombinant with respect to the
loci W andY and the lociW andZ, and is the non-recombinant with respect
to the lociW andX. In this case, the crossover only occurs in the intervalXY .
The sets of intervals includingXY contributing to the frequencies of the haplo-
type class “011” are 010, 011, 110 and 111. The haplotype class “110” can be
considered similarly.

• The gamete of the haplotype class “010” is the recombinant with respect to the
loci W andY , and is the non-recombinant with respect to the lociW , X andZ. It
also implies that such haplotype is also the the recombinant with respect to the loci
X andY , and also the lociY andZ. Correspondingly, the crossover only occurs
in the intervalXY or Y Z, and therefore, we assign one in the sets of intervals
(001, 010, 101 and 111) as these intervals includingXY or Y Z contribute the
frequencies to the haplotype class “010”. We note that the sets of intervals (011
and 111) include bothXY andY Z and therefore the value 0 is assigned to them
since an odd number of crossovers occurring in the intervals is counted. By using
the same arguments, the haplotype class “101” can be considered similarly.

• For the haplotype class ”111”, the gamete is the recombinant with respect to the
loci W andX, the lociW andY , and the lociW andZ. In this case, the crossover
only occurs in the intervalWX. The sets of intervals contributing to the frequen-
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cies of the haplotype class “111” are 100, 101, 110 and 111.

Finally, we note that the sum of all haplotype frequencies should be equal to one. With the
above table and the additional constraint, the matrixA4 is given as follows:

Interval sets
001 010 011 100 101 110 111

Haplotype classes

000 →
001 →
010 →
011 →
100 →
101 →
110 →
111 →




1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1
1 1 1 0 0 1 1 0
1 0 1 1 0 0 1 1
1 0 1 1 1 1 0 0
1 1 1 0 1 0 0 1
1 1 0 1 1 0 1 0
1 0 0 0 1 1 1 1




.

In the following discussion, the binary strings of haplotype classes and interval sets are
represented in ascending order, and the properties of the recombination matrixAn can be
summarized as follows:

(1) All the entries in the first column ofAn are equal to 1.
(2) The first row ofAn is a unit row vector with the first entry being equal to 1.
(3) For the(i, j)th entry ofAn, we express the integersi andj in a binary system:

i = 1 +
n−2∑

k=0

a
(i)
k 2k and j = 1 +

n−2∑

k=0

b
(j)
k 2k.

The haplotype class is represented bya
(i)
0 a

(i)
1 · · · a(i)

n−2 and the set of intervals is

represented byb(i)
1 b

(i)
2 · · · b(i)

n−2. The value of the(i, j)th entry ofAn is determined
by the following formula:

[An]i,j =

(
a
(i)
0 b

(i)
0 +

n−2∑

k=1

(a(i)
k − a

(i)
k−1)b

(j)
k

)
(mod 2).

We note that whena(i)
k anda

(i)
k−1 are different, it refers to the case that the gamete is

recombinant with respect to themselves, and hence such interval should be included
in the interval set ifb(j)

k is equal to 1. Thea(i)
0 already indicates whether the gamete

is recombinant with respect to the first two loci. Finally, the value one is assigned
to [An]i,j under the modulo arithmetic if the number of intervals included is an odd
number.

According to the above properties ofAn, we can construct the recombination matrix
and then solve the linear systemΘ = ΓAn to obtain the haplotype frequencies. Since
the size ofAn increases exponentially with respect to the number of locin, fast solvers
are required in order to compute haplotype frequencies efficiently in linkage analysis of
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multiple loci. Next we present a recursive formula forAn+1 andAn based on the nice
structure of the matrixAn+1.

Theorem 2.1. For n ≥ 1, the recombination matrixAn+1 is given recursively as follows:

An+1 =
(

An An −R

PAn N − PAn + R

)

where

P =




0 0 . . . 0 1
0 . . . 0 1 0
...

...
...

...
...

...
...

...
...

...
1 0 0 . . . 0




, R =




1 0 0 . . . 0
1 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
1 0 0 . . . 0




and N =




1 1 . . . 1 1
1 1 . . . 1 1
...

... · · · ...
...

...
... · · · ...

...
1 1 . . . 1 1




.

Proof. First of all, we partitionAn+1 into four blocks, i.e.,

An+1 =
(

M1 M2

M3 M4

)

whereMi are2n−1-by-2n−1 matrices. We note that the binary strings of haplotype classes
and interval sets are represented in ascending order. Therefore, for the matrixM1 corre-
sponding to the first2n−1 rows and the first2n−1 columns, the first digit of their corre-
sponding haplotype classes and interval sets is equal to 0. It implies thatM1 is just the
recombination matrixAn for then loci problem.

For the submatrixM2, we note that the first digit of the interval sets corresponding the
columns ofAn+1 between(2n−1 + 1)th to 2nth, is equal to 1. Since the first digit of the
corresponding haplotype classes is equal to 0, there is no contribution of such haplotype
classes to the interval set “100 · · · 000”. We assign the zero entries for the first column of
M2, and the other entries are the same as the matrixM1. Therefore the resulting matrix
M2 is equal to(An −R).

For the submatrixM3, the corresponding haplotype class “i1i2 · · · in” can be viewed
as the same as the haplotype class “(1 − i1)(1 − i2) · · · (1 − in)”. The contributions of
the haplotype class “i1i2 · · · in” and the haplotype class “(1 − i1)(1 − i2) · · · (1 − in)”
to the interval sets are the same. It means that thekth row of the matrixM3 is equal to
the (2n−1 − k + 1)th row of the matrixM1. Such permutation can be implemented as
M3 = PM1.

For the submatrixM4, by using the similar argument for the submatrixM3, thekth row
of the matrixM4 is equal to the(2n−1−k+1)th row of the matrixM2. Since the first digit
of all the haplotype classes and all the interval sets corresponding to the matrixM4 is equal
1, all the entries ofM4 should increase by 1. We note that an odd number of crossovers
occurring in the set intervals is counted in the recombination matrix. Therefore, the matrix
M4 is given byN − P (An −R). Hence the result follows.
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In the next section, we demonstrate that an efficient solver based on the recursive for-
mula forAn+1 can be developed to solve the linear systemΘ = ΓAn.

3. Recursive Solvers

Since the numbern of loci increases, the size ofAn increases exponentially. Fast solvers
are required in order to compute haplotype frequencies efficiently in linkage analysis of
multiple loci. In this section, we show thatAn is nonsingular forn ≥ 2, and study the
structure ofA−1

n . We then present our recursive solvers.

Theorem 3.1. For n ≥ 1, An+1 is nonsingular, and we have the following properties of
A−1

n+1:

(a) The matrixA−1
n+1 is given by1

2

(
A−1

n + G (A−1
n −G)P

A−1
n −G−H (H + G−A−1

n )P

)
where

G =




1 0 · · · 0
0 0 · · · 0
...

...
. ..

...
0 0 · · · 0


 and H =

1
2n−2




1 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




[Here we assume thatA1 = 1.]
(b) The first row ofA−1

n+1 is a unit row vector with the first entry being equal to 1.
(c) The row sum ofA−1

n+1 is equal to zero except for the first row ofA−1
n+1.

Proof. Here we use mathematical induction. LetS(k) be a statement thatAk is invertible
andA−1

k satisfies above properties. To begin with, we notice thatA2 and its inverse are:

A2 =
(

1 0
1 1

)
and A−1

2 =
(

1 0
−1 1

)
.

Fork = 3, A3 and its inverse are given by

A3 =




1 0 0 0
1 1 0 1
1 1 1 0
1 0 1 1


 and A−1

3 =
1
2




2 0 0 0
−1 1 1 −1
−1 −1 1 1
−1 1 −1 1


 .

It is clear that the last two properties are satisfied. We note that

1
2

(
A−1

2 + G (A−1
2 −G)P

A−1
2 −G−H (H + G−A−1

2 )P

)

=
1
2




(
1 0
−1 1

)
+

(
1 0
0 0

) [(
1 0
−1 1

)
−

(
1 0
0 0

)] (
0 1
1 0

)

(
1 0
−1 1

)
−

(
1 0
0 0

)
− 1

20

(
1 1
0 0

) [
1
20

(
1 1
0 0

)
+

(
1 0
0 0

)
−

(
1 0
−1 1

)] (
0 1
1 0

)




=
1
2




2 0 0 0
−1 1 1 −1
−1 −1 1 1
−1 1 −1 1


 = A−1

3 .
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The statement is true fork = 2 andk = 3.
Now we assumeS(k) is true. We are going to prove thatS(k + 1) is true. By using

Theorem 2.1, we have

Ak+1 =
(

Ak Ak −R

PAk N − PAk + R

)

Let us consider the following matrix-matrix multiplication:

1
2

(
A−1

k + G (A−1
k −G)P

A−1
k −G−H (H + G−A−1

k )P

)(
Ak Ak −R

PAk N − PAk + R

)
=

(
C11 C12

C21 C22

)

whereP 2 = I. Our task here is to show that the above right-hand-side matrix is the identity
matrix. We expand the product of the two matrices and we have

C11 =
1
2
[(A−1

k + G)Ak + (A−1
k −G)PPAk] =

1
2
[(A−1

k + G)Ak + (A−1
k −G)Ak]

=
1
2
[I + GAk + I −GAk] = I

and

C12 =
1
2
[(A−1

k + G)(Ak −R) + (A−1
k −G)P (N − PAk + R)]

=
1
2
[(A−1

k + G)(Ak −R) + (A−1
k −G)PP (N −Ak + R)]

=
1
2
[(A−1

k + G)(Ak −R) + (A−1
k −G)(N −Ak + R)]

=
1
2
[I −A−1

k R + GAk −GR + A−1
k N − I + A−1

k R−GN + GAk −GR]

=
1
2
[A−1

k N −GN ] = 0.

According to Theorem 2.1, the first row ofAk is a unit row vector with first entry being
equal to 1, we obtainGAk = GR = (1, 0, . . . , 0). By proposition 3.1, we obtainA−1

k N =
GN = 2n−2H. Thus we have

C21 =
1
2
[(A−1

k −G−H)Ak + (H + G−A−1
k )PPAk]

=
1
2
[(A−1

k −G−H)Ak + (H + G−A−1
k )Ak]

=
1
2
[I −GAk −HAk + HAk + GAk − I] = 0
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and

C22 =
1
2
[(A−1

k −G−H)(Ak −R) + (H + G−A−1
k )P (N − PAk + R)]

=
1
2
[(A−1

k −G−H)(Ak −R) + (H + G−A−1
k )PP (N −Ak + R)]

=
1
2
[(A−1

k −G−H)(Ak −R) + (H + G−A−1
k )(N −Ak + R)]

=
1
2
[I −GAk −HAk −A−1

k R + GR + HR + HN −HAk + HR + GN −GAk

+GR−A−1
k N + I −A−1

k R]

= I +
1
2
[2GR + 2HR− 2GAk − 2HAk − 2A−1

k R + HN + GN −A−1
k N ] = I.

Hence (a) is proved.
By using the induction assumption, it is easy to show that each row sum of(A−1

k +
G) + (A−1

k − G)P is equal to zero except the first row. Also it is clear that the first row
sum of(A−1

k + G) + (A−1
k −G)P is equal to two. Moreover, we have

A−1
k −G−H + (H + G−A−1

k )P = A−1
k −G−H + H + (G−A−1

k )P
= (A−1

k −G) + (G−A−1
k )P.

Therefore we can show that each row sum of(A−1
k −G−H)+ (H +G−A−1

k )P is equal
to zero. Thus (b) and (c) are proved.

By using Theorem 3.1, a recursive method can be developed to solve the linear system
Θ = ΓAn. The next theorem states how to solve the linear systemΘ = ΓAn without
storingA−1

n .

Theorem 3.2. The complexity for solvingΓ in Θ = ΓAn with n loci is ofO(n2n).

Proof. To begin with, let us consider the complexity for calculating2n−1ΘA−1
n+1 given

that the computational complexity of the inverse of2n−2XA−1
n is ψ(n), whereX is a

1-by-2n−1 vector. By Theorem 3.1, we have

ΘA−1
n+1 =

1
2

(
Θ1 Θ2

)(
A−1

n + G (A−1
n −G)P

A−1
n −G−H (H + G−A−1

n )P

)

whereΘ = (Θ1, Θ2). It implies that

2n−1ΘA−1
n+1 =

(
2n−2(Θ1 + Θ2)A−1

n + 2n−2(Θ1 −Θ2)G +−2n−2Θ2H

2n−2(Θ1 −Θ2)A−1
n P − 2n−2(Θ1 −Θ2)GP + 2n−2Θ2HP

)T

.

Firstly, we observe that the cost for2n−2G requires one operation and there is no compu-
tational cost for2n−2H as they are given by

2n−2G =




2n−2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 and 2n−2H =




1 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 .
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The computational cost for obtaining either(Θ1 + Θ2) or (Θ1−Θ2) requires2n−1 opera-
tions. The cost for2n−2(Θ1+Θ2)A−1

n and2n−2(Θ1−Θ2)A−1
n requires2ψ(n) operations.

The cost for2n−2(Θ1−Θ2)G requires one operation as2n−2G contains only one non-zero
element in2n−2G. Similarly, there is no cost involved for the computation of2n−2Θ2H.
This is also true for the matrix multiplication ofP as it is just a permutation. Thus, the total
computational costψ(n + 1) of 2n−1ΘA−1

n+1 is equal to2ψ(n) + 5 · 2n−1 + 4. It is easy to
deduce that

ψ(n + 1) = 3 · 2n−1 + 5(n− 1)2n−1 + 4 · (2n−1− 1) = 5n · 2n−1 + (2n− 4) = O(n2n).

Hence the result follows.

Theorem 3.3. The storage cost for solvingΓ in Θ = ΓAn with n loci is 3 · 2n − 5.

Proof. To begin with, let us denote the storage cost for computing2n−2ΘA−1
n by φ(n).

According to Theorem 3.2, we need to store such components

2n−2G, 2n−2H, Θ1 and Θ2.

Their corresponding storage cost are are1, 2n−1, 2n−1 and2n−1 respectively. The com-
putational procedure of solvingΓ in Θ = ΓAn is summarized as follows:

Procedure Current Storage requirement
Start with2n−2A−1

n φ(n)
LoadΘ1, Θ2 φ(n) + 2n

ComputeΘ1 + Θ2, Θ1 −Θ2 φ(n) + 2n + 2n

RemoveΘ1 φ(n) + 2n + 2n−1

ComputeX1 = 2n−2(Θ1 + Θ2)A
−1
n φ(n) + 2n + 2n−1 + 2n−1

RemoveΘ1 + Θ2 φ(n) + 2n + 2n−1

ComputeX2 = 2n−2(Θ1 −Θ2)A
−1
n φ(n) + 2n + 2n−1 + 2n−1

Remove2n−2A−1
n 2n+1

ComputeX2 = X2P 2n+1

Create2n−2G 2n+1 + 1

ComputeY = 2n−2(Θ1 −Θ2)G 2n+1 + 1 + 1

RemoveΘ1 −Θ2, 2n−2G 2n + 2n−1 + 1

Compute2n−2Θ2H 2n + 2n−1 + 1 + 2n−1

RemoveΘ2 2n + 2n−1 + 1

ComputeX1 + Y − 2n−2Θ2H 2n + 2n−1 + 1 + 2n−1

RemoveX1 2n + 2n−1 + 1

ComputeY = Y P 2n + 2n−1 + 1

ComputeX2 − Y + 2n−2Θ2H 2n + 2n−1 + 1 + 2n−1

RemoveX2, Y, 2n−2Θ2H 2n

Table 1: The Storage of the Algorithm.

From the above procedure, the maximum storage requirement is eitherφ(n) + 2n+1 or
2n+1 + 1. Sinceφ(n + 1) = φ(n) + 2n+1 = · · · = 2n+2 − 5 + 2n+1, the total storage
requirement is3 · 2n+1 − 5.



October 9, 2005 23:52 Proceedings Trim Size: 9.75in x 6.5in apbcfinal

10

3.1. Computational Results

In this subsection, we demonstrate the effectiveness of the proposed recursive solver for
solving Θ = ΓAn. Here we perform our test in a MATLAB platform with CPU=AMP
1800+ and memory=512Mb. Table 2 shows the times (in seconds) required for computing
ΘA−1

n and the ratio between the computational times ofΘA−1
n Θ′A−1

n−1. We remark that
the complexity of the proposed recursive algorithm for then loci problem is ofO((n −
1)2n). From Table 1, we find that the computational times only increase linearly with
respect ton for our tested cases. It clearly shows that the proposed recursive method is
highly efficient.

n 10 11 12 13 14 15 16 17
time (seconds) 0.05 0.11 0.22 0.33 0.77 1.43 2.86 5.65

ratio – 2.20 2.00 1.50 2.33 1.86 2 1.98

n 18 19 20 21 22 23 24 25
time (seconds) 11.37 22.91 46.08 92.83 187.68 379.04 765.94 1812.82

ratio 2.01 2.01 2.01 2.01 2.02 2.02 2.02 2.37

Table 1: The Computational Times for different n.

4. Concluding Remarks

In this paper, we give a systematic formulation for the linkage analysis problem and an
efficient recursive solver is also proposed for solving the haplotype frequencies in multiple
loci linkage analysis. The complexity of our method is shown to beO((n − 1)2n) for n

loci problem. It is much more efficient when compared toO(23n) operations required by
the classical Gaussian elimination method. Previous applications of the linkage analysis
only consider small values ofn, see for instance (Sham 1998 and Zhao 1990). With our
formulation of the problem and also the fast recursive solver, practitioners can now consider
largern and we expect the method can be more popular.
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