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CHARACTERIZATION OF THE EXISTENCE OF GALLED-TREENETWORKS(EXTENDED ABSTRACT)J�AN MA�NUCH�, XIAOHONG ZHAO, LADISLAV STACHOyAND ARVIND GUPTAzShool of Computing Siene and Department of MathematisSimon Fraser University, CanadaEmail: arvind,jmanuh,lstaho,xzhao2�sfu.aIn this paper, we give a omplete haraterization of the existene of a galled-tree networkin the form of simple suÆient and neessary onditions. As a by-produt we obtainas simple algorithm for onstruting galled-tree networks. We also introdue a newneessary ondition for the existene of a galled-tree network similar to bi-onvexity.1. IntrodutionWith the progress of human genome projet7, large amount of genomi data is avail-able. Analysis of this data requires new methods inorporating events suh as reom-bination, gene onversion, horizontal gene transfer and mobile geneti elements8;9.The traditional phylogeneti tree model is not suÆient enymore. In partiular, re-ombination attrats muh attention, beause of its important role in loating genesinuening omplex geneti diseases. A fundamental model whih inorporates re-ombinations, phylogeneti networks, was introdued by Wang et al.10. With norestritions on loation of reombinations, they showed that the problem of �nd-ing a phylogeneti network with minimum number of reombinations is NP-hard.They also proposed a onstrained phylogeneti network model with vertex-disjointreombination yles, alled a galled-tree network.Gus�eld et al.6 presented a polytime algorithm for onstruting a galled-treenetwork. The algorithm is based on a number of neessary onditions on theexistene of suh networks. Some of these onditions are properties of so-alled\onit graph". More neessary onditions were given in the subsequent paper5.Surprisingly, unlike in ase of phylogeneti trees, no haraterization is known forgalled-tree networks.�Researh supported in part by PIMS (Pai� Institute for Mathematial Sienes).yResearh supported in part by NSERC (Natural Siene and Engineering Researh Counil ofCanada) grant.zResearh supported in part by NSERC (Natural Siene and Engineering Researh Counil ofCanada) grant. 1
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2 In this paper, we give a omplete haraterization for the existene of a galled-tree network in the form of simple suÆient and neessary onditions. In partiular,we show that two neessary onditions observed by Gus�eld et al.6 are enough toguarantee the existene of a galled-tree network. In our model we assumed thatthe root of the galled-tree network is labeled by the all-0 sequene. Note that veryreently an algorithm for onstruting a galled-tree network without any assumptionon the label of the root (root-unknown network) was presented3. As a by-produt,we obtained a simple algorithm for onstruting galled-tree networks. Gus�eld etal.6 introdued an interesting neessary ondition, alled bi-onvexity, whih theyused to design a fast algorithm for the site onsisteny problem for a matrix A ifthere exists a galled-tree network explaining A. As another by-produt, we presenta new neessary ondition (bi-inlusiveness) whih implies bi-onvexity (but notother way around). Gus�eld et al.6 onjetured that the minimum vertex over of abi-onvex graph an be found in linear time. We show that the over of a bi-inlusivegraph an be found in linear time assuming we know the order of verties sorted bytheir degrees. Otherwise we need to add the sorting time to the omplexity.2. PreliminariesThe input to the problem is a haplotype n � m matrix A with values in f0; 1g(binary), where eah row represents a haplotype sequene of an individual and eaholumn orresponds to a harater (an SNP site in the DNA sequene). The set ofharaters is assumed to be the set f1; : : : ;mg. For every harater , the sequenein a row ontains in olumn  the state of harater  for that individual. We usethe terms \olumn" and \harater" interhangeably.We will assume that the edges of strutures used to explain the input matrix(perfet phylogenies, galled-trees) are direted from the root to leaves. An edge(u; v) is a direted edge from u to v, i.e., u is loser the root than v. We will alsoassume that root is labeled with the all-0 sequene. We an also assume that noolumn ontains only 0-states, as suh olumns do not a�et solution to any of theonsidered problems. In the following de�nition we desribe two basi operationson the matries whih we will use frequently.De�nition 2.1. Given an n�m binary matrix A. Let S be a subset of haratersof A. The matrix A[S℄ is the sub-matrix of A restrited to the olumns in S. Wewill assume that the names of olumns in A[S℄ are the same as in the original matrixA. Let x be a binary sequene of length jSj. By A[S℄�x, we denote the sub-matrixof A[S℄ from whih we remove all rows whose strings are idential to x.2.1. Perfet phylogenyThe main ombinatorial tool used in evolutionary biology is the onept of perfetphylogeny (phylogeneti tree). In our onsiderations phylogeneti trees appear inseveral plaes (onstrution of galls, ompressed trees for galled-tree networks).
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3De�nition 2.2. (Perfet phylogeny) Given an n�m binary matrix A. A phyloge-neti tree on m haraters is a rooted tree having eah edge labeled with a uniqueharater in the set f1; : : : ;mg, i.e., no two edges have the same label. Given a phy-logeneti tree, we assign to eah vertex a binary sequene of length m in top-downfashion as follows: the root is labeled with the all-0 sequene; for every edge (u; v)labeled with a harater , the label of v is obtained from the label of u by hanging0 at position  to 1 (hanging state of harater ). We say that a phylogeneti treeT explains A if eah sequene of A (ontained in a row) is a label of some vertex inT . If there is suh a tree, we sometimes say A has a perfet phylogeny.Note that the usual de�nition of phylogeneti tree T requires the sequenes of Ato be ontained in the leaves of T . However, suh a de�nition allows for unlabelededges along whih labels of end verties do not hange. It is easy to onvert ourphylogeneti tree to a standard phylogeneti tree. We prefer our de�nition, as ourphylogeneti trees are more ompat.The following is the lassial haraterization of the existene of the perfetphylogeneti tree redisovered in many papers. Before stating the result we needthe following de�nition.De�nition 2.3. (Coniting haraters) Given an n �m binary matrix A. Twoharaters/olumns  and 0 onit in A if A[; 0℄ ontains three rows with pairs[0; 1℄; [1; 0℄ and [1; 1℄. A harater is unonited if it does not onit with anyother harater.Theorem 2.1. Given an n�m binary matrix A. There exists a phylogeneti treeexplaining A if and only if no two haraters onit in A.Note that if we drop the requirement in the de�nition of phylogeneti treesto have the root labeled with the all-0 sequene, the above theorem is still true,although we have to rede�ne onits between haraters:  and 0 onit in A ifA[; 0℄ ontains all 4-possible pairs (so-alled four-gamete test).De�nition 2.4. Given a tree. If there is a direted path in the tree ontainingedges e and e0, we say that e and e0 are omparable. Take the shortest suh a path.If e is the �rst edge on the path, we say that e is an anestor of e0, and e0 is adesendant of e, and write e � e0. If there is no suh path, we say that e and e0 areinomparable.Given an n�m binary matrix M . Let T be a phylogeneti tree explaining M .De�ne a map e : f1; : : : ;mg ! E(T ) returning the edge with label  as follows, forevery harater , let e() = e where e is the edge with the label . Sine we assumethat M has no all-0 olumns, the map is de�ned for every harater.
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42.2. De�nitions of phylogeneti and galled-tree networksDe�nition 2.5. A phylogeneti network N on m haraters is a direted ayligraph ontaining exatly one vertex (the root) with no inoming edges. Eah vertexother than the root has either one or two inoming edges. If it has one inomingedge, the edge is alled a mutation edge, otherwise it is alled a reombination edge.A vertex x with two inoming edges is alled a reombination vertex.Eah integer (harater) from 1 to m is assigned to exatly one mutation edge inN and eah mutation edge is assigned one harater. Eah vertex in N is labeled bya binary sequene of length m, starting with the root vertex whih is labeled withthe all-0 sequene. Sine N is ayli, the verties in N an be topologially sortedinto a list, where every vertex ours in the list only after its parent(s). Using thatlist, we an de�ne the labels of the non-root verties, in order of their appearanein the list, as follows:(1) For a non-reombination vertex v, let e be the mutation edge labeled oming into v. The label of v is obtained from the label of v's parent byhanging the value at position  from 0 to 1.(2) Eah reombination vertex x is assoiated with an integer rx 2 f2; : : : ;mg,alled the reombination point for x. Label the two reombination edgesoming to x by P and S, respetively. Let P (x) (S(x)) be the sequene ofthe parent of x on the edge labeled P (S). Then the label of x onsists ofthe �rst rx�1 haraters of P (x) , followed by the last m� rx+1 haratersof S(x). Hene P (x) ontributes a pre�x and S(x) ontributes a suÆx tox's sequene.Reall that, in this paper, the sequene at the root of the phylogeneti networkis always the all-0 sequene, and all results are relative to that assumption. Moregeneral phylogeneti networks with unknown root were studied in a reent paper byGus�eld3. Note also that there are slight di�erenes in the de�nition of phylogenetinetworks from the original de�nition6;10. We assume that eah mutation edge hasexatly one label. Every phylogeneti network without this assumption an be easilytransformed to our model by replaing every mutation edge with multiple labels by asequene of edges eah having one of these labels, and ontrating all mutation edgeswithout a label. Our assumption results in more ompat phylogeneti networks,however we annot require that all sequenes of an input matrix appear at the leavesof the network.De�nition 2.6. Given an n � m binary matrix A, we say that a phylogenetinetwork N with m haraters explains A if eah sequene of A is a label of somevertex in N .De�nition 2.7. (Galled-tree network) In a phylogeneti network N , let v be avertex that has two paths out of it that meet at a reombination vertex x (v is
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5the lowest ommon anestor of the parents of x). The two paths together form areombination yle Q. The vertex v is alled the oalesent vertex. We say that Qontains a harater , if  labels one of the mutation edges of Q.A phylogeneti network is alled a galled-tree network if no two reombinationyles share an edge. A reombination yle of a galled-tree network is sometimesreferred to as a gall.Note that in the original de�nition of galled-tree network6;10 it is required thatreombination yles do not share verties. It is easy to see that our modi�ationis only a minor di�erene (one an be transformed to the other easily) introduedfor tehnial reasons.3. Charaterization of the existene of a galled-tree networkIn this setion we will give a omplete haraterization of the existene of a galled-tree network explaining a given matrix A. We will show that two onditions(Lemma 4 and Theorem 10) in Gus�eld et al.6) are also suÆient.De�nition 3.1. Given an n�m binary matrix A. The onit graph GA has thevertex set f1; : : : ;mg and for every two haraters  and 0, (; 0) is an (undireted)edge of GA if they onit.Our haraterization of galled-tree networks is presented in the following theo-rem.Theorem 3.1. Given an n�m binary matrix A. There exists a galled-tree networkexplaining A if and only if every nontrivial omponent (having at least two verties)K of the onit graph GA satis�es the following onditions:(1) K is bipartite with partitions L and R suh that all haraters in L aresmaller than all haraters in R; and(2) there exists a sequene x 6= 0jKj suh that A[K℄ � x has no onitingharaters.In the rest of this setion we will prove several results whih will imply thetheorem. Throughout the rest of the paper, let A be a given n�m binary matrix.The following ruial result shows that if the ondition (2) of Theorem 3.1 issatis�ed then A[K℄�x an be explained by a tree with two edge-disjoint branhes.Lemma 3.1. If a omponent K of GA is bipartite with partitions L and R, andA[K℄ � x has no oniting haraters for some x 6= 0jKj, then any phylogenetitree T explaining A[K℄ � x has at most two branhes. For i = 0; 1, let Li (Ri) bethe set of all  2 L ( 2 R) suh that x[℄ = i. One possible branh ontains alledges labeled with haraters in L1 [ R0, and the other ontains all edges labeled
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6with haraters in R1 [ L0. If T has two branhes then they do not share any edge(reall that we assume that a phylogeneti tree has all edges labeled by haraters).aIn the following theorem we will show that if a omponent of the onit graphGA satis�es both onditions of Theorem 3.1 then there is a gall explaining A[K℄.Theorem 3.2. If a omponent K of GA is bipartite with partitions L and R, A[K℄�x has no oniting haraters for some x 6= 0jKj and all verties in L are smallerthan all verties in R, then A[K℄ an be explained by a galled tree ontaining onereombination yle (gall) rooted in the node with label 0jKj and having x as a labelof the reombination vertex.Proof. By Lemma 3.1, there is a phylogeneti tree T explaining A[K℄� x with atmost two branhes. Let BP be the branh ontaining edges labeled with haratersin L1 [ R0, and BS the branh ontaining edges labeled with haraters in R1 [L0. If one of these two sets is empty then one of the branhes is empty as well.Furthermore, the vertex labeled 0jKj is the only vertex shared by BP and BS . Now,we will add a reombination vertex z into T . Let yP (yS) be the last vertex on thebranh BP (BS). Add two reombination edges (yP ; z) labeled P and (yS ; z) labeledS, f. Figure 1. Set the reombination point rz to any harater in fp+ 1; : : : ; qg,where p is the maximum harater in L and q is the minimum harater in R. Wewill show that the label of reombination vertex z is x, i.e., the gall explains thematrix A[K℄.
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P SFigure 1. Constrution of reombination yle using two branhes BP and BS of the phylogenetitree for A[K℄� x.The label of z is formed by onatenating the �rst rz � 1 haraters of P (z)(see De�nition 2.5) with the last jKj � rz + 1 haraters of Sz. The label P (z)(respetively, S(z)) has 0 (respetively, 1) in every position  2 R1 [ L0 and 1(respetively, 0) in every position  2 L1 [ R0. The label of z at position  2 L0omes from P (z), hene it has value 0. Similar arguments show that the label of zagrees with x also on all remaining positions, as required.aDue to the spae limitation the proof will appear in the journal version.



September 28, 2005 14:12 Proeedings Trim Size: 9.75in x 6.5in reonstrution05apb-�nal
7In the following we de�ne a ompressed matrix whih will be used to builda phylogeneti network. Note that the ompressed matrix is similar to the pass-through matrix4. However, the pass-through matrix does not ontain olumns foromponents of the onit graph whih are singletons.De�nition 3.2. Let K1; : : : ;Kk be the omponents of the onit graph GA.The ompressed matrix CA is the n � k binary matrix with olumns labeled byK1; : : : ;Kk. It has 1 in row i 2 f1; : : : ; ng and olumn Kj , j 2 f1; : : : ; kg, if andonly if the row i in A[Kj ℄ ontains at least one 1.Lemma 3.2. The ompressed matrix CA has no oniting haraters.bIt follows that the ompressed matrix CA an be explained by a phylogenetitree. We will use this tree to onstrut the galled-tree network explaining A. Reallthat a phylogeneti tree with a �xed root is unique up to order of edges labeledwith haraters having idential olumns in the input matrix. From all phylogenetitrees explaining CA we want to pik one satisfying the following ondition:De�nition 3.3. A phylogeneti tree T explaining CA is alled sorted if for everytwo idential olumns Kj and Kj0 suh that omponent Kj is a singleton andomponent Kj0 has at least two verties in the onit graph, e(Kj) � e(Kj0).Following lemma shows that sequenes in rows of A behave niely with respetto edges in a sorted phylogeneti tree T explaining the ompressed matrix CA.Lemma 3.3. Let T be a sorted phylogeneti tree explaining the ompressed matrixCA. Assume that e(Kj) � e(Kj0) in T for some omponents Kj and Kj0 in GA.Consider all rows ontaining a 1 in A[Kj0 ℄, i.e., having 1 in CA[Kj0 ℄. Then allsequenes in these rows in A[Kj ℄ are idential and di�erent from the all-0 sequene.bThe following algorithm onstruts a galled-tree network NA from a sorted phy-logeneti tree for CA.
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Kj3Figure 2. Replaing an edge labeled Kj with a gall Qj .bDue to the spae limitation the proofs will appear in the journal version.
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8Algorithm 3.1.Input: An n�m binary matrix A satisfying assumptions of Theorem 3.2.(1) Construt a sorted phylogeneti tree T of CA and for every omponent Kj ,j 2 f1; : : : ; kg, of GA, onstrut the gall Qj explaining A[Kj ℄.(2) In top-down fashion proess every edge (u; v) labeledKj . IfKj is a singleton,i.e., Kj = fg, replae the label of (u; v) by . Otherwise, replae the edgewith a gall Qj for Kj as follows (f. Figure 2):2.1 Remove edge (u; v).2.2 Identify the oalesent node of the gall Qj with u.2.3 For every edge (v; w) labeled Kj0 , onsider any row r ontaining 1 inCA[Kj0 ℄. Let s be the sequene in A[Kj ℄ in row r. By Lemma 3.3,s 6= 0jKjj. Sine Qj explains A[Kj ℄, it ontains a vertex v0 6= u labeleds. Remove the edge (v; w), add the edge (v0; w) and label it Kj0 .2.4 Remove vertex v.(3) To obtain a proper labeling of verties in NA, ompute new labels of lengthm using the proedure desribed in the de�nition of galled-trees.The following lemma shows that the algorithm produes essentially unique an-swer. More preisely,Lemma 3.4. After onstruting a sorted phylogeneti tree T of CA and galls Qj 'sfor every omponent Kj of GA in Step 1 of Algorithm 3.1, the remaining on-strution of the algorithm produes unique result (the resulting galled-tree networkdepends only on seletion of T and Qj's).Proof. The only hoie we have in the remaining steps of the algorithm is inStep 2.3 when we an hoose any row r ontaining 1 in CA[Kj0 ℄. The seletion ofvertex v0 to whih we attah w depends on the sequene s in row r of the matrixA[Kj ℄. However, by Lemma 3.3, for every row r0 ontaining 1 in CA[Kj0 ℄, thesequene in row r0 of the matrix A[Kj ℄ is also s.The question of how many di�erent galls are there for a matrixA[Kj ℄ was studiedby Gus�eld et al.6. It was shown that there are at most three di�erent galls, and ifthere are enough haraters inKj , there is only one gall explaining A[Kj ℄. Also notethat the phylogeneti tree T is unique up to arrangement of haraters with identialolumns on edges. For our purposes, the fat that Step 2.3 an be performed onlyin one unique way is suÆient to show that NA explains A.Theorem 3.3. Assume that every non-trivial (with at least two verties) omponentK of GA is bipartite with partitions L and R, A[K℄�x has no oniting haratersfor some x 6= 0jKj and all verties in L are smaller than all verties in R. Then thegalled-tree network NA onstruted above explains A.Due to the spae limitation the proof will appear in the journal version.
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9It is known that the number of galls in any galled-tree network explaining A isat least the number of non-trivial omponents in the onit graph GA6. Sine thegalled-tree network onstruted by Algorithm 3.1 has exatly this number of galls,the onstruted network is optimal.Obviously, by Theorem 3.2, Algorithm 3.1 annot fail to onstrut a galled-treenetworkNA, and by the above theorem, the onstruted network explains A. Hene,we have the following orollary.Corollary 3.1. If every non-trivial omponent K of GA is bipartite with partitionsL and R, A[K℄�x has no oniting haraters for some x 6= 0jKj and all vertiesin L are smaller than all verties in R, then there exists a galled-tree networkexplaining A.Combining the above orollary with the results of Gus�eld et al.6, Theorem 3.1follows.3.1. Bi-inlusivenessGus�eld et al.6 introdued an interesting neessary ondition for the existene of agalled-tree network, alled bi-onvexity.De�nition 3.4. A bipartite graph K with partitions L and R is alled onvex forR if the verties in R an be ordered so that, for eah vertex i 2 L, N(i) forms alosed interval in R. That is, i is adjaent to j and j0 > j in R if and only if i isadjaent to all verties in the set fj; : : : ; j0g. A bipartite graph is alled bi-onvexif sets L and R an be ordered so that it is simultaneously onvex for L and onvexfor R.They used bi-onvexity to design a fast algorithm for the site onsisteny problemfor a matrix A if there is a galled-tree network explaining A. The site onsistenyproblem for a matrix A is to �nd a minimum number of olumns whose removal fromA results in a perfet phylogeny. The problem was introdued and shown to be NP-omplete1. The problem redues to �nding a minimum vertex over in the onitgraph GA. For bipartite graphs, the vertex over an be found in polynomial timeand for bi-onvex graphs in O(m2) time (reall that m is the number of verties inthe onit graph)2. It was onjetured by Gus�eld et al.6 that to �nd a minimumvertex over of a bi-onvex graph an be done in linear time. We present a newneessary ondition, bi-inlusiveness, whih is stronger than bi-onvexity (it impliesbi-onvexity but not other way round) and observe that the minimum vertex overof a bi-inlusive graph an be found in linear time.De�nition 3.5. We say that a olletion of sets forms a hain, if there is an orderS1; : : : ; Sk of sets suh that S1 � S2 � � � � � Sk. A bipartite graph K withpartitions L and R is bi-inlusive if the sets N(i1); : : : ; N(ik) form a hain, whereN(x) denotes the neighborhood of x.
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10 Note that it is easy to hek that the swapping of partitions does not hangethe property whether K is bi-inlusive or not.The next theorem shows that if a matrix A satis�es suÆient and neessaryonditions of Theorem 3.1, i.e., A an be explained by a galled-tree network, thenevery omponent of the onit graph GA is bi-inlusive.Theorem 3.4. Given an n � m binary matrix A. If a omponent K of GA isbipartite and A[K℄� x has no oniting haraters for some x 6= 0jKj, then K isbi-inlusive.dSine bi-inlusive graphs are hordal bipartite graphs, a minimum vertex overof a bi-inlusive graph an be found in linear time given some additional informationon the graph2. Hene we have the following.Observation 3.1. A minimum vertex over in a bi-inlusive graph an be foundin O(m logm) time and in linear time (O(m)) if the hain order of verties in onepartition is given.Referenes1. W. H. Day and D. Sanko�. Computational omplexity of inferring phylogenies byompatibility. Syst. Zool., 35(2):224{229, 1986.2. F. F. Dragan. Strongly orderable graphs: A ommon generalization of strongly hordaland hordal bipartite graphs. Disrete Appl. Math., 99(1-3):427{442, 2000.3. D. Gus�eld. Optimal, eÆient reonstrution of root-unknown phylogeneti networkswith onstrained and strutured reombination. J. Computer and Systems Sienes,70:381{398, 2005.4. D. Gus�eld, S. Eddhu, and C. Langley. Powerpoint slides for: EÆient re-onstrution of phylogeneti networks (of SNPs) with onstrained reombination.http://wwwsif.s.udavis.edu/�gus�eld/talks.html.5. D. Gus�eld, S. Eddhu, and C. Langley. The �ne struture of galls in phylogenetinetworks. INFORMS Journal on Computing, 16(4):459{469, 2004.6. D. Gus�eld, S. Eddhu, and C. Langley. Optimal, eÆient reonstrution of phyloge-neti networks with onstrained reombination. Journal of Bioinformatis and Com-putational Biology, 2(1):173{213, 2004.7. L. Helmuth. Genome researh: Map of the human genome 3.0. Siene, 293(5530):583{585, 2001.8. D. Posada and K. A. Crandall. Intraspei� gene genealogies: trees grafting intonetworks. Trends in Eology and Evolution, 16(1):37{45, 2001.9. M. Shierup and J. Hein. Consequenes of reombination on traditional phylogenetianalysis. Genetis, 156:879{891, 2000.10. L. Wang, K. Zhang, and L. Zhang. Perfet phylogeneti networks with reombination.In SAC '01: Proeedings of the 2001 ACM symposium on Applied omputing, pages46{50, New York, NY, USA, 2001. ACM Press.dDue to the spae limitation the proof will appear in the journal version.


