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One of the main applications of microarray technology is to determine the gene expression profiles
of diseases and disease treatments. This is typically done by selecting a small number of genes from
amongst thousands to tens of thousands, whose expression values are collectively used as classification
profiles. This gene selection process is notoriously challenging because microarray data normally
contains only a very small number of samples, but range over thousands to tens of thousands of genes.
Most existing gene selection methods carefully define a function to score the differential levels of
gene expression under a variety of conditions, in order to identify top-ranked genes. Such single
gene scoring methods suffer because some selected genes have very similar expression patterns so
using them all in classification is largely redundant. Furthermore, these selected genes can prevent
the consideration of other individually-less but collectively-more differentially expressed genes. We
propose to cluster genes in terms of their class discrimination strength and to limit the number of
selected genes per cluster. By combining this idea with several existing single gene scoring methods,
we show by experiments on two cancer microarray datasets that our methods identify gene subsets
which collectively have significantly higher classification accuracies.

1. Introduction

DNA microarrays provide the opportunity to measure the expression levels of thousands of
genes simultaneously. This novel technology supplies us with a large volume of data to sys-
tematically understand various gene regulations under different conditions. As one of the
main applications, it is very important to determine the gene expression profiles of diseases
and disease treatments. Among the thousands of genes in the arrays, many of them do not
have their expression values distinguishably changed across different condition, e.g., so-
called “house keeping” genes. These genes certainly would not be very useful in profiling
since they do not contribute much to disease or treatment class recognition. In practice, a
small number, typically in the tens, of genes that are highly differentially expressed across
different conditions are to be selected to compose profiles for the purpose of class pre-
diction. This process is known as gene selection; there are many existing methods, which
typically define a function to score the level of how differentially expressed a gene is, under
different conditions, and identify those top ranked genes. 1,2,3,4,5 Such single gene scoring
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methods typically suffer the problem that some selected genes have very similar expression
patterns, therefore using them all in classification is largely redundant, and those selected
genes prevent other individually-less but collectively-more differentially expressed genes
from being selected.

Several other gene selection methods have recognized the problem with the redundancy
of some highly expressed genes, and look for a subset of genes that collectively maximize
the classification accuracy. For example, Xiong et al. define a function to measure the
classification accuracy for individual genes and select a subset of genes through Sequen-
tial Forward [Floating] Selection (SF[F]S),6 which was developed decades ago for general
feature selection. Guyon et al. propose another method that uses Support Vector Machines
(SVMs) and Recursive Feature Elimination (RFE).7 In terms of effectiveness, these gene
selection methods perform much better than those single gene scoring methods, since they
measure the classification strength of the whole set of selected genes. Computationally,
they are essentially heuristics which replace exhaustive enumeration of an optimal subset
of genes which typically takes much longer to return a solution. The inefficiency of these
methods actually prevent them from being used in practice. Nevertheless, there are alter-
native implementations of the key idea, which is to exclude a gene when there is already a
similar gene selected.

We propose another implementation which first clusters genes according to their class
discrimination strength, namely, two genes that have very close class discrimination
strength are placed in a common cluster; we then limit the number of genes per cluster
to be selected. This provides a more efficient clustering process which, when combined
with a single gene scoring method, leads to an efficient and effective gene selection algo-
rithm. We call our method an EEGS-based gene selection method. In the next section, we
present the details of a novel measure of class discrimination strength difference between
two genes, using their expression values. With this distance measure, we briefly explain
how to adopt the k-means algorithm8 to cluster genes. We also briefly introduce three
single gene scoring methods, namely F-test3, Cho4 and GS,5 and two classifiers, namely,
a linear kernel SVM classifier7 and a k Nearest Neighbor (KNN) classifier.3 Finally, we
outline a complete high level description of the EEGS-based gene selection methods. In
Section 3, we briefly introduce our performance measurements, followed by the dataset
descriptions, and our experimental results. Section 4 discusses parameter selection, the ef-
fects of variety within data sets, classifiers and the performance measurements, and finally,
the overall results compared to single gene scoring methods. Section 5 summarizes our
main contributions, our conclusions on the suitable datasets for the EEGS-based methods,
and some plans for future work.

2. The EEGS-Based Gene Selection Methods

There are two challenges in microarray data classification. One is class discovery to define
previously unrecognized classes. The other is to assign individual samples to already-
defined classes, which is the focus here.
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2.1. The Performance Measurements

The genes selected by a method are evaluated by their class discrimination strength, mea-
sured by the classification accuracy, defined as follows. For gene selection purposes, a
number of microarray samples with known class labels are provided, which form a train-
ing dataset. The selected genes are then used for building a classifier, which can take a new
microarray sample and assign it a class label. The set of such samples for testing purpose
is referred to as the testing dataset, and the percentage of the correctly labeled samples
is defined as the classification accuracy of the method (on this particular testing dataset).
Note that we have to have the class labels for the samples in the testing dataset in order to
calculate the classification accuracy. For computational convenience, given a microarray
dataset whose samples all have known class labels, only a portion of it is used to form the
training dataset; the rest of the samples have their class labels removed and are used to form
the testing dataset. There are two popular cross validation schemes adopted in the literature
to evaluate a method, which are �-Fold and Leave One Out (LOO). We adopt the �-Fold
cross validation in this work, in which the whole dataset is (randomly) partitioned into �

equal parts and, at one time, one part is used as testing dataset and the other �− 1 parts are
used as training dataset. The process is repeated for each part and the average classification
accuracy over these � ones is taken as the final classification accuracy. Here set � = 5
and repeat the process for 20 iterations. Therefore, the final classification accuracy is the
average over 100 values. We report the 5-Fold classification accuracies for all the six tested
gene selection methods in Section 3.

2.2. The Classifiers

We adopt two classifiers in our study. One is a linear kernel SVM classifier that has been
used in Guyon et al.7 and the other is a KNN classifier that has been used in Dudoit et al.3

Essentially, with a given set of selected genes determined by some gene selection method,
the SVM classifier, which contains multiple SVMs, finds decision planes to best separate
the labeled samples based on the expression values of these selected genes. Subsequently,
it uses this set of decision planes to predict the class label of a test sample. For a more
detailed explanation of how the decision planes are constructed, the readers are referred
to Guyon et al.7 The KNN classifier predicts the label of a testing sample in a different
way. Using the expression values of (only) the selected genes, the classifier identifies the k

most similar samples in the training dataset. It then uses the class labels of these k similar
samples through a majority vote. In our experiments, we set the value of k to be 5 as
default, after testing for several values in the range 4 to 10.

2.3. The Single Gene Scoring Methods

Many of the existing gene selection methods are single gene scoring methods that define
a function to approximate the class discrimination strength of a gene. 1,2,3,4,5 Typically, an
F-test gene selection method2,9 is presented, which basically captures the variance of the
class variances of the gene expression values in the dataset. A bigger variance indicates
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that a gene is more differentially expressed and thus ranked higher. Because class sizes
might differ a lot, Cho et al.4 proposed a weighted variant, which was further refined by
Yang et al.5 We denote these three single gene scoring methods as F-test, Cho and GS,
respectively, and combine the EEGS idea with them to have the EEGS-based methods,
denoted as EEGS-F-test, EEGS-Cho and EEGS-GS, respectively.

2.4. Gene Clustering

Gene clustering in microarray data analysis is an independent research subject, in which
genes having a similar expression pattern are clustered for certain applications. In our work
here, we are particularly interested in the class discrimination strength of the genes, since
we do not want to select too many genes that have similar class discrimination strength.
Note that genes having a similar expression pattern would certainly have similar class dis-
crimination strength, but the other way around is not necessarily true. Therefore, we define
a new measure trying to better capture the difference in the class discrimination strength
between two genes.

Assume there are p genes and n samples in the microarray training dataset, and these
n samples belong to L distinct classes. Let aij denote the expression value of gene i in
sample j. This way, the training dataset can be represented as a matrix Ap×n = (aij)p×n.
Let C1, C2, . . . , CL denote the L classes, and nq = |Cq|, for q = 1, 2, . . . , L. Let aiq be
the mean expression value of gene i in class Cq: aiq = 1

nq

∑
j∈Cq

aij , for q = 1, 2, . . . , L.

The centroid matrix is thus Ap×L = (aiq)p×L. The discrimination strength vector of gene
i is defined as vi = 〈|aiq1 −aiq2 | | 1 ≤ q1 < q2 ≤ L〉, where the order of 1

2L(L−1) vector
entries is fixed the same for all genes, for example the lexicographical order. After all the
discrimination strength vectors have been calculated, the k-means algorithm 8 is applied
to cluster these p genes into k clusters using their discrimination strength vectors. Essen-
tially, k-means is a centroid-based clustering algorithm that partitions the genes based on
their pairwise distances. We adopt both the Euclidean distance and the Pearson correlation
coefficient in our experiments. Again, we have tested several values of k in the k-means
algorithm (cf. Section 4.1) and we have set it to 100 as default.

2.5. The Complete EEGS-Based Gene Selection Methods

Given a microarray training dataset containing p genes and n samples in L classes, an
EEGS-based gene selection method first calls the k-means algorithm (with k = 100) to
cluster genes. Next, depending on the detailed single gene scoring method integrated in
the method, which is one of F-test, Cho and GS, it calls the single gene scoring method
to score all the genes and sort them into non-increasing order. Using this gene order and
the gene cluster information, the EEGS-based method selects a pre-specified number, x,
of top ranked genes with the constraint that there are at most T genes per cluster can be
selected. In more details, it scans through the gene order and picks up a gene only if there
are less than T genes from the same cluster selected. These x selected genes are then fed to
classifier construction, either the SVM classifier or the KNN classifier. In our experiments,
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we have tested x ranging from 1 to 80 and several values for T (cf. Section 3.2). We have
set T = 1 as default (cf. Section 4.1).

Depending on the single gene scoring method integrated into the EEGS-based gene
selection method, which is one of F-test, Cho and GS, the method is referred to as EEGS-
F-test, EEGS-Cho and EEGS-GS, respectively.

3. Experimental Results

We compare the three EEGS-based gene selection methods with the three ordinary gene
selection methods, measured by the 5-Fold cross validation classification accuracy. Note
that we have adopted two distance measures in the k-means clustering algorithm. We have a
broader collection of experimental results, but here report only those based on the Euclidean
distance, as there is essentially no difference between the results based on the Pearson
correlation coefficient (cf. Section 4.1). Note also that we have adopted two classifiers, a
linear kernel SVM classifier and a KNN classifier. We choose to plot their classification
accuracies together labeled by different notations, for instance, EEGS-Cho-KNN labels the
accuracies of the KNN classifier. The experiments are done on two real cancer microarray
datasets, CAR10 and LUNG,9 whose details are described in the following subsection.

3.1. Dataset Descriptions

The CAR dataset contains 174 samples in eleven classes: prostate, bladder/ureter, breast,
colorectal, gastroesophagus, kidney, liver, ovary, pancreas, lung adenocarcinomas, and
lung squamous cell carcinoma, which have 26, 8, 26, 23, 12, 11, 7, 27, 6, 14, and 14
samples, respectively.10 Each sample originally contained 12,533 genes. We preprocessed
the dataset as described in Su et al.10 to include only those probe sets whose maximum
hybridization intensity in at least one sample is ≥ 200; Subsequently, all hybridization
intensity values ≤ 20 were raised to 20, and the values were log transformed. After prepro-
cessing, we obtained a dataset of 9,182 genes.

The LUNG dataset9 contains in total 203 samples in five classes: adenocarcinomas,
squamous cell lung carcinomas, pulmonary carcinoids, small-cell lung carcinomas and
normal lung, which have 139, 21, 20, 6, 17 samples, respectively. Each sample originally
had 12,600 genes. A preprocessing step which removed genes with standard deviations
smaller than 50 expression units, produced a dataset with 3,312 genes. 9

3.2. Cross Validation Classification Accuracies

The classification accuracies reported here were obtained under the default setting which
uses Euclidean distance, k = 100 in the k-means clustering algorithm, and at most T = 1
gene per cluster could be selected. On each of the two datasets, all six gene selection
methods, F-test, Cho, GS, EEGS-F-test, EEGS-Cho, and EEGS-GS, were run and the 5-
Fold cross validation classification accuracies were collected and plotted in Figure 1.

Obviously, these plots show that regardless of which cross validation scheme and which
classifier were used, the classification accuracies of the EEGS-based gene selection meth-
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ods were significantly higher than that of their non-EEGS-based counterparts. Typically,
on the CAR dataset, the classification accuracies of the EEGS-based methods were signifi-
cantly higher — though the difference between the classification accuracies became smaller
with the increasing number of selected genes, it remained to be more than 10%. From Fig-
ure 1, among the single gene scoring methods, another observation is that the GS method
performed better than the Cho method and the F-test method. The EEGS-based methods
had the same performance tendency on the CAR dataset. On the LUNG dataset, simi-
lar results were obtained, although the performance differences between the EEGS-based
methods and the non-EEGS-based methods were smaller than those on the CAR dataset.
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Figure 1. The 5-Fold classification accuracies of the six gene selection methods on the CAR and LUNG datasets.

 0

 0.1

 0.2

 0  10  20  30  40  50  60  70  80

S
ta

nd
ar

d 
D

ev
ia

tio
n

The Number of Selected Genes

5-Fold Standard Deviation on CAR Dataset EEGS-KNN
EEGS-SVM

non-EEGS-KNN
non-EEGS-SVM

 0

 0.1

 0.2

 0  10  20  30  40  50  60  70  80

S
ta

nd
ar

d 
D

ev
ia

tio
n

The Number of Selected Genes

5-Fold Standard Deviation on LUNG Dataset EEGS-KNN
EEGS-SVM

non-EEGS-KNN
non-EEGS-SVM

Figure 2. Plots of average standard deviations of the 5-Fold classification accuracies of the EEGS-based and the
non-EEGS-based gene selection methods, combined with the KNN and the SVM classifiers, on the CAR dataset
(left) and LUNG dataset (right), respectively.

We have also calculated the standard deviations of the 5-Fold cross validation clas-
sification accuracies. Note that the accuracies plotted in Figure 1 were averages over
100. Figure 2 plots the average standard deviations of the EEGS-based methods and the
non-EEGS-based methods, on the CAR and the LUNG datasets, respectively. Namely,
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the EEGS-KNN plot records the average standard deviations of the three EEGS-based
methods (EEGS-F-test, EEGS-Cho and EEGS-GS) combined with the KNN classifier,
and the non-EEGS-SVM plot records the average standard deviations of the three non-
EEGS-based methods (F-test, Cho and GS) combined with the SVM classifier, and so on.
These results show that the standard deviations of the classification accuracies of the EEGS-
based methods were even smaller than those of the non-EEGS-based methods, indicating
that the EEGS-based methods performed more consistently. The statistical significance
of the outperformance of the EEGS-based methods over the non-EEGS-based methods
was done and the p values in the Analysis of variance (ANOVA) was always less than
0.001. (For the complete results, the readers might refer to supplementary materials at
http://www.cs.ualberta.ca/˜ghlin/src/WebTools/cgs.php.)

4. Discussion

4.1. Gene Clustering

We adopted the k-means algorithm for gene clustering, in which k, the number of expected
clusters, has to be set beforehand. Obviously, the value of k will affect the sizes of resultant
clusters, and therefore will affect T ultimately, which is the maximum number of genes per
cluster to be selected. We chose to empirically determine these two values. To this end,
we experimented with 15 values for k: from 10 to 150 (in the tens), and five values for T :
1, 2, 3, 4 and 5. All three EEGS-based methods combined with two classifiers were tested
on the CAR dataset, under the 5-Fold cross validation, for each combination of k and T .
Associated with each value of T , a classification accuracy is defined as the mean value of
100× 3 × 2 × 15 = 9, 000 values, where there are 100 runs in the 5-Fold cross validation,
3 EEGS-based methods, 2 classifiers, and 15 values of k in the test. These classification
accuracies, with respect to the number of selected genes, are plotted in Figure 3 (left),
where T = 1 clearly performed the best. Similarly, associated with each value of k, a

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80

A
cc

ur
ac

y

The Number of Selected Genes

5-Fold Classification Accuracy on CAR Dataset

T=1
T=2
T=3
T=4
T=5

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80

A
cc

ur
ac

y

The Number of Selected Genes

5-Fold Classification Accuracy on CAR Dataset

k=10
k=20
k=30
k=40
k=50
k=60
k=70
k=80

k=90
k=100
k=110
k=120
k=130
k=140
k=150

Figure 3. The effects of the number of clusters in gene clustering and the maximum number of genes per cluster
can be selected.

classification accuracy is defined as the mean value of 100 × 3 × 2 × 5 = 3, 000 values,
where there are 5 values of T in the test. Again, these classification accuracies, with respect
to the number of selected genes, are plotted in Figure 3 (right), where we can see that the
value of k didn’t really affect the performance. Since we decided to set the maximum
number of selected genes to be 80, we determined to set k = 100 and T = 1 as default.

Another important factor in gene clustering that might affect its performance is the
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Figure 4. The effects of the Euclidean distance and the Pearson correlation coefficient in gene clustering.

distance measure, for which the Euclidean distance and the Pearson correlation coefficient
are two most commonly adopted ones. We have experimented with both of them in the
k-means clustering algorithm on the CAR and the LUNG datasets. With the default setting
for k and T , we collected the 5-Fold classification accuracies which are the mean values
of 100 × 3 × 2 = 600 values and plotted them in Figure 4. It can be clearly seen that,
the detailed distance measure did not seem to affect the overall performance of the EEGS-
based methods, in terms of their classification accuracy. Therefore, we chose the Euclidean
distance as our default setting.

4.2. Datasets

Note that in the EEGS-based gene selection methods, a discrimination strength vector is
computed for every gene, and genes are clustered using the Euclidean distance defined on
their discrimination strength vectors. The main intention for such clustering is to limit
the number of genes that have very similar class discrimination strength to be selected,
and thus to provide space for other individually-less but collectively-more differentially
expressed genes to participate in the class prediction. This goal would not be achieved when
there are only two classes in the dataset (binary classification), which would mean that the
discrimination strength vectors have only one entry and the EEGS-based method reduces to
its component basic gene selection method. For similar reasons, we suspect that the EEGS-
based gene selection methods would work well when the number of classes in the dataset
is three. The CAR and the LUNG datasets contain eleven and five classes, respectively,
and therefore the discrimination strength vectors have 55 and 10 entries, respectively. The
EEGS-based gene selection methods all performed excellent on them.

For various reasons, microarray datasets are often imbalanced, that is, the sizes of the
classes are highly variable. For example, in the LUNG dataset, the maximum class size
is 139 while the minimum class size is only 6. Since it is possible that during the 5-Fold
cross validation the random partition produces a training dataset containing only a few
samples, or maybe even none, from a small class, the testing would make mistakes on the
samples from the same class. To verify how much the dataset unbalance would affect the
performance of a gene selection method, we removed the classes of sizes smaller than 10
from the CAR and the LUNG datasets to produce two reduced but more balanced datasets,
denoted as CARr and LUNGr, respectively. Consequently, the CARr and the LUNGr

datasets contain 153 samples in 8 classes and 197 samples in 4 classes, respectively. We
then ran all six methods combined with both the KNN classifier and the SVM classifier
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on the full and the reduced datasets, and plotted the average classification accuracies (each
over three methods with two classifiers, i.e., six values) in Figure 5. In the figure, one can
see that the performance of the EEGS-based methods did not change a lot on the reduced
CARr and the LUNGr datasets, compared with their performance on the full datasets.
Interestingly, for the non-EEGS-based methods, their performance increased significantly
on the CARr dataset, but not on the LUNGr dataset. Nevertheless, these results show
that the EEGS-based methods performed more stable (and better) than the non-EEGS-
based methods on imbalanced datasets. One of the possible reasons is that the EEGS-based
methods might be able to select some genes that are signatures of the samples in the small
classes, for which further studies are needed to understand better.
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Figure 5. Classification accuracies of the EEGS-based and the non-EEGS-based methods on the full and reduced
datasets, where EEGS-Full plots the average classification accuracies of the EEGS-based methods on the full
dataset.

Our further statistics on the classification precision and recall for each class in the 5-
Fold cross validation shows that they seemed independent of the class size (data not shown
but can be accessed through http://www.cs.ualberta.ca/˜ghlin/src/WebTools/cgs.php).

4.3. A Case Study on the CAR Dataset

The EEGS-based gene selection methods are designed to not select too many genes having
similar class discrimination strength, so as to consider individually-less but collectively-
more differentially expressed genes. In this sense, some selected genes might be lower in
the gene order, but have strength to discriminate some classes on which its preceding genes
might not do well. To examine if this indeed happened, we collected more detailed results
on the first 10 genes selected by F-test and EEGS-F-test, respectively. The 5-Fold cross
validation classification accuracies of the SVM classifier built on the first x genes were also
collected, for x = 1, 2, . . . , 10. We summarized the results in Table 1, in which column
‘Probe Set’ records the probe set (gene) id in the CAR dataset, column ‘R’ records the rank
of the gene in the gene order by F-test, and column ‘Accuracy’ records the classification
accuracy of the gene subset up to the gene at the row.

Note that the third gene (probe set) selected by EEGS-F-test, 765 s at, has a rank 17,
which was thus not selected by F-test. The classification accuracy of the top 10 genes
selected by F-test was only 30.63%, while adding the third gene 765 s at in EEGS-F-test
lifted the classification accuracy to 42.18%, already significantly higher than 30.63%. On
average, the contribution of each gene, except the first, selected by EEGS-F-test was 6.10%
in terms of classification accuracy; the contribution of each gene, except the first, selected



September 22, 2006 10:26 Proceedings Trim Size: 9.75in x 6.5in apbc133

10

by F-test was only 1.23%. These figures suggested that when the number of selected genes
was fixed, the genes selected by EEGS-F-test had much higher class discrimination strength
compared to the genes selected by F-test.

Table 1. The first 10 genes selected by the EEGS-F-test and the F-test methods on the CAR dataset, respectively,
and the respective 5-Fold cross validation classification accuracies of the SVM classifiers built on the genes. Col-
umn ‘R’ records the rank of the gene in the gene order by F-test, and column ‘Accuracy’ records the classification
accuracy of the gene subset up to the gene at the row.

EEGS-F-test-SVM F-test-SVM
Probe Set R Accuracy Probe Set R Accuracy

40794 at 1 19.54% 40794 at 1 19.54%
41238 s at 4 28.91% 660 at 2 25.46%

765 s at 17 42.18% 32200 at 3 25.40%
1500 at 21 60.52% 41238 s at 4 30.00%

35220 at 24 64.54% 34941 at 5 30.69%
32771 at 27 68.62% 41468 at 6 30.52%
34797 at 38 70.75% 36141 at 7 30.12%
35194 at 50 73.56% 617 at 8 30.35%
36806 at 52 73.16% 37812 at 9 30.29%
40511 at 63 74.48% 217 at 10 30.63%
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