September 29, 2006 13:5 Proceedings Trim Size: 9.75in r 6.5i apbcl62a

PROTEIN STRUCTURE-STRUCTURE ALIGNMENT WITH DISCRETE
FRECHET DISTANCE

MINGHUI JIANG*

Department of Computer Science, Utah State University,
Logan, UT 84322-4205, USA
Email: nj i ang@c. usu. edu

YING XU T

Department of Biochemistry and Molecular Biology, Univigref Georgia,
Athens, GA 30602-7229, USA
Email: xyn@nb. uga. edu

BINHAI ZHU

Department of Computer Science, Montana State University,
Bozeman, MT 59717-3880, USA
Email: bhz@s. nont ana. edu

Matching two geometric objects in 2D and 3D spaces is a deptablem in computer vision, pat-
tern recognition and protein structure prediction. Inigatar, the problem of aligning two polygonal
chains under translation and rotation to minimize theitatise has been studied using various dis-
tance measures. It is well known that the Hausdorff distamaeseful for matching two point sets,
and that the Fréchet distance is a superior measure fohingttwo polygonal chains. The discrete
Fréchet distance closely approximates the (continuor&)Het distance, and is a natural measure for
the geometric similarity of the folded 3D structures of bi@lecules such as proteins. In this paper,
we present new algorithms for matching two polygonal chairD to minimize their discrete Fréchet
distance under translation and rotation, and an effec@eistic for matching two polygonal chains
in 3D. We also describe our empirical results on the apjdinabf the discrete Fréchet distance to the
protein structure-structure alignment.

1. Introduction

Matching two geometric objects in 2D and 3D spaces is a deptodlem in computer
vision, pattern recognition and protein structure predict A lot of research has been
done in this aspect using various distance measures. Or® ahost popular distance
measures is the Hausdorff distanle. For arbitrary bounded sets B C R2, it is defined
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as follows:

dn (A, B) = max <21€18 big]fg dist(a,b), :gg ;Ielg dist(a, b)) .

wheredist is the underlying metric in the plane, for example the Ewediol metric. Given
two point sets withm andn points respectively in the plane, their minimum Hausdorff
distance under translation can be computedimn(m + n)a(mn)log(mn)) time 12
and, when both translation and rotation are allowedQ{itm + n)%log(mn)) time 1.
Given two polygonal chains withh andn vertices respectively in the plane, their minimum
Hausdorff distance under translation can be compute(imn)? log® (mn)) time ¢ and,
when both translation and rotation are allowedpi{(mn)*(m + n) log(m + n)) time 2.

The Hausdorff distance is a good measure for the similafitpaint sets, but it is
inadequate for the similarity of polygonal chains; one casilg come up with examples
of two polygonal chains with a small Hausdorff distance haistically different geometric
shapes. Alt and Godauproposed to use the Fréchet distance to measure the siyndéir
two polygonal chains. The Fréchet distadgebetween two parametric curvés [0,1] —
R? andg : [0, 1] — R? is defined as follows:

5 (f,9) = inf mmax dist(f(a(s)), 9(5(5))):
a, s€[0,1]

wherea andg range over all continuous non-decreasing real functiottsa0) = 3(0) =
0 anda(1) = 4(1) = 1. Imagine that a person and a dog walk along two differentgath
while connected by a leash; they always move forward, thatgtifferent paces. The
minimum possible length of the leash is the Fréchet digtémtween the two paths. Given
two polygonal chains withn andn vertices respectively in the plane, their Fréchet distanc
at fixed positions can be computed@{mn log(m + n)) time 4; their minimum Fréchet
distance under translation can be compute@(tvnn)3(m + n)? log(m +n)) time® and,
when both translation and rotation are allowedpif(m + n)*! log(m + n)) time 7.

The Fréchet distance is a superior measure for the sitgilafrpolygonal curves, but it
is very difficult to handle. Eiter and Mannifsintroduced the discrete Fréchet distance as a
close approximation of the (continuous) Fréchet distaide now review their definition
of the discrete Fréchet distance using our notations (ithtexactly the same idea).

Definition 1.1. Given a polygonal chai® = (pi,...,p,) of n vertices, a-walk along
P partitions the vertices aP into & disjoint non-empty subse{s?; },—; . such thatP;, =
(Pri_141s---,Pnyy@nd0 =ng <ng < --- < nyp =n.

Given two polygonal chaind = (ay,...,a,) andB = (by,...,b,), apaired walk
alongA andB is ak-walk { A;};=1.x alongA and ak-walk { B; };—1. x alongB for some
k, such that, fol < i < k, either|4;| = 1 or |B;| = 1 (that is, eitherA; or B; contains
exactly one vertex). Theostof a paired walkV = {(A;, B;)} along two chainsi and B
is

d¥Y (A, B) = dist(a,b).
7 (4,B) B anedixn, (a,5)
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Thediscrete Fréchet distancebetween two polygonal chaindand B is
dr(A,B) = min d¥ (A, B).

The paired walk that achieves the discrete Fréchet disthatveen two polygonal chains
A andB is called theFr échet alignmentof A and B.

Let’s consider again the scenario in which the person watksged and the dog along
B. Intuitively, the definition of the paired walk is based oreth cases:

(1) |B:i| > |Ai| = 1: the person stays and the dog moves forward;
(2) |A4;] > |Bi| = 1: the person moves forward and the dog stays;
(3) |A4;| = |Bi| = 1: both the person and the dog move forward.

The following figure shows the relationship between diseaeid continuous Fréchet
distances. In Figure 1 (1), we have two polygonal chaig) and (c, d, e); their con-
tinuous Fréchet distance is the distance frdto the segmenib, that is, dist(d, 0). The
discrete Fréchet distancedsst(d, b). As we can see from the figure, the discrete Fréchet
distance could be arbitrarily larger than the continuogsadice. On the other hand, if we
put enough sample points on the two polygonal chains, thenebulting discrete Fréchet
distance, that isfist(d, f) in Figure 1 (I1), closely approximate&st(d, o).

d d
A< 8
c N e ¢ L e
| \‘\~ |
| N [
® v o o .—.—.LI.—.—.
a 0 b a o f b

0] (m

Figure 1. The relationship between discrete and contin&oéshet distances.

Given two polygonal chains of: andn vertices respectively, their discrete Fréchet
distance can be computed @(mn) time by a dynamic programming algorithin We
now describe our algorithm based on the same idea.

Given two polygonal chainsd = (a4,...,a,) and B = (b1,...,b,), and their
two subchainsA[l..i] = (a1,...,a;) andB[l..j] = (b1,...,b;), let d-(3, j) (respec-
tively, d- (i,7)) denote the discrete Fréchet distance betwéén.i] and BJ1..j] such
that a; (respectively,b;) belongs to a single-vertex subset in the paired walk, and de
fine d(i,j) = min{d<(i,j),d=(i,7)}. The discrete Fréchet distande-(A, B) =
min{d<(m,n),ds(m,n)} can be computed i®(mn) time with the base conditions

de(i,0) = d<(0,/) =0 and d=(i,0) = d=(0,/) =0 and d(i,0) = d(0,j) = 0,
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and the recurrences
. dist(a;,b;
d<(i,j) = max { minid(i J—)l,j —1),d(i,j — 1)}
. dist(a;, b;
d> (i, j) = max { min?[d(i i)1,j —1),d(i —1,j)}
d(iv ]) = min{d< (ia ])a d> (iv ])}

In this paper, we present new algorithms that compute thénmim discrete Fréchet
distance of two polygonal chains in the plane under traiosiah O((mn)3 log(m + n))
time and, when both rotation and translation are allowed)(mn)* log(m + n)) time.
These bounds are two or three orders of magnitude smallarttieacorresponding best
bounds>!7 using the continuous Fréchet distance measure.

Our interest in matching two polygonal chains in 2D and 30csegas motivated by the
application of protein structure-structure alignmenteiscrete Fréchet distance is a very
natural measure in this application because a protein catebed essentially as a chain
of discrete amino acids in 3D. We design a heuristic methodaligning two polygonal
chains in 3D based on the intuition behind our theoreticsulte for the 2D case, and use
it to measure the geometric similarity of protein tertiatyustures with real protein data
drawn from the Protein Data Bank (PDB) hostedhtat p: / / www. r csb. or g/ pdb/ .

The paper is organized as follows. In Section 2, we presaralgorithms for matching
two polygonal chains in 2D under translation and rotationSéction 3, we describe our
heuristic method for matching two polygonal chains in 3D emidanslation and rotation,
and present our empirical results on protein structungesire alignment with the discrete
Fréchet distance. In Section 4, we conclude the paper.

2. Matching 2D Polygonal Chains Under Translation and Rotaibn

Definition 2.1. (Optimization Problem{siven two polygonal chaind and B, a transfor-
mation clasg’, and a distance measutgind a transformation € T suchthati(A, 7(B))
is minimized.

Definition 2.2. (Decision Problem)Given two polygonal chaingl and B, a transforma-

tion classT, a distance measurg and a real number > 0, decide whether there is a
transformation € T' such thati(A, 7(B)) < e.

Observation 2.1. Given two polygonal chaingl and B, if there is a transformation
such thaidr(A, 7(B)) = ¢, then there are a vertexc A and a vertex € B such that
dist(a, (b)) = e.

2.1. Matching Under Trandlation

We first consider the transformation cla&sof all translations.

Lemma 2.1. Given two 2D polygonal chaind and B, if there is a translation- € T} such
thatd (A, 7(B)) = € > 0, then one of the following four cases is true:
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(1) there are a vertex € A and a vertex € B such that, for any translation’ € T3,
dist(a, 7' (b)) = ¢ = dr(A,7(B)) <¢

(2) there are two vertices, c € A, avertexb € B, and a translationr’ € T; such that
dist(a, 7' (b)) = dist(¢, 7' (b)) = eanddx(A, 7' (B)) < ¢;

(3) there are a vertex € A, two verticed, d € B, and a translation’ € T; such that
dist(a, 7' (b)) = dist(a,7'(d)) = eanddx(A,7'(B)) < ¢;

(4) there are two vertices,c € A, two verticesh,d € B, and a translationr’ €
T, such thatat # bd (that is, eitherjac| # |bd|, or a¢ and bd have different
directions),dist(a, 7' (b)) = dist(c, 7'(d)) = ¢, anddx(A, 7 (B)) < e.

Proof. Leta € A andb € B be the two vertices such thaist(a, 7(b)) = €, the existence
of which is guaranteed by Observation 2.1. Uét= {(A4;, B;)} be the Fréchet alignment
of A andr(B) such thatl’¥ (A, 7(B)) = e. We translateB with 7’ (starting at) such that
the distance between the two vertieeandb remains at exactly, that is,dist(a, (b)) =
e. We consider the distane8! (A, 7'(B)) = max; max(y g)c4,x5; dist(p,7'(q)) ast’
changes continuously.

As 7’ changes continuously;’(b) rotates around: in a circle of radiuse. If
d¥ (A, r'(B)) always remains at we have case 1; otherwise, there are two verticesA;
andd € B, for somei such that the distancé&st(c, 7'(d)) crosses the threshoddWe can-
not have both = ¢ andb = d because the distandgst(a, 7/ (b)) always remains at, for
the same reason, we cannot have= bd. There are three possible casesu if£ ¢ and
b = d, we have case 2; if = candb # d, we have case 3; if # c andb # d, we have
case 4. O

The previous lemma implies the following algorithm that ckethe four cases:

(1) For every two vertices € A andb € B, compute an arbitrary translatief such
thatdist(a, 7' (b)) = ¢, and check whethetr (A, 7'(B)) < e.

(2) For every three verticas ¢ € A andb € B, compute all possible translations
such thatdist(a, 7/ (b)) = dist(c, 7' (b)) = ¢, and check whetheir (A, 7/(B)) <
€.

(3) For every three verticas € A andb,d € B, compute all possible translations
such thatdist(a, 7' (b)) = dist(a,7'(d)) = ¢, and check whethetr (A, 7' (B)) <
€.

(4) For every four verticea,c € A andb,d € B such thata¢ # ﬁ compute all
possible translations’ such thatdist(a, 7/ (b)) = dist(c,7'(d)) = €, and check
whetherdz (A, 7(B)) < e.

The algorithm answers yes if it finds at least one translati@uch thatiz (A, 7/ (B)) < ¢;
otherwise, it answers no. As we can see from the followingmhethis algorithm solves
the decision problem.

Lemma 2.2. If there is translationr’ such thatdx(A, 7'(B)) = €, then, for any distance
e > €, there exists a translation such thati (A, 7(B)) = e.
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Proof. As we translateB from 7/(B) to infinity, the discrete Fréchet distance between
A and the translated changes continuously (since it is a composite function dbase
the continuous Euclidean distance functions) frém(A, 7'(B)) = ¢ to infinity. The
continuity implies that, for any > ¢, there exists a translationsuch thatiz (A, 7(B)) =

€. O

We now analyze the algorithm. In cases 2 and 3, given two p@iaind ¢ such that
p # q, the two equationdist(x,p) = € and dist(x,q) = € together determine (there
are at most two solutions faf) since the 2D point has two variable components. In case
4, given two pointp andq, and a vectol’ # pg, the two equationglist(z, p) = € and
dist(z+ 7, q) = e are independent and determiné&here are at most a constant number of
solutions forz). Given a translation’, to check whethed (A, 7' (B)) < e takesO(mn)
time. The overall time complexity i©(mn - m?n?) = O(m>n3).

With binary search, our algorithm for the decision problemnpiies an
O(m3n3log(1/e€)) time 1 + € approximation for the optimization problem; with paramet-
ric search (applying Cole’s sorting trick), it implies anO(m?3n? log(m + n)) time exact
algorithm. We have the following theorem.

Theorem 2.1. For minimizing the discrete [Bchet distance between two 2D polygonal
chains under translation, we have @n(m3n3log(1/¢)) time 1 + ¢ approximation algo-
rithm and anO(m?3n3 log(m + n)) time exact algorithm.

2.2. Matching Under Trandlation and Rotation

We next consider the transformation cld$s that includes both translations and rotations.

Lemma 2.3. Given two 2D polygonal chaind and B, if there is a transformatiom € T3,
such thatdz(A, 7(B)) = e > 0, then one of the following seven cases is true:

(1) there are a vertex, € A and a vertexy € B such that, for any transformation
7' € Ty, dist(a, 7' (b)) = ¢ = dr(A,7(B)) <¢

(2) there are two vertices, c € A and two vertice$, d € B such that, for any trans-
formationt’ € Ty, dist(a, 7' (b)) = dist(c,7'(d)) = ¢ = dr(A,7(B)) <€

(3) there are two vertices,c € A, three verticed,d, f € B, and a transforma-
tion 7’ € T}, such thatdist(a, 7' (b)) = dist(c,7'(d)) = dist(c,7'(f)) = e and
dr(A,7"(B)) <e.

(4) there are three vertices,c,e € A, two verticesh,d € B, and a transforma-
tion 7’ € Ty, such thatdist(a, 7'(b)) = dist(c,7'(d)) = dist(e,7'(d)) = e and
dr(A,7'(B)) <e.

(5) there are three vertices, c,e € A and three vertice$,d, f € B (Aace and
Abdf are not congruent), and a transformatieh € T3, such thatdist(a, /(b)) =
dist(c, 7' (d)) = dist(e,7'(f)) = ¢, andd (A, 7'(B)) < e.

(6) there are three vertices,c,e € A and three vertice$,d, f € B (Aace and
Abdf are congruent), and a transformatiari € T}, such that the two triangles
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Aace and 7’ (Abdf) are not parallel (their corresponding edges are not parfjle
dist(a, 7' (b)) = dist(c,7'(d)) = dist(e, 7' (f)) = ¢, andd (A, 7'(B)) <e.

(7) there are three vertices c, e € A and three vertices, d, f € B (Aace and Abdf
are congruent) such that, for any transformatighe T3, if Aace and ' (Abdf)
are parallel, and ifdist(a, 7' (b)) = dist(c,7'(d)) = dist(e,7'(f)) = ¢, then
dr(A,7'(B)) <e.

Proof. Leta € A andb € B be the two vertices such thatst(a, 7(b)) = ¢, the existence
of which is guaranteed by Observation 2.1. lét= {(A4;, B;)} be the Fréchet alignment
of A and7(B) such thad'¥ (4, 7(B)) = e. Without loss of generality, we assume that
a € A;, b€ B;, andb is the only vertex inB;.

Starting with7’ = 7, we rotateB around the vertek. During the rotation, the dis-
tance between the two verticesandb remains at exactly, that is, dist(a, 7'(b)) = €. If
d¥ (A, r'(B)) always remains at, we have case 1.

Otherwise, there are two vertices A; andd € B; for somej such that the distance
dist(c, 7'(d)) crosses the threshotd We must have # j becausé is the only vertex in
B; and the positions of the vertices iy are fixed as we rotatB aroundb. It follows that
a # candb # d. Now, we continue to transform® while keeping the two constraints
dist(a, 7' (b)) = € anddist(c, 7'(d)) = e satisfied. Ifd¥ (4, 7'(B)) always remains at,
we have case 2.

Otherwise, there are two vertices Ay andf € By, for somek such that the distance
dist(e, 7' (f)) crosses the threshodd We must havé: = i for the same reason that£ i.
We consider two possibilities: eithér= j or k # ;.

If & = j, then we must have either= c or f = d because eithed; or B; contains
a single vertex. We cannot have beth= ¢ and f = d because we keep the constraint
dist(c, 7'(d)) = e satisfied during the transformation.df= ¢, we have case 3; if = d,
we have case 4.

If k # j, then we consider the two trianglésice andr’ (Abdf).

(1) Ifthey are not congruent, we have case 5.

(2) If they are congruent by not parallel, we have case 6.

(3) If they are both congruent and parallel, then we traaslatcontinuously while
keeping the three constraindsst (a, /(b)) = dist(c, 7'(d)) = dist(e, 7' (f)) = €
satisfied. During the translation, we either encounterlzarqiair of verticeg’ and
/" whose distance crosses the threshotnt not. If we encountee’ and f’, then
the two trianglesAace’ and Abdf’ must not be congruent, and we have case 5;
otherwise, we have case 7. m|

As before, the previous lemma implies an algorithm for theiglen problem. We now
analyze the running time. In cases 1, 2, and 7, we only needdmfie transformation’.
In cases 3 and 4, there are at most four transformations fon case 5, the transformation
for 7 can be specified by six variables: thendy coordinates of the three verticksd,
and f; we also have six constraints for the lengths of the six segsa#, cd, ef, bd, df,
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andbf. Each constraint is specified by a quadratic equation. Téerat most a constant
number of solutions for these equations.
In case 6, we have two congruent trianglegce and AV d’ ' (AY'd' f' = 7/ (Abdf)).

If the two triangles have the same enclosing circle, thenetlage at most two transfor-
mations such thatab’| = |cd'| = lef’| = e. If the two triangles do not have the
same enclosing circle, then we can always transiatee to Aa’c’e’ such thatA\a'c’e’
and Ab'd’ f' have the same enclosing circle, then rotate'c’e’ to Ab'd’ f’. We have
lab'| = led'| = lef'] = € > 0, |a'V| = |dd| = |¢'f'| = = > 0 (since they are not
parallel), and

— — — — — —

abl =a't' + 7, cd =cd +7, ef =€ f + 7.
Given a fixed vecto?, the equationd = i + @, subject to the two constraintg| = € > 0
and|d| = z > 0, has at most two solutions farandz. On the other hand, the three vectors

a't!, cd’, ande’ f' are distinct, which is a contradiction. Therefore, the triariglesAace
andAb'd’ f' must have the same enclosing circle.

Theorem 2.2. For minimizing the discrete [chet distance between two 2D polygonal
chains under translation and rotation, we have @ *n*log(1/e¢)) time 1 + ¢ approxi-
mation algorithm and a® (m*n* log(m + n)) time exact algorithm.

3. Protein Structure-Structure Alignment

The discrete Fréchet distance between two polygonal shsia natural measure for com-
paring the geometric similarity of protein tertiary struits because the alpha-carbon
atoms along the backbone of a protein essentially forms adygpnal chain.

Generalizing the theoretical results in the previous secii is possible to match two
polygonal chains withn andn vertices in 3D in roughly)((mn)?) time under both trans-
lation and rotation. However, this would be too slow for canget application of protein
structure-structure alignment, where a typical proteimegponds to a 3D polygonal chain
with 300-500 amino acids. Instead of an exact algorithm, @@@se an intuitive heuristic
and present our empirical results showing its effectivemesnatching two similar polyg-
onal chains.

3.1. A Heuristic for Matching 3D Polygonal Chains Under Trandation and
Rotation

Given a 3D chairC of n vertices, the coordinates of each ver¢enf C can be represented
by a 3D vectore;. Thecenterc of the chainC' corresponds to the vector= ¥ We
observe that, given two polygonal chaids= (a1,...,a,,) andB = (by,...,b,), if
dr(A, B) = ¢, then we must have bottlist(a1,b1) < e and dist(a,,b,) < €. If €is
smaller than half the minimum distance between two consetuertices in eitherd or

B, then the Fréchet alignment df and B must contain only one-to-one matches between
vertices ofA and B. That is, we must have, = n and, forl < i < n, dist(a;,b;) <e. It
follows thatdist(a, b) < ¢, wherea andb are the centers od and B, respectively.
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The observation above suggests that we can use the thrds,gbatwo end-vertices
and the center, as the reference poinfer each chain. For two polygonal chains with
a small discrete Fréchet distance, their correspondifegarce points must be close. In
general, the position and orientation of each polygonalcisaletermined by the positions
of its three reference points. We have the following heiarfstr matchingA and B under
translation and rotation:

(1) TranslateB such that the centerof A and the centels of B coincide.

(2) RotateB aroundb such that the two triangl@aglam andAbb,b,, are co-planar
and such that the two vectofsgﬁ —da and% — b have the same direction.

(3) RotateB for a small angle around the axis through its two randomlyselmover-
tices. If this does not decrease the discrete Fréchetndistbetweem and B,
rotate back.

(4) Repeat the previous tuning step for a number of times.

3.2. The Experiment

We implemented our protein structure-structure alignnientristic and a protein visual-
ization software* in Java. The experiment was conducted on an Apple iMac witBld2
PowerPC G5 processor and 2GB DDR SDRAM memory running Mac@&3 and Java
1.4.2.

806 Protein Tertiary Structure Alignment 806 Protein Tertiary Structure Alignment

B (fo7ia [3) W (1hfic  [%) Tlocal alignment length ( Align ) (Help ) B (fo7ia [3) W (1hfic  [%) Tlocal alignment length ( Align ) (Help )

107j.a(325) 1hfi.c(325) ~(1,325;1,325) DFD: 1.0141160787686514 RMSD: 0.388373948135951

Figure 2. The alignment of 107j.a and 1hfj.c by our heuristic

In the experiment, we align the protein chain 107j.a (PDB tZjichain A) with seven
other protein chains 1hfj.c, 1qd1.b, 1toh, 4eca.c, 1d9pda.b, and 4eca.d. Each of these

aThe program is hosted on the webhatt p: / / www. cs. usu. edu/ ~nj i ang/ frechet. htni.
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eight chains contains exactly 325 vertices, where eaclkexeepresents an alpha-carbon
atom on the protein backbone. When the number of tuning $teget to 20, our program
takes less than one second to align two chains of lengths@®bitest machine. Figure 2
shows two screenshots of our program, before and afteriatjghe two protein chains
lo7j.a and 1hfj.c.

We compare our heuristic with ProteinDB$, an online protein database search en-
gine hosted alnt t p: / / pr ot ei ndbs. rnet. m ssouri . edu/ that supports protein
structure-structure alignment. ProteinDBS uses compusérn techniques to align two
protein chains based on the two-dimensional distance xg¢nerated from the 3D coor-
dinates of the alpha-carbon atoms on the protein backboh®es.two chains 1o7j.a and
1hfj.c are examples given in the ProteinDBS pajSerAccording to the query result from
the ProteinDBS website, the seven chains (1hfj.c, 1qddh, Yeca.c, 1d9q.d, 4eca.b,
4eca.d) have global tertiary structures most similar tg.&07

Table 1. The characteristics of the seven chains with thedsigsimilarity ranking by ProteinDBS.

Protein Chain| Alignment Length RMSD (in angstrom)  Discrete Fréchet &isie (in angstrom)

1hfj.c 325 0.27 1.01
1qdl.b 85 2.81 22.90

1toh 55 2.91 35.09
4eca.c 317 1.10 6.01
1d9q.d 81 2.88 22.18
4eca.b 317 1.09 5.76
4eca.d 318 1.45 5.92

By comparing the image patterns in the distance matricésadf aligning the tertiary
structures geometrically, ProteinDBS is very efficient hot so accurate. We refer to
Table 1, which lists the characteristics of the alignmemsegated by ProteinDBS. The
three protein chains, 1qd1.b, 1toh, and 1d9q.d, have gtelt&ry structures dissimilar to
that of the chain 107j.a, but they are incorrectly rankedragrtbe top by ProteinDBS. The
discrete Fréchet distances of these chains and the quaiy cbmputed by our heuristic
correctly identify the three dissimilar protein chains.

4. Conclusion

In this paper, we present the first algorithms for matching pelygonal chains in 2D to
minimize their discrete Fréchet distance under trarsiedind rotation. Our algorithms are
two or three orders of magnitude faster than the fastestittiges using the continuous
Fréchet distance, and can be readily generalized to hdjhmmsions.

The discrete Fréchet distance is a natural measure for @ongpthe folded 3D struc-
tures of bio-molecules such as proteins. Our experimemtslhiwat our heuristic for align-
ing protein tertiary structures using the discrete Frédisance is more accurate than Pro-
teinDBS’s structure aligning algorithm, which is based omputer vision techniques. We
are currently conducting more empirical studies and rediour protein structure-structure
alignment algorithm with additional ideas from some othepuydar algorithms such as the
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Combinatorial Extension (CE) Methdd hosted aht t p: //cl . sdsc. edu/ . We see
great potential for using the discrete Fréchet distandkeriocal alignment?, the feature
identification, and the consensus shape construétairmultiple proteins.
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