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Matching two geometric objects in 2D and 3D spaces is a central problem in computer vision, pat-
tern recognition and protein structure prediction. In particular, the problem of aligning two polygonal
chains under translation and rotation to minimize their distance has been studied using various dis-
tance measures. It is well known that the Hausdorff distanceis useful for matching two point sets,
and that the Fréchet distance is a superior measure for matching two polygonal chains. The discrete
Fréchet distance closely approximates the (continuous) Fréchet distance, and is a natural measure for
the geometric similarity of the folded 3D structures of bio-molecules such as proteins. In this paper,
we present new algorithms for matching two polygonal chainsin 2D to minimize their discrete Fréchet
distance under translation and rotation, and an effective heuristic for matching two polygonal chains
in 3D. We also describe our empirical results on the application of the discrete Fréchet distance to the
protein structure-structure alignment.

1. Introduction

Matching two geometric objects in 2D and 3D spaces is a central problem in computer
vision, pattern recognition and protein structure prediction. A lot of research has been
done in this aspect using various distance measures. One of the most popular distance
measures is the Hausdorff distancedH. For arbitrary bounded setsA, B ⊆ R

2, it is defined
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as follows:

dH(A, B) = max

(

sup
a∈A

inf
b∈B

dist(a, b), sup
b∈B

inf
a∈A

dist(a, b)

)

.

wheredist is the underlying metric in the plane, for example the Euclidean metric. Given
two point sets withm andn points respectively in the plane, their minimum Hausdorff
distance under translation can be computed inO(mn(m + n)α(mn) log(mn)) time 12

and, when both translation and rotation are allowed, inO((m + n)6 log(mn)) time 11.
Given two polygonal chains withm andn vertices respectively in the plane, their minimum
Hausdorff distance under translation can be computed inO((mn)2 log3(mn)) time 6 and,
when both translation and rotation are allowed, inO((mn)4(m + n) log(m + n)) time 2.

The Hausdorff distance is a good measure for the similarity of point sets, but it is
inadequate for the similarity of polygonal chains; one can easily come up with examples
of two polygonal chains with a small Hausdorff distance but drastically different geometric
shapes. Alt and Godau3 proposed to use the Fréchet distance to measure the similarity of
two polygonal chains. The Fréchet distanceδF between two parametric curvesf : [0, 1] →

R
2 andg : [0, 1] → R

2 is defined as follows:

δF (f, g) = inf
α,β

max
s∈[0,1]

dist(f(α(s)), g(β(s))),

whereα andβ range over all continuous non-decreasing real functions withα(0) = β(0) =

0 andα(1) = β(1) = 1. Imagine that a person and a dog walk along two different paths
while connected by a leash; they always move forward, thoughat different paces. The
minimum possible length of the leash is the Fréchet distance between the two paths. Given
two polygonal chains withm andn vertices respectively in the plane, their Fréchet distance
at fixed positions can be computed inO(mn log(m + n)) time 4; their minimum Fréchet
distance under translation can be computed inO((mn)3(m + n)2 log(m + n)) time5 and,
when both translation and rotation are allowed, inO((m + n)11 log(m + n)) time 17.

The Fréchet distance is a superior measure for the similarity of polygonal curves, but it
is very difficult to handle. Eiter and Mannila9 introduced the discrete Fréchet distance as a
close approximation of the (continuous) Fréchet distance. We now review their definition
of the discrete Fréchet distance using our notations (but with exactly the same idea).

Definition 1.1. Given a polygonal chainP = 〈p1, . . . , pn〉 of n vertices, ak-walk along
P partitions the vertices ofP into k disjoint non-empty subsets{Pi}i=1..k such thatPi =

〈pni−1+1, . . . , pni
〉 and0 = n0 < n1 < · · · < nk = n.

Given two polygonal chainsA = 〈a1, . . . , am〉 andB = 〈b1, . . . , bn〉, a paired walk
alongA andB is ak-walk {Ai}i=1..k alongA and ak-walk {Bi}i=1..k alongB for some
k, such that, for1 ≤ i ≤ k, either|Ai| = 1 or |Bi| = 1 (that is, eitherAi or Bi contains
exactly one vertex). Thecostof a paired walkW = {(Ai, Bi)} along two chainsA andB

is

dW
F (A, B) = max

i
max

(a,b)∈Ai×Bi

dist(a, b).
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Thediscrete Fréchet distancebetween two polygonal chainsA andB is

dF (A, B) = min
W

dW
F (A, B).

The paired walk that achieves the discrete Fréchet distance between two polygonal chains
A andB is called theFr échet alignmentof A andB.

Let’s consider again the scenario in which the person walks alongA and the dog along
B. Intuitively, the definition of the paired walk is based on three cases:

(1) |Bi| > |Ai| = 1: the person stays and the dog moves forward;
(2) |Ai| > |Bi| = 1: the person moves forward and the dog stays;
(3) |Ai| = |Bi| = 1: both the person and the dog move forward.

The following figure shows the relationship between discrete and continuous Fréchet
distances. In Figure 1 (I), we have two polygonal chains〈a, b〉 and 〈c, d, e〉; their con-
tinuous Fréchet distance is the distance fromd to the segmentab, that is,dist(d, o). The
discrete Fréchet distance isdist(d, b). As we can see from the figure, the discrete Fréchet
distance could be arbitrarily larger than the continuous distance. On the other hand, if we
put enough sample points on the two polygonal chains, then the resulting discrete Fréchet
distance, that is,dist(d, f) in Figure 1 (II), closely approximatesdist(d, o).

aa bb

cc

dd

ee

foo

(I) (II)

Figure 1. The relationship between discrete and continuousFréchet distances.

Given two polygonal chains ofm andn vertices respectively, their discrete Fréchet
distance can be computed inO(mn) time by a dynamic programming algorithm9. We
now describe our algorithm based on the same idea.

Given two polygonal chainsA = 〈a1, . . . , am〉 and B = 〈b1, . . . , bn〉, and their
two subchainsA[1..i] = 〈a1, . . . , ai〉 andB[1..j] = 〈b1, . . . , bj〉, let d<(i, j) (respec-
tively, d>(i, j)) denote the discrete Fréchet distance betweenA[1..i] and B[1..j] such
that ai (respectively,bj) belongs to a single-vertex subset in the paired walk, and de-
fine d(i, j) = min{d<(i, j), d>(i, j)}. The discrete Fréchet distancedF (A, B) =

min{d<(m, n), d>(m, n)} can be computed inO(mn) time with the base conditions

d<(i, 0) = d<(0, j) = 0 and d>(i, 0) = d>(0, j) = 0 and d(i, 0) = d(0, j) = 0,
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and the recurrences

d<(i, j) = max

{

dist(ai, bj)

min{d(i − 1, j − 1), d(i, j − 1)}

d>(i, j) = max

{

dist(ai, bj)

min{d(i − 1, j − 1), d(i − 1, j)}

d(i, j) = min{d<(i, j), d>(i, j)}.

In this paper, we present new algorithms that compute the minimum discrete Fréchet
distance of two polygonal chains in the plane under translation in O((mn)3 log(m + n))

time and, when both rotation and translation are allowed, inO((mn)4 log(m + n)) time.
These bounds are two or three orders of magnitude smaller than the corresponding best
bounds5,17 using the continuous Fréchet distance measure.

Our interest in matching two polygonal chains in 2D and 3D spaces is motivated by the
application of protein structure-structure alignment. The discrete Fréchet distance is a very
natural measure in this application because a protein can beviewed essentially as a chain
of discrete amino acids in 3D. We design a heuristic method for aligning two polygonal
chains in 3D based on the intuition behind our theoretical results for the 2D case, and use
it to measure the geometric similarity of protein tertiary structures with real protein data
drawn from the Protein Data Bank (PDB) hosted athttp://www.rcsb.org/pdb/.

The paper is organized as follows. In Section 2, we present our algorithms for matching
two polygonal chains in 2D under translation and rotation. In Section 3, we describe our
heuristic method for matching two polygonal chains in 3D under translation and rotation,
and present our empirical results on protein structure-structure alignment with the discrete
Fréchet distance. In Section 4, we conclude the paper.

2. Matching 2D Polygonal Chains Under Translation and Rotation

Definition 2.1. (Optimization Problem)Given two polygonal chainsA andB, a transfor-
mation classT , and a distance measured, find a transformationτ ∈ T such thatd(A, τ(B))

is minimized.

Definition 2.2. (Decision Problem)Given two polygonal chainsA andB, a transforma-
tion classT , a distance measured, and a real numberǫ ≥ 0, decide whether there is a
transformationτ ∈ T such thatd(A, τ(B)) ≤ ǫ.

Observation 2.1. Given two polygonal chainsA and B, if there is a transformationτ
such thatdF (A, τ(B)) = ǫ, then there are a vertexa ∈ A and a vertexb ∈ B such that
dist(a, τ(b)) = ǫ.

2.1. Matching Under Translation

We first consider the transformation classTt of all translations.

Lemma 2.1. Given two 2D polygonal chainsA andB, if there is a translationτ ∈ Tt such
thatdF (A, τ(B)) = ǫ > 0, then one of the following four cases is true:
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(1) there are a vertexa ∈ A and a vertexb ∈ B such that, for any translationτ ′ ∈ Tt,
dist(a, τ ′(b)) = ǫ =⇒ dF (A, τ ′(B)) ≤ ǫ;

(2) there are two verticesa, c ∈ A, a vertexb ∈ B, and a translationτ ′ ∈ Tt such that
dist(a, τ ′(b)) = dist(c, τ ′(b)) = ǫ anddF(A, τ ′(B)) ≤ ǫ;

(3) there are a vertexa ∈ A, two verticesb, d ∈ B, and a translationτ ′ ∈ Tt such that
dist(a, τ ′(b)) = dist(a, τ ′(d)) = ǫ anddF (A, τ ′(B)) ≤ ǫ;

(4) there are two verticesa, c ∈ A, two verticesb, d ∈ B, and a translationτ ′ ∈

Tt such that−→ac 6=
−→
bd (that is, either|ac| 6= |bd|, or −→ac and

−→
bd have different

directions),dist(a, τ ′(b)) = dist(c, τ ′(d)) = ǫ, anddF (A, τ ′(B)) ≤ ǫ.

Proof. Let a ∈ A andb ∈ B be the two vertices such thatdist(a, τ(b)) = ǫ, the existence
of which is guaranteed by Observation 2.1. LetW = {(Ai, Bi)} be the Fréchet alignment
of A andτ(B) such thatdW

F (A, τ(B)) = ǫ. We translateB with τ ′ (starting atτ ) such that
the distance between the two verticesa andb remains at exactlyǫ, that is,dist(a, τ ′(b)) =

ǫ. We consider the distancedW
F (A, τ ′(B)) = maxi max(p,q)∈Ai×Bi

dist(p, τ ′(q)) asτ ′

changes continuously.
As τ ′ changes continuously,τ ′(b) rotates arounda in a circle of radiusǫ. If

dW
F (A, τ ′(B)) always remains atǫ, we have case 1; otherwise, there are two verticesc ∈ Ai

andd ∈ Bi for somei such that the distancedist(c, τ ′(d)) crosses the thresholdǫ. We can-
not have botha = c andb = d because the distancedist(a, τ ′(b)) always remains atǫ; for

the same reason, we cannot have−→ac =
−→
bd. There are three possible cases: ifa 6= c and

b = d, we have case 2; ifa = c andb 6= d, we have case 3; ifa 6= c andb 6= d, we have
case 4.

The previous lemma implies the following algorithm that checks the four cases:

(1) For every two verticesa ∈ A andb ∈ B, compute an arbitrary translationτ ′ such
thatdist(a, τ ′(b)) = ǫ, and check whetherdF (A, τ ′(B)) ≤ ǫ.

(2) For every three verticesa, c ∈ A andb ∈ B, compute all possible translationsτ ′

such thatdist(a, τ ′(b)) = dist(c, τ ′(b)) = ǫ, and check whetherdF (A, τ ′(B)) ≤

ǫ.
(3) For every three verticesa ∈ A andb, d ∈ B, compute all possible translationsτ ′

such thatdist(a, τ ′(b)) = dist(a, τ ′(d)) = ǫ, and check whetherdF (A, τ ′(B)) ≤

ǫ.
(4) For every four verticesa, c ∈ A andb, d ∈ B such that−→ac 6=

−→
bd, compute all

possible translationsτ ′ such thatdist(a, τ ′(b)) = dist(c, τ ′(d)) = ǫ, and check
whetherdF (A, τ ′(B)) ≤ ǫ.

The algorithm answers yes if it finds at least one translationτ ′ such thatdF (A, τ ′(B)) ≤ ǫ;
otherwise, it answers no. As we can see from the following lemma, this algorithm solves
the decision problem.

Lemma 2.2. If there is translationτ ′ such thatdF (A, τ ′(B)) = ǫ′, then, for any distance
ǫ ≥ ǫ′, there exists a translationτ such thatdF (A, τ(B)) = ǫ.
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Proof. As we translateB from τ ′(B) to infinity, the discrete Fréchet distance between
A and the translatedB changes continuously (since it is a composite function based on
the continuous Euclidean distance functions) fromdF (A, τ ′(B)) = ǫ′ to infinity. The
continuity implies that, for anyǫ ≥ ǫ′, there exists a translationτ such thatdF (A, τ(B)) =

ǫ.

We now analyze the algorithm. In cases 2 and 3, given two points p andq such that
p 6= q, the two equationsdist(x, p) = ǫ anddist(x, q) = ǫ together determinex (there
are at most two solutions forx) since the 2D pointx has two variable components. In case
4, given two pointsp andq, and a vector~v 6= −→pq, the two equationsdist(x, p) = ǫ and
dist(x+~v, q) = ǫ are independent and determinex (there are at most a constant number of
solutions forx). Given a translationτ ′, to check whetherdF (A, τ ′(B)) ≤ ǫ takesO(mn)

time. The overall time complexity isO(mn · m2n2) = O(m3n3).
With binary search, our algorithm for the decision problem implies an

O(m3n3 log(1/ǫ)) time 1 + ǫ approximation for the optimization problem; with paramet-
ric search (applying Cole’s sorting trick5,8), it implies anO(m3n3 log(m+n)) time exact
algorithm. We have the following theorem.

Theorem 2.1. For minimizing the discrete Fréchet distance between two 2D polygonal
chains under translation, we have anO(m3n3 log(1/ǫ)) time1 + ǫ approximation algo-
rithm and anO(m3n3 log(m + n)) time exact algorithm.

2.2. Matching Under Translation and Rotation

We next consider the transformation classTtr that includes both translations and rotations.

Lemma 2.3. Given two 2D polygonal chainsA andB, if there is a transformationτ ∈ Ttr

such thatdF(A, τ(B)) = ǫ > 0, then one of the following seven cases is true:

(1) there are a vertexa ∈ A and a vertexb ∈ B such that, for any transformation
τ ′ ∈ Ttr, dist(a, τ ′(b)) = ǫ =⇒ dF (A, τ ′(B)) ≤ ǫ;

(2) there are two verticesa, c ∈ A and two verticesb, d ∈ B such that, for any trans-
formationτ ′ ∈ Ttr, dist(a, τ ′(b)) = dist(c, τ ′(d)) = ǫ =⇒ dF (A, τ ′(B)) ≤ ǫ;

(3) there are two verticesa, c ∈ A, three verticesb, d, f ∈ B, and a transforma-
tion τ ′ ∈ Ttr such thatdist(a, τ ′(b)) = dist(c, τ ′(d)) = dist(c, τ ′(f)) = ǫ and
dF (A, τ ′(B)) ≤ ǫ.

(4) there are three verticesa, c, e ∈ A, two verticesb, d ∈ B, and a transforma-
tion τ ′ ∈ Ttr such thatdist(a, τ ′(b)) = dist(c, τ ′(d)) = dist(e, τ ′(d)) = ǫ and
dF (A, τ ′(B)) ≤ ǫ.

(5) there are three verticesa, c, e ∈ A and three verticesb, d, f ∈ B (△ace and
△bdf are not congruent), and a transformationτ ′ ∈ Ttr such thatdist(a, τ ′(b)) =

dist(c, τ ′(d)) = dist(e, τ ′(f)) = ǫ, anddF (A, τ ′(B)) ≤ ǫ.
(6) there are three verticesa, c, e ∈ A and three verticesb, d, f ∈ B (△ace and

△bdf are congruent), and a transformationτ ′ ∈ Ttr such that the two triangles
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△ace andτ ′(△bdf) are not parallel (their corresponding edges are not parallel),
dist(a, τ ′(b)) = dist(c, τ ′(d)) = dist(e, τ ′(f)) = ǫ, anddF (A, τ ′(B)) ≤ ǫ.

(7) there are three verticesa, c, e ∈ A and three verticesb, d, f ∈ B (△ace and△bdf

are congruent) such that, for any transformationτ ′ ∈ Ttr, if △ace andτ ′(△bdf)

are parallel, and ifdist(a, τ ′(b)) = dist(c, τ ′(d)) = dist(e, τ ′(f)) = ǫ, then
dF (A, τ ′(B)) ≤ ǫ.

Proof. Let a ∈ A andb ∈ B be the two vertices such thatdist(a, τ(b)) = ǫ, the existence
of which is guaranteed by Observation 2.1. LetW = {(Ai, Bi)} be the Fréchet alignment
of A andτ(B) such thatdW

F (A, τ(B)) = ǫ. Without loss of generality, we assume that
a ∈ Ai, b ∈ Bi, andb is the only vertex inBi.

Starting withτ ′ = τ , we rotateB around the vertexb. During the rotation, the dis-
tance between the two verticesa andb remains at exactlyǫ, that is,dist(a, τ ′(b)) = ǫ. If
dW
F (A, τ ′(B)) always remains atǫ, we have case 1.

Otherwise, there are two verticesc ∈ Aj andd ∈ Bj for somej such that the distance
dist(c, τ ′(d)) crosses the thresholdǫ. We must havei 6= j becauseb is the only vertex in
Bi and the positions of the vertices inAi are fixed as we rotateB aroundb. It follows that
a 6= c andb 6= d. Now, we continue to transformB while keeping the two constraints
dist(a, τ ′(b)) = ǫ anddist(c, τ ′(d)) = ǫ satisfied. IfdW

F (A, τ ′(B)) always remains atǫ,
we have case 2.

Otherwise, there are two verticese ∈ Ak andf ∈ Bk for somek such that the distance
dist(e, τ ′(f)) crosses the thresholdǫ. We must havek 6= i for the same reason thatj 6= i.
We consider two possibilities: eitherk = j or k 6= j.

If k = j, then we must have eithere = c or f = d because eitherAj or Bj contains
a single vertex. We cannot have bothe = c andf = d because we keep the constraint
dist(c, τ ′(d)) = ǫ satisfied during the transformation. Ife = c, we have case 3; iff = d,
we have case 4.

If k 6= j, then we consider the two triangles△ace andτ ′(△bdf).

(1) If they are not congruent, we have case 5.
(2) If they are congruent by not parallel, we have case 6.
(3) If they are both congruent and parallel, then we translate B continuously while

keeping the three constraintsdist(a, τ ′(b)) = dist(c, τ ′(d)) = dist(e, τ ′(f)) = ǫ

satisfied. During the translation, we either encounter another pair of verticese′ and
f ′ whose distance crosses the thresholdǫ or not. If we encountere′ andf ′, then
the two triangles△ace′ and△bdf ′ must not be congruent, and we have case 5;
otherwise, we have case 7.

As before, the previous lemma implies an algorithm for the decision problem. We now
analyze the running time. In cases 1, 2, and 7, we only need to find one transformationτ ′.
In cases 3 and 4, there are at most four transformations forτ ′. In case 5, the transformation
for τ ′ can be specified by six variables: thex andy coordinates of the three verticesb, d,
andf ; we also have six constraints for the lengths of the six segmentsab, cd, ef , bd, df ,
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andbf . Each constraint is specified by a quadratic equation. Thereare at most a constant
number of solutions for these equations.

In case 6, we have two congruent triangles△ace and△b′d′f ′ (△b′d′f ′ = τ ′(△bdf)).
If the two triangles have the same enclosing circle, then there are at most two transfor-
mations such that|ab′| = |cd′| = |ef ′| = ǫ. If the two triangles do not have the
same enclosing circle, then we can always translate△ace to △a′c′e′ such that△a′c′e′

and△b′d′f ′ have the same enclosing circle, then rotate△a′c′e′ to △b′d′f ′. We have
|ab′| = |cd′| = |ef ′| = ǫ > 0, |a′b′| = |c′d′| = |e′f ′| = x > 0 (since they are not
parallel), and

−→
ab′ =

−→
a′b′ + ~v,

−→
cd′ =

−→
c′d′ + ~v,

−→
ef ′ =

−−→
e′f ′ + ~v.

Given a fixed vector~v, the equation~w = ~u + ~v, subject to the two constraints|~w| = ǫ > 0

and|~u| = x > 0, has at most two solutions for~w and~u. On the other hand, the three vectors
−→
a′b′,

−→
c′d′, and

−−→
e′f ′ are distinct, which is a contradiction. Therefore, the two triangles△ace

and△b′d′f ′ must have the same enclosing circle.

Theorem 2.2. For minimizing the discrete Fréchet distance between two 2D polygonal
chains under translation and rotation, we have anO(m4n4 log(1/ǫ)) time1 + ǫ approxi-
mation algorithm and anO(m4n4 log(m + n)) time exact algorithm.

3. Protein Structure-Structure Alignment

The discrete Fréchet distance between two polygonal chains is a natural measure for com-
paring the geometric similarity of protein tertiary structures because the alpha-carbon
atoms along the backbone of a protein essentially forms a 3D polygonal chain.

Generalizing the theoretical results in the previous section, it is possible to match two
polygonal chains withm andn vertices in 3D in roughlyO((mn)5) time under both trans-
lation and rotation. However, this would be too slow for our target application of protein
structure-structure alignment, where a typical protein corresponds to a 3D polygonal chain
with 300–500 amino acids. Instead of an exact algorithm, we propose an intuitive heuristic
and present our empirical results showing its effectiveness in matching two similar polyg-
onal chains.

3.1. A Heuristic for Matching 3D Polygonal Chains Under Translation and
Rotation

Given a 3D chainC of n vertices, the coordinates of each vertexci of C can be represented
by a 3D vector~ci. Thecenterc of the chainC corresponds to the vector~c =

P

i
~ci

n
. We

observe that, given two polygonal chainsA = 〈a1, . . . , am〉 andB = 〈b1, . . . , bn〉, if
dF (A, B) = ǫ, then we must have bothdist(a1, b1) ≤ ǫ anddist(am, bn) ≤ ǫ. If ǫ is
smaller than half the minimum distance between two consecutive vertices in eitherA or
B, then the Fréchet alignment ofA andB must contain only one-to-one matches between
vertices ofA andB. That is, we must havem = n and, for1 ≤ i ≤ n, dist(ai, bi) ≤ ǫ. It
follows thatdist(a, b) ≤ ǫ, wherea andb are the centers ofA andB, respectively.
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The observation above suggests that we can use the three points, the two end-vertices
and the center, as the reference points1 for each chain. For two polygonal chains with
a small discrete Fréchet distance, their corresponding reference points must be close. In
general, the position and orientation of each polygonal chain is determined by the positions
of its three reference points. We have the following heuristic for matchingA andB under
translation and rotation:

(1) TranslateB such that the centera of A and the centerb of B coincide.
(2) RotateB aroundb such that the two triangles△aa1am and△bb1bn are co-planar

and such that the two vectors~a1+ ~am

2 − ~a and
~b1+ ~bn

2 −~b have the same direction.
(3) RotateB for a small angle around the axis through its two randomly chosen ver-

tices. If this does not decrease the discrete Fréchet distance betweenA andB,
rotate back.

(4) Repeat the previous tuning step for a number of times.

3.2. The Experiment

We implemented our protein structure-structure alignmentheuristic and a protein visual-
ization softwarea in Java. The experiment was conducted on an Apple iMac with a 2GHz
PowerPC G5 processor and 2GB DDR SDRAM memory running Mac OS 10.4.3 and Java
1.4.2.

Figure 2. The alignment of 1o7j.a and 1hfj.c by our heuristic.

In the experiment, we align the protein chain 1o7j.a (PDB ID 1o7j; chain A) with seven
other protein chains 1hfj.c, 1qd1.b, 1toh, 4eca.c, 1d9q.d,4eca.b, and 4eca.d. Each of these

aThe program is hosted on the web athttp://www.cs.usu.edu/∼mjiang/frechet.html.
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eight chains contains exactly 325 vertices, where each vertex represents an alpha-carbon
atom on the protein backbone. When the number of tuning stepsis set to 20, our program
takes less than one second to align two chains of lengths 325 on our test machine. Figure 2
shows two screenshots of our program, before and after aligning the two protein chains
1o7j.a and 1hfj.c.

We compare our heuristic with ProteinDBS16, an online protein database search en-
gine hosted athttp://proteindbs.rnet.missouri.edu/ that supports protein
structure-structure alignment. ProteinDBS uses computervision techniques to align two
protein chains based on the two-dimensional distance matrix generated from the 3D coor-
dinates of the alpha-carbon atoms on the protein backbones.The two chains 1o7j.a and
1hfj.c are examples given in the ProteinDBS paper16. According to the query result from
the ProteinDBS website, the seven chains (1hfj.c, 1qd1.b, 1toh, 4eca.c, 1d9q.d, 4eca.b,
4eca.d) have global tertiary structures most similar to 1o7j.a.

Table 1. The characteristics of the seven chains with the highest similarity ranking by ProteinDBS.

Protein Chain Alignment Length RMSD (in angstrom) Discrete Fréchet Distance (in angstrom)
1hfj.c 325 0.27 1.01
1qd1.b 85 2.81 22.90
1toh 55 2.91 35.09

4eca.c 317 1.10 6.01
1d9q.d 81 2.88 22.18
4eca.b 317 1.09 5.76
4eca.d 318 1.45 5.92

By comparing the image patterns in the distance matrices instead of aligning the tertiary
structures geometrically, ProteinDBS is very efficient butnot so accurate. We refer to
Table 1, which lists the characteristics of the alignments generated by ProteinDBS. The
three protein chains, 1qd1.b, 1toh, and 1d9q.d, have globaltertiary structures dissimilar to
that of the chain 1o7j.a, but they are incorrectly ranked among the top by ProteinDBS. The
discrete Fréchet distances of these chains and the query chain computed by our heuristic
correctly identify the three dissimilar protein chains.

4. Conclusion

In this paper, we present the first algorithms for matching two polygonal chains in 2D to
minimize their discrete Fréchet distance under translation and rotation. Our algorithms are
two or three orders of magnitude faster than the fastest algorithms using the continuous
Fréchet distance, and can be readily generalized to higherdimensions.

The discrete Fréchet distance is a natural measure for comparing the folded 3D struc-
tures of bio-molecules such as proteins. Our experiment shows that our heuristic for align-
ing protein tertiary structures using the discrete Fréchet distance is more accurate than Pro-
teinDBS’s structure aligning algorithm, which is based on computer vision techniques. We
are currently conducting more empirical studies and refining our protein structure-structure
alignment algorithm with additional ideas from some other popular algorithms such as the
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Combinatorial Extension (CE) Method15 hosted athttp://cl.sdsc.edu/. We see
great potential for using the discrete Fréchet distance inthe local alignment10, the feature
identification, and the consensus shape construction7 of multiple proteins.
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